Skip to main content

Strategies for Enhanced, MRI-Guided Targeting of Stem Cells to Stroke Lesions

  • Chapter
  • First Online:
Cell-Based Therapies in Stroke

Abstract

The development of effective strategies for the treatment of stroke is one of the potential applications of stem cell therapy. Various transplantation methods, cell types, and animal models have been examined to investigate the potential benefits of stem cell therapy for stroke, with promising results. Improvements in the methodology of transplantation will lead to improved outcomes in animal models of stroke, which will translate to greater efficacy of stem cell therapies in clinical trials. Recent studies show a growing consensus that intra-arterial delivery of stem cells is well-suited for the treatment of stroke. The goal of intra-arterial delivery is to increase the efficiency of cell engraftment and specific targeting to areas of stroke pathology. However, evidence suggests that not all neural and glial stem cells may have the requisite properties to sufficiently migrate from the blood into the brain parenchyma. Thus, methods to enhance the adhesive and migratory properties of cells via cell engineering, or the enrichment of cell types that endogenously express such molecules, are critical for improving intra-arterial transplantation. Intra-arterial delivery of engineered cells, combined with the use of noninvasive, real-time MRI, will provide a path forward for safe and effective stem cell therapy for stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthio­semicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99:3030–3035

    Article  PubMed  CAS  Google Scholar 

  • Alsop DC (2012) Arterial spin labeling: its time is now. MAGMA 25:75–77

    Article  PubMed  Google Scholar 

  • Andres RH, Choi R, Pendharkar AV, Gaeta X, Wang N, Nathan JK, Chua JY, Lee SW, Palmer TD, Steinberg GK et al (2011) The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 42:2923–2931

    Article  PubMed  Google Scholar 

  • Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Stuber M et al (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13:986–991

    Article  PubMed  CAS  Google Scholar 

  • Berman SC, Galpoththawela C, Gilad AA, Bulte JW, Walczak P (2011) Long-term MR cell tracking of neural stem cells grafted in immunocompetent versus immunodeficient mice reveals distinct differences in contrast between live and dead cells. Magn Reson Med 65:564–574

    Article  PubMed  Google Scholar 

  • Bliss TM, Andres RH, Steinberg GK (2010) Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 37:275–283

    Article  PubMed  Google Scholar 

  • Boncoraglio, GB, Bersano, A, Candelise, L, Reynolds, BA, and Parati, EA (2010) Stem cell transplantation for ischemic stroke. Cochrane Database Syst Rev CD007231

    Google Scholar 

  • Capetian P, Knoth R, Maciaczyk J, Pantazis G, Ditter M, Bokla L, Landwehrmeyer GB, Volk B, Nikkhah G (2009) Histological findings on fetal striatal grafts in a Huntington’s disease patient early after transplantation. Neuroscience 160:661–675

    Article  PubMed  CAS  Google Scholar 

  • Correia AS, Anisimov SV, Li JY, Brundin P (2005) Stem cell-based therapy for Parkinson’s disease. Ann Med 37:487–498

    Article  PubMed  CAS  Google Scholar 

  • Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC (1999) Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging 10:870–875

    Article  PubMed  CAS  Google Scholar 

  • Dijkhuizen RM, Nicolay K (2003) Magnetic resonance imaging in experimental models of brain disorders. J Cereb Blood Flow Metab 23:1383–1402

    Article  PubMed  Google Scholar 

  • Dirnagl U, Kaplan B, Jacewicz M, Pulsinelli W (1989) Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab 9:589–596

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B (2006) Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm 113:477–485

    Article  PubMed  CAS  Google Scholar 

  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18:683–692

    Article  PubMed  CAS  Google Scholar 

  • Gorelik M, Orukari I, Wang J, Galpoththawela C, Kim H, Levy M, Gilad AA, Bar-Shir A, Kerr DA, Levchenko A et al (2012) Using MRI cell tracking to evaluate targeting of glial precursor cells to inflammatory tissue using the VLA-4 docking receptor. Radiology 265:175–185

    Google Scholar 

  • Gutierrez-Fernandez M, Rodriguez-Frutos B, Alvarez-Grech J, Vallejo-Cremades MT, Exposito-Alcaide M, Merino J, Roda JM, Diez-Tejedor E (2011) Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience 175:394–405

    Article  PubMed  CAS  Google Scholar 

  • Guzman R, De Los Angeles A, Cheshier S, Choi R, Hoang S, Liauw J, Schaar B, Steinberg G (2008) Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke 39:1300–1306

    Article  PubMed  Google Scholar 

  • Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Article  PubMed  CAS  Google Scholar 

  • Janowski M, Walczak P, Date I (2010) Intravenous route of cell delivery for treatment of neurological disorders: a meta-analysis of preclinical results. Stem Cells Dev 19:5–16

    Article  PubMed  CAS  Google Scholar 

  • Justicia C, Martin A, Rojas S, Gironella M, Cervera A, Panes J, Chamorro A, Planas AM (2006) Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. J Cereb Blood Flow Metab 26:421–432

