Skip to main content

Abstract

Various methods of dendrimers characterization have been elaborated such as NMR, electron paramagnetic resonance, mass spectrometry, UV–VIS spectrometry, time-resolved and nonlinear optical spectroscopy, laser light scattering, optical rotation, circular dichroism, synchrotron radiation-based circular dichroism, IR, Raman, fluorescence, X-ray diffraction, small-angle X-ray scattering, small-angle neutron scattering, atomic force microscopy, scanning tunneling microscopy, optical tweezers, transmission electron microscopy, isothermal titration calorimetry, different chromatographic and electromigration methods (electrophoresis, capillary electrophoresis), dielectric spectroscopy, differential scanning calorimetry. Hence, this chapter is focused only on some ways, which are important for dendrimer characterization. Their con and pros are clearly discussed. Dendrimers can be characterized and purified by separation methods, as well as, they can be employed as stationary phase and/or selection factors improving the efficacy of separation techniques. The two main classes of separation techniques are chromatographic and electromigration methods. Even combination of two complementary techniques is not sufficient for removal of all by-products differing by only a single modification or deletion (the negligible difference such as missing one amino acid in molecules with mass above 7 kDa). A battery of complementary methods must be used to ensure at least some degree of reliability and even then the X + 1 method can show some impurities. By other words, the purity depends on the purification processes and analytical methods used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, E., Gonzalez, S., Simanek, E.: Synthesis, characterization, and application of melamine-based dendrimers supported on silica gel. J. Polym. Sci. A 43(1), 168–177 (2005)

    Article  CAS  Google Scholar 

  2. Appelhans, D., Oertel, U., Mazzeo, R., Komber, H., Hoffmann, J., Weidner, S., Brutschy, B., Voit, B., Ottaviani, M.F.: Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation. Proc. Royal Soc. A 466(2117), 1489–1513 (2010)

    Article  CAS  Google Scholar 

  3. Azagarsamy, M., Gomez-Escudero, A., Yesilyurt, V., Vachet, R., Thayumanavan, S.: Amphiphilic nanoassemblies for the detection of peptides and proteins using fluorescence and mass spectrometry. Analyst 134(4), 635–649 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. Baigude, H., Katsuraya, K., Okuyama, K., Hatanaka, K., Ikeda, E., Shibata, N., Uryu, T.: Synthesis of spherical and hemispherical sugar-containing poly(ornithine) dendrimers. J. Polym. Sci. A 42(6), 1400–1414 (2004)

    Article  CAS  Google Scholar 

  5. Baigude, H., Katsuraya, K., Okuyama, K., Tokunaga, S., Uryu, T.: Synthesis of sphere-type monodispersed oligosaccharide-polypeptide dendrimers. Macromolecules 36(19), 7100–7106 (2003)

    Article  CAS  Google Scholar 

  6. Baytekin, B., Werner, N., Luppertz, F., Engeser, M., Bruggemann, J., Bitter, S., Henkel, R., Felder, T., Schalley, C.: How useful is mass spectrometry for the characterization of dendrimers?: “fake defects” in the ESI and MALDI mass spectra of dendritic compounds. Int. J. Mass Spectrom. 249–250, 138–148 (2006)

    Google Scholar 

  7. Biricova, V., Laznickova, A.: Dendrimers: analytical characterization and applications. Bioorg. Chem. 37(6), 185–192 (2009)

    Article  PubMed  CAS  Google Scholar 

  8. Borges, A.R., Wieczorek, L., Johnson, B., Benesi, A.J., Brown, B.K., Kensinger, R.D., Krebs, F.C., Wigdahl, B., Blumenthal, R., Puri, A., McCutchan, F.E., Birx, D.L., Polonis, V.R., Schengrund, C.L.: Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1. Virology 408(1), 80–88 (2010)

    Article  Google Scholar 

  9. Brothers II, H., Piehler, L., Tomalia, D.: Slab-gel and capillary electrophoretic characterization of polyamidoamine dendrimers. J. Chromatogr. A 814(1–2), 233–246 (1998)

    CAS  Google Scholar 

  10. Caminade, A.M., Laurent, R., Majoral, J.P.: Characterization of dendrimers. Adv. Drug Deliv. Rev. 57(15), 2130–2146 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. Cason, C., Oehrle, S., Fabre, T., Girten, C., Walters, K., Tomalia, D., Haik, K., Bullen, H.: Improved methodology for monitoring poly(amidoamine) dendrimers surface transformations and product quality by ultra performance liquid chromatography. J. Nanomater. p. Art. ID 456082 (2008)

    Google Scholar 

  12. Castagnola, M., Zuppi, C., Rossetti, D., Vincenzoni, F., Lupi, A., Vitali, A., Meucci, E., Messana, I.: Characterization of dendrimer properties by capillary electrophoresis and their use as pseudostationary phases. Electrophoresis 23(12), 1769–1778 (2002)

    Article  PubMed  CAS  Google Scholar 

  13. Chabre, Y.M., Giguere, D., Blanchard, B., Rodrigue, J., Rocheleau, S., Neault, M., Rauthu, S., Papadopoulos, A., Arnold, A.A., Imberty, A., Roy, R.: Combining glycomimetic and multivalent strategies toward designing potent bacterial lectin inhibitors. Chem. Eur. J. 17(23), 6545–6562 (2011)

    Article  PubMed  CAS  Google Scholar 

  14. Chong-Qi, S., Jie-Fen, K., Nan-Jing, S.: Preparation and evaluation of capillary electrophoresis column bonded with carbosilane dendrimers. Chinese J. Anal. Chem. 36(3), 297–300 (2008)

    Article  Google Scholar 

  15. Chong-Qi, S., Xi-Xue, X., Jie-Fen, K., Zhi-Liang, Z., Nan-Jing, S., Pan, S.: Carbosilane dendrimer for the coated capillary electrophoresis column. Chinese J. Anal. Chem. 36(2), 167–171 (2008)

    Article  Google Scholar 

  16. Dejaegher, B., Heyden, Y.: Ruggedness and robustness testing. J. Chromat. A 1158(1–2), 138–157 (2007)

    CAS  Google Scholar 

  17. Dell, A., Lee, J., Pang, P.C., Parry, S., Smith, M., Tissot, B., Morris, H., Panico, M., Haslam, S.: Glycomics and mass spectrometry. Glycoscience 3, 2191–2217 (2008)

    Article  Google Scholar 

  18. Dell, A., Morris, H., Easton, R., Haslam, S., Panico, M., Sutton-Smith, M., Reason, A., Khoo, K.: Carbohydrates in Chemistry and Biology, Chemistry of Saccharides. Vol II: Enzymatic Synthesis of Glycosides and Carbohydrate-Receptor Interaction, Part I. Structural Analysis of Oligosaccharides: FAB-MS, ES-MS and MALDI-MS (2000)

    Google Scholar 

  19. Desai, A., Shi, X., Baker Jr., J.: CE of poly(amidoamine) succinamic acid dendrimers using a poly(vinyl alcohol)-coated capillary. Electrophoresis 29(2), 510–515 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. Diaz-Moscoso, A., Gourrierec, L., Gomez-Garcia, M., Benito, J., Balbuena, P., Ortega-Caballero, F., Guilloteau, N., Giorgio, C., Vierling, P., Defaye, J., Mellet, C., Fernandez, J.: Polycationic amphiphilic cyclodextrins for gene delivery: synthesis and effect of structural modifications on plasmid DNA complex stability, cytotoxicity, and gene expression. Chem. Eur. J. 15(46), 12871–12888 (2009)

    Article  PubMed  CAS  Google Scholar 

  21. Dribek, M., Le Potier, I., Rodrigues, A., Pallandre, A., Fattal, E., Taverna, M.: Determination of binding constants of vasoactive intestinal peptide to poly(amidoamine) dendrimers designed for drug delivery using ACE. Electrophoresis 28(13), 2191–2200 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. Felder, T., Schalley, C., Fakhrnabavi, H., Lukin, O.: A combined ESI- and MALDI-MS(/MS) study of peripherally persulfonylated dendrimers: false negative results by MALDI-MS and analysis of defects. Chem. Eur. J. 11(19), 5625–5636 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. Goodson III, T.: Optical excitations in organic dendrimers investigated by time-resolved and nonlinear optical spectroscopy. Acc. Chem. Res. 38(2), 99–107 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. Goodson III, T.: Time-resolved spectroscopy of organic dendrimers and branched chromophores. Ann. Rev. Phys. Chem. 56, 581–603 (2005)

    Article  CAS  Google Scholar 

  25. Han, S., Yoshida, D., Kanamoto, T., Nakashima, H., Uryu, T., Yoshida, T.: Sulfated oligosaccharide cluster with polylysine core scaffold as a new anti-HIV dendrimer. Carbohydr. Polym. 80(4), 1111–1115 (2010)

    Article  CAS  Google Scholar 

  26. Haslam, S., Khoo, K., Dell, A.: Carbohydrate-Based Drug Discovery, vol. 2. Sequencing of Oligosaccharides and Glycoproteins, pp. 461–482. Wiley-VCH GmbH and Co. KGaA, Weinheim (2003)

    Google Scholar 

  27. Hu, J., Xu, T., Cheng, Y.: NMR insights into dendrimer-based host–guest systems. Chem. Rev. (in press). doi: 10.1021/cr200333h

    Google Scholar 

  28. Kaltashov, I., Eyles, S.: Mass Spectrometry in Biophysics. Wiley, New York (2005)

    Book  Google Scholar 

  29. Kasicka, V.: Recent advances in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis 24(22–23), 4013–4046 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. Kehat, T., Goren, K., Portnoy, M.: Dendrons on insoluble supports: synthesis and applications. New J. Chem. 31(7), 1218–1242 (2007)

    Article  CAS  Google Scholar 

  31. Khambete, H., Gautam, S.P., Karthikeyan, C., Ramteke, S., Moorthy, N.H.N., Trivedi, P.: A new approach for PEGylation of dendrimers. Bioorg. Med. Chem. Lett. 20(14), 4279–4281 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. Kikkeri, R., Garcia-Rubio, I., Seeberger, P.H.: Ru(II)-carbohydrate dendrimers as photoinduced electron transfer lectin biosensors. Chem. Commun. (2), 235–237 (2009)

    Article  Google Scholar 

  33. Kowalczyk, W., Monso, M., de la Torre, B.G., Andreu, D.: Synthesis of multiple antigenic peptides (MAPs)–strategies and limitations. J. Pept. Sci. 17(4), 247–251 (2011)

    Article  PubMed  CAS  Google Scholar 

  34. Krokhin, O., Ens, W., Standing, K., Wilkins, J., Perreault, H.: Site-specific N-glycosylation analysis: matrix-assisted laser desorption/ionization quadrupole-quadrupole time-of-flight tandem mass spectral signatures for recognition and identification of glycopeptides. Rapid Commun. Mass Spectrom. 18(18), 2020–2030 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. Kussrow, A., Kaltgrad, E., Wolfenden, M.L., Cloninger, M.J., Finn, M.G., Bornhop, D.J.: Measurement of monovalent and polyvalent carbohydrate-lectin binding by back-scattering interferometry. Anal. Chem. 81(12), 4889–4897 (2009)

    Article  PubMed  CAS  Google Scholar 

  36. Lehmann, W., Bohne, A., Von Der Lieth, C.W.: The information encrypted in accurate peptide masses—improved protein identification and assistance in glycopeptide identification and characterization. J. Mass Spectrom. 35(11), 1335–1341 (2000)

    Article  PubMed  CAS  Google Scholar 

  37. Ling, F., Lu, V., Svec, F., Frechet, J.: Effect of multivalency on the performance of enantioselective separation media for chiral HPLC prepared by linking multiple selectors to a porous polymer support via aliphatic dendrons. J. Org. Chem. 67(7), 1993–2002 (2002)

    Article  PubMed  CAS  Google Scholar 

  38. Martini, G., Ciani, L.: Electron spin resonance spectroscopy in drug delivery. Phys. Chem. Chem. Phys. 11(2), 211–254 (2009)

    Article  PubMed  CAS  Google Scholar 

  39. Morelle, W., Michalski, J.C.: Glycomics and mass spectrometry. Curr. Pharm. Des. 11(20), 2615–2645 (2005)

    Article  PubMed  CAS  Google Scholar 

  40. Muller, R., Allmaier, G.: Molecular weight determination of ultra-high mass compounds on a standard matrix-assisted laser desorption/ionization time-of-flight mass spectrometer: PAMAM dendrimer generation 10 and immunoglobulin M. Rapid Commun. Mass Spectrom. 20(24), 3803–3806 (2006)

    Article  PubMed  Google Scholar 

  41. Mutalik, S., Hewavitharana, A., Shaw, P., Anissimov, Y., Roberts, M., Parekh, H.: Development and validation of a reversed-phase high-performance liquid chromatographic method for quantification of peptide dendrimers in human skin permeation experiments. J. Chromat. B 877(29), 3556–3562 (2009)

    Article  CAS  Google Scholar 

  42. Niederhafner, P., Sebestik, J., Jezek, J.: Glycopeptide dendrimers, Part II. J. Pept. Sci. 14(1), 44–65 (2008)

    CAS  Google Scholar 

  43. Nilsson, C., Nilsson, S.: Nanoparticle-based pseudostationary phases in capillary electrochromatography. Electrophoresis 27(1), 76–83 (2006)

    Article  PubMed  CAS  Google Scholar 

  44. Oshovsky, G., Verboom, W., Fokkens, R., Reinhoudt, D.: Anion complexation by glycocluster thioureamethyl cavitands: Novel ESI-MS-based methods for the determination of Ka values. Chem. Eur. J. 10(11), 2739–2748 (2004)

    Article  PubMed  CAS  Google Scholar 

  45. Papp, I., Dernedde, J., Enders, S., Riese, S.B., Shiao, T.C., Roy, R., Haag, R.: Multivalent presentation of mannose on hyperbranched polyglycerol and their interaction with concanavalin A lectin. ChemBioChem 12(7), 1075–1083 (2011)

    Article  PubMed  CAS  Google Scholar 

  46. Peric, I., Kenndler, E.: Recent developments in capillary electrokinetic chromatography with replaceable charged pseudostationary phases or additives. Electrophoresis 24(17), 2924–2934 (2003)

    Article  PubMed  CAS  Google Scholar 

  47. Sakai, K., Kunitake, M., Teng, T., Katada, A., Harada, T., Yoshida, K., Yamanaka, K., Asami, Y., Sakata, M., Hirayama, C.: Designable size exclusion chromatography columns based on dendritic polymer-modified porous silica particles. Chem. Mater. 15(21), 4091–4097 (2003)

    Article  CAS  Google Scholar 

  48. Schalley, C.: Molecular recognition and supramolecular chemistry in the gas phase. Mass Spec. Rev. 20(5), 253–309 (2001)

    Article  CAS  Google Scholar 

  49. Schalley, C., Baytekin, B., Baytekin, H., Engeser, M., Felder, T., Rang, A.: Mass spectrometry as a tool in dendrimer chemistry: from self-assembling dendrimers to dendrimer gas-phase host-guest chemistry. J. Phys. Org. Chem. 19(8–9), 479–490 (2006)

    Article  CAS  Google Scholar 

  50. Sebestik, J., Niederhafner, P., Jezek, J.: Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 40(2), 301–370 (2011)

    Article  PubMed  CAS  Google Scholar 

  51. Sedlakova, P., Svobodova, J., Miksik, I., Tomas, H.: Separation of poly(amidoamine) (PAMAM) dendrimer generations by dynamic coating capillary electrophoresis. J. Chromat. B 841(1–2), 135–139 (2006)

    Article  CAS  Google Scholar 

  52. Shcharbin, D., Janicka, M., Wasiak, M., Palecz, B., Przybyszewska, M., Zaborski, M., Bryszewska, M.: Serum albumins have five sites for binding of cationic dendrimers. Biochim. Biophys. Acta. 1774(7), 946–951 (2007)

    Article  PubMed  CAS  Google Scholar 

  53. Shcharbin, D., Pedziwiatr, E., Bryszewska, M.: How to study dendriplexes I: characterization. J. Control Rel. 135(3), 186–197 (2009)

    Article  CAS  Google Scholar 

  54. Shi, X., Banyai, I., Lesniak, W., Islam, M., Orszagh, I., Balogh, P., Baker Jr., J., Balogh, L.: Capillary electrophoresis of polycationic poly(amidoamine) dendrimers. Electrophoresis 26(15), 2949–2959 (2005)

    Article  PubMed  CAS  Google Scholar 

  55. Shi, X., Banyai, I., Rodriguez, K., Islam, M., Lesniak, W., Balogh, P., Balogh, L., Baker Jr., J.: Electrophoretic mobility and molecular distribution studies of poly(amidoamine) dendrimers of defined charges. Electrophoresis 27(9), 1758–1767 (2006)

    Article  PubMed  CAS  Google Scholar 

  56. Shi, X., Lesniak, W., Islam, M., Muniz, M., Balogh, L., Baker Jr., J.: Comprehensive characterization of surface-functionalized poly(amidoamine) dendrimers with acetamide, hydroxyl, and carboxyl groups. Colloid. Surf. A 272(1–2), 139–150 (2006)

    Article  CAS  Google Scholar 

  57. Shi, X., Majoros, I., Baker Jr., J.: Capillary electrophoresis of poly(amidoamine) dendrimers: from simple derivatives to complex multifunctional medical nanodevices. Mol. Pharm. 2(4), 278–294 (2005)

    Article  PubMed  CAS  Google Scholar 

  58. Shi, X., Majoros, I., Patri, A., Bi, X., Islam, M., Desai, A., Ganser, T., Jr., B., J.R.: Molecular heterogeneity analysis of poly(amidoamine) dendrimer-based mono- and multifunctional nanodevices by capillary electrophoresis. Analyst 131(3), 374–381 (2006)

    Google Scholar 

  59. Shi, X., Patri, A., Lesniak, W., Islam, M., Zhang, C., Baker Jr., J., Balogh, L.: Analysis of poly(amidoamine)-succinamic acid dendrimers by slab-gel electrophoresis and capillary zone electrophoresis. Electrophoresis 26(15), 2960–2967 (2005)

    Article  PubMed  CAS  Google Scholar 

  60. Song, S.Y., Yoon, H.C.: Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA(1c)) and electrochemical biosensing. Sensors Actuat B 140(1), 233–239 (2009)

    Article  Google Scholar 

  61. Stephan, H., Roehrich, A., Noll, S., Steinbach, J., Kirchner, R., Seidel, J.: Carbohydration of 1,4,8,11-tetraazacyclotetradecane (cyclam): synthesis and binding properties toward concanavalin A. Tetrahedron Lett. 48(50), 8834–8838 (2007)

    Article  CAS  Google Scholar 

  62. Takahashi, N., Tajima, T., Tsugawa, N., Takaguchi, Y.: Optically pure fullerodendron formed by diastereoselective Diels-Alder reaction. Tetrahedron 66(39), 7787–7793 (2010)

    Article  CAS  Google Scholar 

  63. Tamaki, M., Taguchi, T., Nakabayashi, S., Mori, K., Kitajyo, Y., Sakai, R., Kakuchi, T., Satoh, T.: Hyperbranched 5,6-glucan as reducing sugar ball. Polym. Chem. 1(1), 82–92 (2010)

    Article  CAS  Google Scholar 

  64. Touaibia, M., Wellens, A., Shiao, T.C., Wang, Q., Sirois, S., Bouckaert, J., Roy, R.: Mannosylated G(0) dendrimers with nanomolar affinities to Escherichia coli FimH. ChemMedChem 2(8), 1190–1201 (2007)

    Article  PubMed  CAS  Google Scholar 

  65. Toyo’oka, T.: Determination methods for biologically active compounds by ultra-performance liquid chromatography coupled with mass spectrometry: application to the analyses of pharmaceuticals, foods, plants, environments, metabonomics, and metabolomics. J. Chromat. Sci. 46(3), 233–247 (2008)

    Google Scholar 

  66. Vetterlein, K., Bergmann, U., Buche, K., Walker, M., Lehmann, J., Linscheid, M., Scriba, G., Hildebrand, M.: Comprehensive profiling of the complex dendrimeric contrast agent gadomer using a combined approach of CE, MS, and CE-MS. Electrophoresis 28(17), 3088–3099 (2007)

    Article  PubMed  CAS  Google Scholar 

  67. Vetterlein, K., Buche, K., Hildebrand, M., Scriba, G., Lehmann, J.: Capillary electrophoresis for the characterization of the complex dendrimeric contrast agent gadomer. Electrophoresis 27(12), 2400–2412 (2006)

    Article  PubMed  CAS  Google Scholar 

  68. Wilkinson, B.L., Chun, C.K.Y., Payne, R.J.: Synthesis of MUC1 glycopeptide thioesters and ligation via direct aminolysis. Biopolymers 96(2), 137–146 (2011)

    Article  PubMed  CAS  Google Scholar 

  69. Zamfir, A., Peter-Katalinic, J.: Capillary electrophoresis-mass spectrometry for glycoscreening in biomedical research. Electrophoresis 25(13), 1949–1963 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Šebestík, J., Reiniš, M., Ježek, J. (2012). Purification and Characterization of Dendrimers. In: Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1206-9_7

Download citation

Publish with us

Policies and ethics