Skip to main content

Neural Stem Cell Mapping with High-Resolution Rapid-Scanning X-Ray Fluorescence Imaging

  • Chapter
  • First Online:
Cell-Based Therapies in Stroke

Abstract

Magnetic resonance imaging (MRI) of superparamagnetic iron oxide (SPIO) nanoparticle-labeled stem cells is widely used to detect cells in vivo. The sensitivity of MRI is however limited when it comes to single cell imaging, and quantifications of iron per cell is not possible. Here, we review a new use for synchrotron X-ray fluorescence (XRF) imaging, mapping element distribution following experimental stroke models in rodents, and detecting and quantifying iron in SPIO-labeled stem cells after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbab AS, Yocum GT, Kalish H, Jordan EK, Anderson SA, Khakoo AY et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular mri. Blood 104:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Auriat AM, Rosenblum S, Smith TN, Guzman R (2011) Intravascular stem cell transplantation for stroke. Trans Stroke Res 2:250–265

    Article  Google Scholar 

  • Auriat AM, Silasi G, Wei Z, Paquette R, Paterson P, Nichol H et al (2012) Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome. Exp Neurol 234:136–143

    Article  PubMed  CAS  Google Scholar 

  • Berman SC, Galpoththawela C, Gilad AA, Bulte JW, Walczak P (2011) Long-term mr cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med 65:564–574

    Article  PubMed  Google Scholar 

  • Bliss T, Guzman R, Daadi M, Steinberg GK (2007) Cell transplantation therapy for stroke. Stroke 38:817–826

    Article  PubMed  Google Scholar 

  • Bliss TM, Andres RH, Steinberg GK (2010) Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 37:275–283

    Article  PubMed  Google Scholar 

  • Bulte JW, Duncan ID, Frank JA (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22:899–907

    Article  PubMed  Google Scholar 

  • Cardoso SC, Stelling MP, Paulsen BS, Rehen SK (2011) Synchrotron radiation x-ray microfluorescence reveals polarized distribution of atomic elements during differentiation of pluripotent stem cells. PLoS One 6:e29244

    Article  PubMed  CAS  Google Scholar 

  • Chopp M, Li Y, Zhang J (2008) Plasticity and remodeling of brain. J Neurol Sci 265:97–101

    Article  PubMed  CAS  Google Scholar 

  • Chwiej J, Fik-Mazgaj K, Szczerbowska-Boruchowska M, Lankosz M, Ostachowicz J, Adamek D et al (2005) Classification of nerve cells from substantia nigra of patients with parkinson’s disease and amyotrophic lateral sclerosis with the use of x-ray fluorescence microscopy and multivariate methods. Anal Chem 77:2895–2900

    Article  PubMed  CAS  Google Scholar 

  • Chwiej J, Sarapata A, Janeczko K, Stegowski Z, Appel K, Setkowicz Z (2011) X-ray fluorescence analysis of long-term changes in the levels and distributions of trace elements in the rat brain following mechanical injury. J Biol Inorg Chem 16:275–358

    Article  PubMed  CAS  Google Scholar 

  • Cohen B, Dafni H, Meir G, Harmelin A, Neeman M (2005) Ferritin as an endogenous mri reporter for noninvasive imaging of gene expression in c6 glioma tumors. Neoplasia 7:109–117

    Article  PubMed  CAS  Google Scholar 

  • Fahrni CJ (2007) Biological applications of x-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11:121–127

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJ, Blaschuk KL, Bearchell MC, Prestoz LL, Setzu A, Brindle KM et al (1999) Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. Neuroreport 10:3961–3965

    Article  PubMed  CAS  Google Scholar 

  • Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454

    Article  PubMed  CAS  Google Scholar 

  • Goldhawk DE, Lemaire C, McCreary CR, McGirr R, Dhanvantari S, Thompson RT et al (2009) Magnetic resonance imaging of cells overexpressing maga, an endogenous contrast agent for live cell imaging. Mol Imaging 8:129–139

    PubMed  CAS  Google Scholar 

  • Gonzalez-Lara LE, Xu X, Hofstetrova K, Pniak A, Chen Y, McFadden CD et al (2011) The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol Imaging Biol 13:702–711

    Article  PubMed  Google Scholar 

  • Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D et al (2007) Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with mri. Proc Natl Acad Sci USA 104:10211–10216

    Article  PubMed  CAS  Google Scholar 

  • Guzman R, Bliss T, De Los Angeles A, Moseley M, Palmer T, Steinberg G (2008) Neural progenitor cells transplanted into the uninjured brain undergo targeted migration after stroke onset. J Neurosci Res 86:873–882

    Article  PubMed  CAS  Google Scholar 

  • Hackett MJ, Smith SE, Paterson PG, Nichol H, Pickering IJ, George GN (2012) X-ray absorption spectroscopy at the sulfur K-edge: A new tool to investigate the biomedical mechanisms of neurodegeneration. ACS Chem Neurosci 3:178–185