    Article  PubMed  CAS  Google Scholar 

  • Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JW, Atalar E (2004) MR-trackable intramyocardial injection catheter. Magn Reson Med 51:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    Article  PubMed  Google Scholar 

  • Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N et al (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101:11839–11844

    Article  PubMed  CAS  Google Scholar 

  • Koenig M, Klotz E, Luka B, Venderink DJ, Spittler JF, Heuser L (1998) Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology 209:85–93

    PubMed  CAS  Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M et al (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    Article  PubMed  CAS  Google Scholar 

  • Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J et al (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45

    Article  PubMed  Google Scholar 

  • Konstas AA, Goldmakher GV, Lee TY, Lev MH (2009) Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR Am J Neuroradiol 30:885–892

    Article  PubMed  CAS  Google Scholar 

  • Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, Segars P, Chen HH, Fritzges D, Izbudak I et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461

    Article  PubMed  Google Scholar 

  • Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N et al (2002) Human marrow stromal cell therapy for stroke in rat – neurotrophins and functional recovery. Neurology 59:514–523

    Article  PubMed  CAS  Google Scholar 

  • Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, Panda S, Lu M, Ewing JR, Chopp M (2010) Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J Cereb Blood Flow Metab 30:653–662

    Article  PubMed  Google Scholar 

  • Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M (2001) Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 18:813–819

    Article  PubMed  CAS  Google Scholar 

  • Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Boccaletti R, Testa L, Livigni S, Fagioli F (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28:523–526

    Article  PubMed  Google Scholar 

  • Minematsu K, Li L, Sotak CH, Davis MA, Fisher M (1992) Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke 23:1304–1310; discussion 1310–1301

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J et al (2003) A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54:403–414

    Article  PubMed  Google Scholar 

  • Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X, Wang H, De A, Choi R, Chen S, Rutt BK et al (2010) Biodistribution of neural stem cells after intravascular therapy for hypoxic-­ischemia. Stroke 41:2064–2070

    Article  PubMed  Google Scholar 

  • Poeschla EM, Wong-Staal F, Looney DJ (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4:354–357

    Article  PubMed  CAS  Google Scholar 

  • Robbins PB, Sheu SM, Goodnough JB, Khavari PA (2001) Impact of laminin 5 beta3 gene versus protein replacement on gene expression patterns in junctional epidermolysis bullosa. Hum Gene Ther 12:1443–1448

    Article  PubMed  CAS  Google Scholar 

  • Rymer MM, Thrutchley DE (2005) Organizing regional networks to increase acute stroke intervention. Neurol Res 27:S9–S16

    Article  PubMed  Google Scholar 

  • Sahni V, Kessler JA (2010) Stem cell therapies for spinal cord injury. Nat Rev Neurol 6:363–372

    Article  PubMed  Google Scholar 

  • Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, Chopp M (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137:393–399

    Article  PubMed  CAS  Google Scholar 

  • Sotak CH (2002) The role of diffusion tensor imaging in the evaluation of ischemic brain injury – a review. NMR Biomed 15:561–569

    Article  PubMed  Google Scholar 

  • Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC (2007) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab. 27:1129–36

    Article  PubMed  Google Scholar 

  • Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Tran PB, Ren D, Veldhouse TJ, Miller RJ (2004) Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 76:20–34

    Article  PubMed  CAS  Google Scholar 

  • Tran-Dinh A, Kubis N, Tomita Y, Karaszewski B, Calando Y, Oudina K, Petite H, Seylaz J, Pinard E (2006) In vivo imaging with cellular resolution of bone marrow cells transplanted into the ischemic brain of a mouse. Neuroimage 31:958–967

    Article  PubMed  Google Scholar 

  • Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56

    Article  PubMed  Google Scholar 

  • Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:435–442

    Article  PubMed  CAS  Google Scholar 

  • Walczak P, Chen N, Hudson JE, Willing AE, Garbuzova-Davis SN, Song S, Sanberg PR, Sanchez-Ramos J, Bickford PC, Zigova T (2004) Do hematopoietic cells exposed to a neurogenic environment mimic properties of endogenous neural precursors? J Neurosci Res 76:244–254

    Article  PubMed  CAS  Google Scholar 

  • Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Walczak P, All AH, Rumpal N, Gorelik M, Kim H, Maybhate A, Agrawal G, Campanelli JT, Gilad AA, Kerr DA et al (2011) Human glial-restricted progenitors survive, proliferate, and preserve electrophysiological function in rats with focal inflammatory spinal cord demyelination. Glia 59:499–510

    Article  PubMed  Google Scholar 

  • Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, Pineda C, Serena J, van der Schaaf I, Waaijer A et al (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute ­hemispheric stroke. Stroke 37:979–985

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Walczak M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Gorelik, M., Walczak, P. (2013). Strategies for Enhanced, MRI-Guided Targeting of Stem Cells to Stroke Lesions. In: Jolkkonen, J., Walczak, P. (eds) Cell-Based Therapies in Stroke. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1175-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1175-8_6

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1174-1

  • Online ISBN: 978-3-7091-1175-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics