Skip to main content

Dendrimers in Nanoscience and Nanotechnology

  • Chapter
  • First Online:
  • 1117 Accesses

Abstract

The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985. Since nanotechnologies include the design, production, characterization, and application of structures, devices and systems for management of size and shape at nanometer scale, they can handle and form materials at the atomic scale. Nanotechnology provides useful materials, devices, and systems via the manipulation of tiny matter with at least one dimension smaller than 100 nm. Nanotechnology is an interdisciplinary science spreading to almost all hard sciences including physics, chemistry, biology, and medicine. Nanoscale devices are three to five orders of magnitude smaller than human cells. This means that their size corresponds to large biological molecules, such as enzymes and receptors. Their diameter in the range of 1–100 nm corresponds to molecular mass in the interval 104–107 Da and a number of atoms within 103–109 atoms. These nanodimensions allowed nanoscale systems to act both on the cell surface and in inner parts of cells. Therefore, nanoscale systems can detect diseases and deliver the cargo to the exact target in a way unknown so far. The tailored artificial nanostructures can serve for sensing and repair of damaged parts of human body. In this way, their function can resemble or outperform naturally occurring biological systems, e.g. the white blood cells. Due to nanoscale size of dendrimers, the multidisciplinary field of dendrimers and nanotechnology have many similar features and overlaps. There is an overlap between sets of nanomaterials and dendrimers. The overlap can be seen in physical (size), chemical, and biological properties. In the following text we give some examples, where dendrimers (especially glyco and glycopeptide dendrimers) are both conjugated with other nanostructures or played a role of nanostructures themselves. The dendrimeric nanostructures possess improved quality of physical, chemical, and biological properties such as solubility, stability, ability to work as delivery systems, and many others. The immense potential of nanotechnology reaches to prevention, detection, diagnosis, and treatment of cancer, viral, and bacterial diseases. Different sorts of dendrimers serving as nanomaterials are discussed with many examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aillon, K., Xie, Y., El-Gendy, N., Berkland, C., Forrest, M.: Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61(6), 457–466 (2009)

    Article  PubMed  CAS  Google Scholar 

  2. Aoyama, Y.: Macrocyclic glycoclusters: from amphiphiles through nanoparticles to glycoviruses. Chem. Eur. J. 10(3), 588–593 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. Aoyama, Y.: Glycovirus. Trends Glycosci. Glycotechnol. 17(94), 39–47 (2005)

    Article  CAS  Google Scholar 

  4. Aoyama, Y., Kanamori, T., Nakai, T., Sasaki, T., Horiuchi, S., Sando, S., Niidome, T.: Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J. Am. Chem. Soc. 125(12), 3455–3457 (2003)

    CAS  Google Scholar 

  5. Astruc, D., Ornelas, C., Diallo, A.K., Ruiz, J.: Extremely efficient catalysis of carbon-carbon bond formation using “click” dendrimer-stabilized palladium nanoparticles. Molecules 15(7), 4947–4960 (2010)

    Article  PubMed  CAS  Google Scholar 

  6. Bai, S., Thomas, C., Rawat, A., Ahsan, F.: Recent progress in dendrimer-based nanocarriers. Crit. Rev. Ther. Drug Carrier Syst. 23(6), 437–495 (2006)

    Article  PubMed  CAS  Google Scholar 

  7. Balogh, L.: Dendrimer 101. Adv. Exp. Med. Biol. 620, 136–155 (2007)

    Article  PubMed  Google Scholar 

  8. Bhadra, D., Yadav, A., Bhadra, S., Jain, N.: Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int. J. Pharmaceut. 295(1–2), 221–233 (2005)

    Article  CAS  Google Scholar 

  9. Bharali, D., Khalil, M., Gurbuz, M., Simone, T., Mousa, S.: Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int. J. Nanomed. 4(1), 1–7 (2009)

    Article  CAS  Google Scholar 

  10. Boas, U., Christensen, J., Heegaard, P.: Dendrimers in Medicine and Biotechnology: New Molecular Tools. Dendrimers as Biomimics, pp. 152–172. RSC Publishing, Cambridge (2006)

    Google Scholar 

  11. Bogdan, N., Roy, R., Morin, M.: Glycodendrimer coated gold nanoparticles for proteins detection based on surface energy transfer process. RSC Adv. 2, 985–991 (2012)

    Article  CAS  Google Scholar 

  12. Bogdan, N., Vetrone, F., Roy, R., Capobianco, J.A.: Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J. Mater. Chem. 20(35), 7543–7550 (2010)

    Article  CAS  Google Scholar 

  13. Borm, P., Muller-Schulte, D.: Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine 1(2), 235–249 (2006)

    Article  PubMed  CAS  Google Scholar 

  14. Boturyn, D., Defrancq, E., Dolphin, G., Garcia, J., Labbe, P., Renaudet, O., Dumy, P.: RAFT nano-constructs: surfing to biological applications. J. Pept. Sci. 14(2), 224–240 (2008)

    Article  PubMed  CAS  Google Scholar 

  15. Carlmark, A., Hawker, C., Hult, A., Malkoch, M.: New methodologies in the construction of dendritic materials. Chem. Soc. Rev. 38(2), 352–362 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. Chabre, Y., Roy, R.: Design and creativity in synthesis of multivalent neoglycoconjugates. Adv. Carbohydr. Chem. Biochem. 63, 165–393 (2010)

    Article  PubMed  CAS  Google Scholar 

  17. Chadha, R., Kapoor, V., Thakur, D., Kaur, R., Arora, P., Jain, D.: Drug carrier systems for anticancer agents: a review. J. Sci. Industr. Res. 67(3), 185–197 (2008)

    CAS  Google Scholar 

  18. Chen, C.T., Munot, Y.S., Salunke, S.B., Wang, Y.C., Lin, R.K., Lin, C.C., Chen, C.C., Liu, Y.H.: A triantennary dendritic galactoside-capped nanohybrid with a ZnS/CdSe nanoparticle core as a hydrophilic, fluorescent, multivalent probe for metastatic lung cancer cells. Adv. Funct. Mater. 18(4), 527–540 (2008)

    Article  CAS  Google Scholar 

  19. Chen, X., Tam, U., Czlapinski, J., Lee, G., Rabuka, D., Zettl, A., Bertozzi, C.: Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 128(19), 6292–6293 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z., Zettl, A., Bertozzi, C.: Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J. Am. Chem. Soc. 131(3), 890–891 (2009)

    Article  PubMed  CAS  Google Scholar 

  21. Cheng, Y., Wang, J., Rao, T., He, X., Xu, T.: Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front. Biosci. 13(4), 1447–1471 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. Cheng, Y., Xu, Z., Ma, M., Xu, T.: Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci. 97(1), 123–143 (2008)

    Article  PubMed  CAS  Google Scholar 

  23. Cieplak, M., Thompson, D.: Coarse-grained molecular dynamics simulations of nanopatterning with multivalent inks. J. Chem. Phys. 128(23) (2008)

    Google Scholar 

  24. Dufes, C., Uchegbu, I., Schatzlein, A.: Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 57(15), 2177–2202 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. Duncan, R., Izzo, L.: Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev. 57(15), 2215–2237 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Dutta, T., Jain, N., McMillan, N., Parekh, H.: Dendrimer nanocarriers as versatile vectors in gene delivery. Nanomedicine 6(1), e25–e34 (2010)

    Article  Google Scholar 

  27. Emerich, D., Thanos, C.: Multifunctional peptide-based nanosystems for improving delivery and molecular imaging. Curr. Opin. Mol. Ther. 10(2), 132–139 (2008)

    PubMed  CAS  Google Scholar 

  28. Fahmi, A., Pietsch, T., Appelhans, D., Gindy, N., Voit, B.: Water-soluble CdSe nanoparticles stabilised by dense-shell glycodendrimers. New J. Chem. 33(4), 703–706 (2009)

    Article  CAS  Google Scholar 

  29. Fako, V., Furgeson, D.: Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv. Drug Deliv. Rev. 61(6), 478–486 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. Frauenrath, H.: Dendronized polymers - building a new bridge from molecules to nanoscopic objects. Prog. Polym. Sci. 30(3–4), 325–384 (2005)

    Article  CAS  Google Scholar 

  31. Frauenrath, H., Jahnke, E.: A general concept for the preparation of hierarchically structured π-conjugated polymers. Chem. Eur. J. 14(10), 2942–2955 (2008)

    Article  PubMed  CAS  Google Scholar 

  32. Frechet, J.: Dendrimers and other dendritic macromolecules: from building blocks to functional assemblies in nanoscience and nanotechnology. J. Polym. Sci. A 41(23), 3713–3725 (2003)

    Article  CAS  Google Scholar 

  33. Gannon, G., Larsson, J., Thompson, D.: Monolayer packing, dehydration, and ink-binding dynamics at the molecular printboard. J. Phys. Chem. C 113(17), 7298–7304 (2009)

    Article  CAS  Google Scholar 

  34. Garcia Fernandez, J., Ortiz Mellet, C., Defaye, J.: Glyconanocavities: cyclodextrins and beyond. J. Inclusion Phenom. Macrocycl. Chem. 56, 149–159 (2006)

    Article  Google Scholar 

  35. Gatard, S., Liang, L., Salmon, L., Ruiz, J., Astruc, D., Bouquillon, S.: Water-soluble glycodendrimers: synthesis and stabilization of catalytically active Pd and Pt nanoparticles. Tetrahedron Lett. 52(16), 1842–1846 (2011)

    Article  CAS  Google Scholar 

  36. Gu, L., Luo, P.G., Wang, H., Meziani, M.J., Lin, Y., Veca, L.M., Cao, L., Lu, F., Wang, X., Quinn, R.A., Wang, W., Zhang, P., Lacher, S., Sun, Y.P.: Single-walled carbon nanotube as a unique scaffold for the multivalent display of sugars. Biomacromol. 9(9), 2408–2418 (2008)

    Article  CAS  Google Scholar 

  37. Haase, M., Schafer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed. 50(26), 5808–5829 (2011)

    Article  CAS  Google Scholar 

  38. Hamilton, S., Harth, E.: Molecular dendritic transporter nanoparticle vectors provide efficient intracellular delivery of peptides. ACS Nano. 3(2), 402–410 (2009)

    Article  PubMed  CAS  Google Scholar 

  39. Han, X., Zhu, Y., Yang, X., Li, C.: Amperometric glucose biosensor based on platinum nanoparticle encapsulated with a clay. Microchim. Acta. 171(3–4), 233–239 (2010)

    CAS  Google Scholar 

  40. Hong, S., Leroueil, P.R., Majoros, I.J., Orr, B.G., Jr., J.R.B., Holl, M.M.B.: The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14(1), 107–115 (2007)

    Google Scholar 

  41. Jain, K.: Drug delivery systems - an overview. Drug Deliv. Syst. 437, 1–50 (2008)

    Article  CAS  Google Scholar 

  42. Jain, K.: Nanomedicine: application of nanobiotechnology in medical practice. Med. Princip. Pract. 17(2), 89–101 (2008)

    Article  CAS  Google Scholar 

  43. Jensen, A., Maru, B., Zhang, X., Mohanty, D., Fahlman, B., Swanson, D., Tomalia, D.: Preparation of fullerene-shell dendrimer-core nanoconjugates. Nano. Lett. 5(6), 1171–1173 (2005)

    Article  PubMed  CAS  Google Scholar 

  44. Jiang, D.L., Aida, T.: Bioinspired molecular design of functional dendrimers. Prog. Polym. Sci. 30(3–4), 403–422 (2005)

    Article  CAS  Google Scholar 

  45. Khan, M., Nigavekar, S., Minc, L., Kariapper, M., Nair, B., Lesniak, W., Balogh, L.: In vivo biodistribution of dendrimers and dendrimer nanocomposites - implications for cancer imaging and therapy. Technol. Cancer Res. Treat. 4(6), 603–613 (2005)

    PubMed  CAS  Google Scholar 

  46. Kobayashi, H., Brechbiel, M.: Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug Deliv. Rev. 57(15), 2271–2286 (2005)

    Article  PubMed  CAS  Google Scholar 

  47. Kumar, C.: Nanomaterials-Toxicity, Health and Environmental Issues. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  48. Kumar, C.: Nanomaterials for Cancer Diagnosis. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  49. LaRocque, J., Bharali, D., Mousa, S.: Cancer detection and treatment: the role of nanomedicines. Mol. Biotechnol. 42(3), 358–366 (2009)

    Article  PubMed  CAS  Google Scholar 

  50. Larsen, K., Thygesen, M., Guillaumie, F., Willats, W., Jensen, K.: Solid-phase chemical tools for glycobiology. Carbohydr. Res. 341(10), 1209–1234 (2006)

    Article  PubMed  CAS  Google Scholar 

  51. Liang, C., Frechet, J.: Applying key concepts from nature: transition state stabilization, pre-concentration and cooperativity effects in dendritic biomimetics. Prog. Polym. Sci. 30(3–4), 385–402 (2005)

    Article  CAS  Google Scholar 

  52. Ling, X., Phang, I., Reinhoudt, D., Vancso, G., Huskens, J.: Transfer-printing and host-guest properties of 3d supramolecular particle structures. ACS Appl. Mater Interfaces 1(4), 960–968 (2009)

    Article  PubMed  CAS  Google Scholar 

  53. Ling, X., Reinhoudt, D., Huskens, J.: Reversible attachment of nanostructures at molecular printboards through supramolecular glue. Chem. Mater. 20(11), 3574–3578 (2008)

    Article  CAS  Google Scholar 

  54. Lockman, J., Paul, N., Parquette, J.: The role of dynamically correlated conformational equilibria in the folding of macromolecular structures. A model for the design of folded dendrimers. Prog. Polym. Sci. 30(3–4), 423–452 (2005)

    CAS  Google Scholar 

  55. Ma, H.L., Liang, X.J.: Fullerenes as unique nanopharmaceuticals for disease treatment. Sci. China. Chem. 53, 2233–2240 (2010)

    Article  CAS  Google Scholar 

  56. Martin, A., Li, B., Gillies, E.: Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets. J. Am. Chem. Soc. 131(2), 734–741 (2009)

    Article  PubMed  CAS  Google Scholar 

  57. Martinez-Avila, O., Bedoya, L.M., Marradi, M., Clavel, C., Alcami, J., Penades, S.: Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells. ChemBioChem 10(11), 1806–1809 (2009)

    Article  PubMed  CAS  Google Scholar 

  58. Martinez-Avila, O., Hijazi, K., Marradi, M., Clavel, C., Campion, C., Kelly, C., Penades, S.: Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chem. Eur. J. 15(38), 9874–9888 (2009)

    Article  PubMed  CAS  Google Scholar 

  59. Martini, G., Ciani, L.: Electron spin resonance spectroscopy in drug delivery. Phys. Chem. Chem. Phys. 11(2), 211–254 (2009)

    Article  PubMed  CAS  Google Scholar 

  60. Mastrobattista, E., van der Aa, M., Hennink, W., Crommelin, D.: Artificial viruses: a nanotechnological approach to gene delivery. Nat. Rev. Drug Discover. 5(2), 115–121 (2006)

    Article  Google Scholar 

  61. Maynard, A.D., Warheit, D.B., Philbert, M.A.: The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol. Sci. 120(suppl 1), S109–S129 (2011)

    Article  PubMed  CAS  Google Scholar 

  62. Menjoge, A.R., Kannan, R.M., Tomalia, D.A.: Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov. Today 15(5–6), 171–185 (2010)

    Article  PubMed  CAS  Google Scholar 

  63. Muthu, M., Singh, S.: Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine 4(1), 105–118 (2009)

    CAS  Google Scholar 

  64. Niederhafner, P., Sebestik, J., Jezek, J.: Glycopeptide dendrimers, Part I. J. Pept. Sci. 14(1), 2–43 (2008)

    CAS  Google Scholar 

  65. Niederhafner, P., Sebestik, J., Jezek, J.: Glycopeptide dendrimers, Part II. J. Pept. Sci. 14(1), 44–65 (2008)

    CAS  Google Scholar 

  66. Nigavekar, S., Sung, L., Llanes, M., El-Jawahri, A., Lawrence, T., Becker, C., Balogh, L., Khan, M.: 3H dendrimer nanoparticle organ/tumor distribution. Pharmaceut. Res. 21(3), 476–483 (2004)

    Google Scholar 

  67. Ortiz Mellet, C., Benito, J.M., Garcia Fernandez, J.M.: Preorganized, macromolecular, gene-delivery systems. Chem. Eur. J. 16(23), 6728–6742 (2010)

    Google Scholar 

  68. Paleos, C., Tsiourvas, D., Sideratou, Z.: Molecular engineering of dendritic polymers and their application as drug and gene delivery systems. Mol. Pharmaceut. 4(2), 169–188 (2007)

    Article  CAS  Google Scholar 

  69. Paleos, C., Tziveleka, L.A., Sideratou, Z., Tsiourvas, D.: Gene delivery using functional dendritic polymers. Expert Opin. Drug Deliv. 6(1), 27–38 (2009)

    Article  PubMed  CAS  Google Scholar 

  70. Park, C., Im, M., Lee, S., Lim, J., Kim, C.: Tunable fluorescent dendron-cyclodextrin nanotubes for hybridization with metal nanoparticles and their biosensory function. Angew Chem. Int. Ed. 47(51), 9922–9926 (2008)

    Article  CAS  Google Scholar 

  71. Peng, X., Pan, Q., Rempel, G.: Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem. Soc. Rev. 37(8), 1619–1628 (2008)

    Article  PubMed  Google Scholar 

  72. Pietsch, T., Appelhans, D., Gindy, N., Voit, B., Fahmi, A.: Oligosaccharide-modified dendrimers for templating gold nanoparticles: tailoring the particle size as a function of dendrimer generation and -molecular structure. Colloid. Surf. A 341(1–3), 93–102 (2009)

    Article  CAS  Google Scholar 

  73. Portney, N., Ozkan, M.: Nano-oncology: drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 384(3), 620–630 (2006)

    Article  PubMed  CAS  Google Scholar 

  74. Ribeiro, S., Hussain, N., Florence, A.: Release of DNA from dendriplexes encapsulated in PLGA nanoparticles. Int. J. Pharmaceut. 298(2), 354–360 (2005)

    Article  CAS  Google Scholar 

  75. Rojo, J., Diaz, V., De La Fuente, J., Segura, I., Barrientos, A., Riese, H., Bernad, A., Penades, S.: Gold glyconanoparticles as new tools in antiadhesive therapy. ChemBioChem 5(3), 291–297 (2004)

    Article  PubMed  CAS  Google Scholar 

  76. Rolland, O., Turrin, C.O., Caminade, A.M., Majoral, J.P.: Dendrimers and nanomedicine: multivalency in action. New J. Chem. 33(9), 1809–1824 (2009)

    Article  CAS  Google Scholar 

  77. Rosen, B., Wilson, C., Wilson, D., Peterca, M., Imam, M., Percec, V.: Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109(11), 6275–6540 (2009)

    Article  PubMed  CAS  Google Scholar 

  78. Samad, A., Alam, M., Saxena, K.: Dendrimers: a class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Curr. Pharm. Des. 15(25), 2958–2969 (2009)

    Article  PubMed  CAS  Google Scholar 

  79. Sanchez-Navarro, M., Munoz, A., Illescas, B.M., Rojo, J., Martin, N.: [60]Fullerene as multivalent scaffold: efficient molecular recognition of globular glycofullerenes by concanavalin A. Chem. Eur. J. 17(3), 766–769 (2011)

    Google Scholar 

  80. Santos, A.N., Werner Soares, D.A., Alencar de Queiroz, A.A.: Low potential stable glucose detection at dendrimers modified polyaniline nanotubes. Mater. Res. 13(1), 5–10 (2010)

    Google Scholar 

  81. Schafmeister, C.: Molecular lego. Sci. Am. 296(2), 76–82B (2007)

    Article  CAS  Google Scholar 

  82. Scholl, M., Kadlecova, Z., Klok, H.A.: Dendritic and hyperbranched polyamides. Prog. Polym. Sci. 34(1), 24–61 (2009)

    Article  CAS  Google Scholar 

  83. Sebestik, J., Niederhafner, P., Jezek, J.: Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 40(2), 301–370 (2011)

    Article  PubMed  CAS  Google Scholar 

  84. Sekowski, S., Milowska, K., Gabryelak, T.: Dendrimers in biomedical sciences and nanotechnology [Dendrymery w naukach biomedycznych i nanotechnologii.]. Postepy. Hig. Med. Doswiad. 62, 725–733 (2008)

    Google Scholar 

  85. Shi, X., Majoros, I., Baker Jr., J.: Capillary electrophoresis of poly(amidoamine) dendrimers: from simple derivatives to complex multifunctional medical nanodevices. Mol. Pharmaceut. 2(4), 278–294 (2005)

    Article  CAS  Google Scholar 

  86. Smith, D.: Dendritic supermolecules - towards controllable nanomaterials. Chem. Commun. (1), 34–44 (2006)

    Article  Google Scholar 

  87. Smith, D., Hirst, A., Love, C., Hardy, J., Brignell, S., Huang, B.: Self-assembly using dendritic building blocks - towards controllable nanomaterials. Prog. Polym. Sci. 30(3–4), 220–293 (2005)

    Article  CAS  Google Scholar 

  88. Stylios, G., Giannoudis, P., Wan, T.: Applications of nanotechnologies in medical practice. Injury 36(Suppl. 4), S6–S13 (2005)

    Article  PubMed  Google Scholar 

  89. Svenson, S.: Dendrimers. Kirk-Othmer Encyclop. Chem. Technol. 26, 786–812 (2007)

    CAS  Google Scholar 

  90. Svenson, S.: Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm. 71(3), 445–462 (2009)

    Article  PubMed  CAS  Google Scholar 

  91. Svenson, S., Chauhan, A.: Dendrimers for enhanced drug solubilization. Nanomedicine 3(5), 679–702 (2008)

    Article  PubMed  CAS  Google Scholar 

  92. Svenson, S., Tomalia, D.: Dendrimers in biomedical applications - reflections on the field. Adv. Drug Deliv. Rev. 57(15), 2106–2129 (2005)

    Article  PubMed  CAS  Google Scholar 

  93. Svenson, S., Tomalia, D.A.: Nanoparticulates as Drug Carriers. Dendrimers as Nanoparticular Drug Carriers, pp. 277–306. Imperial College Press, London (2006)

    Google Scholar 

  94. Takahashi, N., Tajima, T., Tsugawa, N., Takaguchi, Y.: Optically pure fullerodendron formed by diastereoselective Diels-Alder reaction. Tetrahedron 66(39), 7787–7793 (2010)

    Article  CAS  Google Scholar 

  95. Tekade, R., Kumar, P., Jain, N.: Dendrimers in oncology: an expanding horizon. Chem. Rev. 109(1), 49–87 (2009)

    Article  PubMed  CAS  Google Scholar 

  96. Thoma, G., Streiff, M., Katopodis, A., Duthaler, R., Voelcker, N., Ehrhardt, C., Masson, C.: Non-covalent polyvalent ligands by self-assembly of small glycodendrimers: a novel concept for the inhibition of polyvalent carbohydrate-protein interactions in vitro and in vivo. Chem. Eur. J. 12(1), 99–117 (2006)

    Google Scholar 

  97. Tomalia, D.: Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 30(3–4), 294–324 (2005)

    Article  CAS  Google Scholar 

  98. Tomalia, D.: Dendrons/dendrimers. The convergence of quantized dendritic building blocks/architectures for applications in nanotechnology. Chim. Oggi. 23(6), 41–45 (2005)

    CAS  Google Scholar 

  99. Tomalia, D.: In quest of a systematic framework for unifying and defining nanoscience. J. Nanoparticle Res. 11(6), 1251–1310 (2009)

    Article  CAS  Google Scholar 

  100. Tomalia, D., Majoros, I.: Dendrimeric supramolecular and supramacromolecular assemblies. J. Macromol. Sci. Polym. Rev. 43(3), 411–477 (2003)

    Article  Google Scholar 

  101. Tomalia, D., Reyna, L., Svenson, S.: Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans. 35(1), 61–67 (2007)

    Article  PubMed  CAS  Google Scholar 

  102. Tong, R., Cheng, J.: Anticancer polymeric nanomedicines. Polym. Rev. 47(3), 345–381 (2007)

    Article  CAS  Google Scholar 

  103. Uzun, K., Cevik, E., Senel, M., Sozeri, H., Baykal, A., Abasiyanik, M.F., Toprak, M.S.: Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles. J. Nanoparticle Res. 12(8), 3057–3067 (2010)

    Article  CAS  Google Scholar 

  104. Wolinsky, J., Grinstaff, M.: Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev. 60(9), 1037–1055 (2008)

    Article  PubMed  CAS  Google Scholar 

  105. Wu, P., Chen, X., Hu, N., Tam, U., Blixt, O., Zettl, A., Bertozzi, C.: Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew Chem. Int. Ed. 47(27), 5022–5025 (2008)

    Article  CAS  Google Scholar 

  106. Yan, N., Xiao, C., Kou, Y.: Transition metal nanoparticle catalysis in green solvents. Coord. Chem. Rev. 254(9–10, SI), 1179–1218 (2010)

    Google Scholar 

  107. Yang, W., Pan, C.Y., Liu, X.Q., Wang, J.: Multiple functional hyperbranched poly(amido amine) nanoparticles: synthesis and application in cell imaging. Biomacromol. 12(5), 1523–1531 (2011)

    Article  CAS  Google Scholar 

  108. Yellepeddi, V., Kumar, A., Palakurthi, S.: Surface modified poly(amido) amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin. Drug Deliv. 6(8), 835–850 (2009)

    Article  PubMed  CAS  Google Scholar 

  109. Zhai, S., Hong, H., Zhou, Y., Yan, D.: Synthesis of cationic hyperbranched multiarm copolymer and its application in self-reducing and stabilizing gold nanoparticles. Sci. China. Chem. 53, 1114–1121 (2010)

    Article  CAS  Google Scholar 

  110. Zhang, S., Yang, K., Liu, Z.: Carbon nanotubes for in vivo cancer nanotechnology. Sci. China. Chem. 53, 2217–2225 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Šebestík, J., Reiniš, M., Ježek, J. (2012). Dendrimers in Nanoscience and Nanotechnology. In: Biomedical Applications of Peptide-, Glyco- and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1206-9_12

Download citation

Publish with us

Policies and ethics