    Article  PubMed  CAS  Google Scholar 

  • Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99:16267–16272

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Sun Y, Xie L, Mao XO, Childs J, Peel A et al (2005) Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis 18:366–374

    Article  PubMed  CAS  Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J et al (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    Article  PubMed  CAS  Google Scholar 

  • Kondziolka D, Steinberg GK, Cullen SB, McGrogan M (2004) Evaluation of surgical techniques for neuronal cell transplantation used in patients with stroke. Cell Transplant 13:749–754

    Article  PubMed  Google Scholar 

  • Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J et al (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45

    Article  PubMed  Google Scholar 

  • Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q et al (2010) Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an mri study. J Cereb Blood Flow Metab 30:653–662

    Article  PubMed  Google Scholar 

  • Modo M, Mellodew K, Cash D, Fraser SE, Meade TJ, Price J et al (2004) Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 21:311–317

    Article  PubMed  Google Scholar 

  • Nelson PT, Kondziolka D, Wechsler L, Goldstein S, Gebel J, DeCesare S et al (2002) Clonal human (hnt) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 160:1201–1206

    Article  PubMed  Google Scholar 

  • Paunesku T, Vogt S, Maser J, Lai B, Woloschak G (2006) X-ray fluorescence microprobe imaging in biology and medicine. J Cell Biochem 99:1489–1502

    Article  PubMed  CAS  Google Scholar 

  • Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X, Wang H et al (2010) Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke 41:2064–2070

    Article  PubMed  Google Scholar 

  • Popescu BF, Nichol H (2011) Mapping brain metals to evaluate therapies for neurodegenerative disease. CNS Neurosci Ther 17:256–268

    Article  PubMed  CAS  Google Scholar 

  • Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 20:101–107

    Article  PubMed  Google Scholar 

  • Silasi G, Klahr AC, Hackett MJ, Auriat AM, Nichol H, Colbourne F (2012) Prolonged therapeutic hypothermia does not adversely impact neuroplasticity after global ischemia in rats. J Cereb Blood Flow Metab 32:1525–1534

    Article  PubMed  CAS  Google Scholar 

  • Szczerbowska-Boruchowska M, Lankosz M, Adamek D (2011) First step toward the “fingerprinting” of brain tumors based on synchrotron radiation x-ray fluorescence and multiple discriminant analysis. J Biol Inorg Chem 16:1217–1243

    Article  PubMed  CAS  Google Scholar 

  • Szczerbowska-Boruchowska M, Krygowska-Wajs A, Adamek D (2012) Elemental micro-imaging and quantification of human substantia nigra using synchrotron radiation based x-ray fluorescence-in relation to parkinson’s disease. J Phys Condens Matter 24:244104

    Article  PubMed  Google Scholar 

  • Tomik B, Chwiej J, Szczerbowska-Boruchowska M, Lankosz M, Wojcik S, Adamek D et al (2006) Implementation of x-ray fluorescence microscopy for investigation of elemental abnormalities in amyotrophic lateral sclerosis. Neurochem Res 31:321–331

    Article  PubMed  CAS  Google Scholar 

  • Vandeputte C, Thomas D, Dresselaers T, Crabbe A, Verfaillie C, Baekelandt V et al (2011) Characterization of the inflammatory response in a photothrombotic stroke model by mri: implications for stem cell transplantation. Mol Imaging Biol 13:663–671

    Article  PubMed  Google Scholar 

  • Walczak P, Kedziorek DA, Gilad AA, Barnett BP, Bulte JW (2007) Applicability and limitations of mr tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn Reson Med 58:261–269

    Article  PubMed  CAS  Google Scholar 

  • Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG et al (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355

    Article  PubMed  CAS  Google Scholar 

  • Winter EM, Hogers B, van der Graaf LM, Gittenberger-de Groot AC, Poelmann RE, van der Weerd L (2010) Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart. Magn Reson Med 63:817–821

    Article  PubMed  CAS  Google Scholar 

  • Zhang RL, Zhang L, Zhang ZG, Morris D, Jiang Q, Wang L et al (2003) Migration and differentiation of adult rat subventricular zone progenitor cells transplanted into the adult rat striatum. Neuroscience 116:373–382

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Jiang Q, Jiang F, Ding G, Zhang R, Wang L et al (2004) In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor. Neuroimage 23:281–287

    Article  PubMed  CAS  Google Scholar 

  • Zurkiya O, Chan AW, Hu X (2008) Maga is sufficient for producing magnetic nanoparticles in mammalian cells, making it an mri reporter. Magn Reson Med 59:1225–1231

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Guzman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Auriat, A.M., Nichol, H., Kelly, M., Guzman, R. (2013). Neural Stem Cell Mapping with High-Resolution Rapid-Scanning X-Ray Fluorescence Imaging. In: Jolkkonen, J., Walczak, P. (eds) Cell-Based Therapies in Stroke. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1175-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1175-8_9

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1174-1

  • Online ISBN: 978-3-7091-1175-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics