Skip to main content

Efficacy of Transplant and Endogenous Precursor and Stem Cell Interventions on Stroke Recovery: A Critical Assessment

  • Chapter
  • First Online:
Book cover Cell-Based Therapies in Stroke

Abstract

For the vast majority of stroke survivors, the best hope for recovery is through rehabilitation. Unfortunately, while beneficial, rehabilitation often leaves patients with significant residual disabilities that markedly reduce quality of life. The discovery that the brain produces new neurons throughout life and that these neural progenitor cells and stem cells migrate towards the site of brain injury has raised hopes that these cells may be mobilized or transplanted in the stroke-injured brain to enhance functional recovery. In this chapter, we summarize studies in which growth factors and other agents have been used to mobilize endogenous neural stem and progenitor cells towards the site of stroke damage. We also review similar studies in which the approach has been to deliver these cells systemically or directly to the brain by transplantation. With both approaches, it is evident that stem cell efficacy can be improved through the application of novel cell and drug delivery systems to improve cell migration and survival. Similarly, many other factors (e.g. post-stroke rehabilitation, age, disease co-morbidity) influence stem cell fate and ultimately their apparent restorative efficacy. To avoid the translational roadblocks that hampered neuroprotection studies, it will be imperative to understand the modulating effects of these important variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  PubMed  CAS  Google Scholar 

  • Andres RH, Horie N et al (2011) Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134:1777–1789

    Article  PubMed  Google Scholar 

  • Andrews EM, Tsai SY et al (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211:588–592

    Article  PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A, Leker RR et al (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson A, Collin T et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Belayev L, Khoutorova L et al (2009) A novel neurotrophic therapeutic strategy for experimental stroke. Brain Res 1280:117–123

    Article  PubMed  CAS  Google Scholar 

  • Biernaskie J, Corbett D (2001) Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci 21:5272–5280

    PubMed  CAS  Google Scholar 

  • Biernaskie J, Chernenko G et al (2004) Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 24:1245–1254

    Article  PubMed  CAS  Google Scholar 

  • Bliss TM, Kelly S et al (2006) Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J Neurosci Res 83:1004–1014

    Article  PubMed  CAS  Google Scholar 

  • Bliss T, Guzman R et al (2007) Cell transplantation therapy for stroke. Stroke 38:817–826

    Article  PubMed  Google Scholar 

  • Cameron HA, Woolley CS et al (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344

    Article  PubMed  CAS  Google Scholar 

  • Carleton A, Petreanu LT et al (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6:507–518

    PubMed  CAS  Google Scholar 

  • Chen J, Li Y et al (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Chiasson BJ, Tropepe V et al (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19:4462–4471

    PubMed  CAS  Google Scholar 

  • Cooke MJ, Wang Y et al (2011) Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials 32:5688–5697

    Article  PubMed  CAS  Google Scholar 

  • Corbett D, Nurse S (1998) The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog Neurobiol 54:531–548

    Article  PubMed  CAS  Google Scholar 

  • Craig CG, Tropepe V et al (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 16:2649–2658

    PubMed  CAS  Google Scholar 

  • Cramer SC, Chopp M (2000) Recovery recapitulates ontogeny. Trends Neurosci 23:265–271

    Article  PubMed  CAS  Google Scholar 

  • Curtis MA, Kam M et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Daadi MM, Maag AL et al (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3:e1644

    Article  PubMed  CAS  Google Scholar 

  • de Boer AG, Gaillard PJ (2007) Strategies to improve drug delivery across the blood-brain barrier. Clin Pharmacokinet 46:553–576

    Article  PubMed  Google Scholar 

  • Dobkin BH (2005) Clinical practice. Rehabilitation after stroke. N Engl J Med 352:1677–1684

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Dromerick AW, Edwards DF et al (2000) Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke 31:2984–2988

    Article  PubMed  CAS  Google Scholar 

  • Endres M, Engelhardt B et al (2008) Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis 25:268–278

    Article  PubMed  Google Scholar 

  • Erlandsson A, Lin CH et al (2011) Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury. Exp Neurol 230:48–57

    Article  PubMed  CAS  Google Scholar 

  • Feeney DM, Gonzalez A et al (1982) Amphetamine, haloperidol and experience interact to affect rate of recovery after motor cortex injury. Science 217:855–857

    Article  PubMed  CAS  Google Scholar 

  • Ferber D (2007) Bridging the blood-brain barrier: new methods improve the odds of getting drugs to the brain cells that need them. PLoS Biol 5:e169

    Article  PubMed  CAS  Google Scholar 

  • Garcia AD, Doan NB et al (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Gladstone DJ, Danells CJ et al (2006) Physiotherapy coupled with dextroamphetamine for rehabilitation after hemiparetic stroke: a randomized, double-blind, placebo-controlled trial. Stroke 37:179–185

    Article  PubMed  Google Scholar 

  • Guerra-Crespo M, Gleason D et al (2009) Transforming growth factor-alpha induces neurogenesis and behavioral improvement in a chronic stroke model. Neuroscience 160:470–483

    Article  PubMed  CAS  Google Scholar 

  • Hanson LR, Frey WH 2nd (2008) Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 9:S5

    Article  PubMed  CAS  Google Scholar 

  • Hicks AU, Hewlett K et al (2007) Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 146:31–40

    Article  PubMed  CAS  Google Scholar 

  • Hicks AU, Lappalainen RS et al (2009) Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats: cell survival and functional recovery. Eur J Neurosci 29:562–574

    Article  PubMed  Google Scholar 

  • Horie N, Pereira MP et al (2011) Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 29:274–285

    Article  PubMed  CAS  Google Scholar 

  • Hou SW, Wang YQ et al (2008) Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 39:2837–2844

    Article  PubMed  CAS  Google Scholar 

  • Hunt J, Cheng A et al (2010) Cyclosporin A has direct effects on adult neural precursor cells. J Neurosci 30:2888–2896

    Article  PubMed  CAS  Google Scholar 

  • Imitola J, Raddassi K et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101:18117–18122

    Article  PubMed  CAS  Google Scholar 

  • Jessberger S, Gage FH (2008) Stem-cell-associated structural and functional plasticity in the aging hippocampus. Psychol Aging 23:684–691

    Article  PubMed  Google Scholar 

  • Jin KL, Mao XO et al (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 97:10242–10247

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Wang X et al (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 103:13198–13202

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Schallert T (1992) Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res 581:156–160

    Article  PubMed  CAS  Google Scholar 

  • Jonhagen ME, Nordberg A et al (1998) Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 9:246–257

    Article  CAS  Google Scholar 

  • Kempermann G (2011) Adult neurogenesis 2: stem cells and neuronal development in the adult brain. Oxford University Press, Oxford

    Google Scholar 

  • Kempermann G, Kuhn HG et al (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  PubMed  CAS  Google Scholar 

  • Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37:267–274

    Article  PubMed  Google Scholar 

  • Kleim JA, Bruneau R et al (2003) Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res 25:789–793

    Article  PubMed  Google Scholar 

  • Kobayashi T, Ahlenius H et al (2006) Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke 37:2361–2367

    Article  PubMed  CAS  Google Scholar 

  • Kolb B, Forgie M et al (1998) Age, experience and the changing brain. Neurosci Biobehav Rev 22:143–159

    Article  PubMed  CAS  Google Scholar 

  • Kolb B, Morshead C et al (2007) Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 27:983–997

    PubMed  CAS  Google Scholar 

  • Komitova M, Mattsson B et al (2005) Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36:1278–1282

    Article  PubMed  Google Scholar 

  • Krakauer JW, Carmichael ST et al (2012) Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair 26:923–931

    Article  PubMed  Google Scholar 

  • Kuhn HG, Winkler J et al (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820–5829

    PubMed  CAS  Google Scholar 

  • Lanfranconi S, Locatelli F et al (2011) Growth factors in ischemic stroke. J Cell Mol Med 15:1645–1687

    Article  PubMed  CAS  Google Scholar 

  • Langdon KD, Corbett D (2012) Improved working memory following novel combinations of physical and cognitive activity. Neurorehabil Neural Repair 26:523–532

    Article  PubMed  Google Scholar 

  • Leker RR, Soldner F et al (2007) Long-lasting regeneration after ischemia in the cerebral cortex. Stroke 38:153–161

    Article  PubMed  Google Scholar 

  • Li Y, Chen J et al (2001) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56:1666–1672

    Article  PubMed  CAS  Google Scholar 

  • Li J, Feng L et al (2011) Targeting the brain with PEG-PLGA nanoparticles modified with ­phage-displayed peptides. Biomaterials 32:4943–4950

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Solway K et al (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778

    PubMed  CAS  Google Scholar 

  • Liu Z, Li Y et al (2011) Bone marrow stromal cells promote skilled motor recovery and enhance contralesional axonal connections after ischemic stroke in adult mice. Stroke 42:740–744

    Article  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Mak GK, Weiss S (2010) Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nat Neurosci 13:753–758

    Article  PubMed  CAS  Google Scholar 

  • Marti-Fabregas J, Romaguera-Ros M et al (2010) Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 74:357–365

    Article  PubMed  CAS  Google Scholar 

  • Meinel L, Gander B et al (2004) Concepts and prototypes for formulation and delivery of biopharmaceuticals and in tissue engineering. Chimia 58:711–717

    Article  CAS  Google Scholar 

  • Modo M, Stroemer RP et al (2002) Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33:2270–2278

    Article  PubMed  Google Scholar 

  • Morshead CM, Reynolds BA et al (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Morshead CM, Craig CG et al (1998) In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain. Development 125:2251–2261

    PubMed  CAS  Google Scholar 

  • Morshead CM, Benveniste P et al (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8:268–273

    Article  PubMed  CAS  Google Scholar 

  • Morshead CM, Garcia AD et al (2003) The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci 18:76–84

    Article  PubMed  Google Scholar 

  • Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10:861–872

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Milliken GW et al (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807

    PubMed  CAS  Google Scholar 

  • O’Collins VE, Macleod MR et al (2006) 1,026 experimental treatments in acute stroke. Ann Neurol 59:467–477

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson A-L, Johansson BB (1995) Environment influences functional outcome of cerebral infarction in rats. Stroke 26:644–649

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Ray J et al (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 6:474–486

    Article  PubMed  CAS  Google Scholar 

  • Palmer TD, Takahashi J et al (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM, Boado RJ et al (1992) Blood-brain barrier and new approaches to brain drug delivery. West J Med 156:281–286

    PubMed  CAS  Google Scholar 

  • Parent JM, Vexler ZS et al (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    Article  PubMed  Google Scholar 

  • Piccin D, Morshead CM (2011) Wnt signaling regulates symmetry of division of neural stem cells in the adult brain and in response to injury. Stem Cells 29:528–538

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Sanai N, Tramontin AD et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  PubMed  CAS  Google Scholar 

  • Savitz SI, Chopp M et al (2011) Stem cell therapy as an emerging paradigm for stroke (STEPS) II. Stroke 42:825–829

    Article  PubMed  Google Scholar 

  • Schabitz WR, Steigleder T et al (2007) Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke 38:2165–2172

    Article  PubMed  CAS  Google Scholar 

  • Schallert T, Upchurch M et al (1982) Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 16:455–462

    Article  PubMed  CAS  Google Scholar 

  • Schallert T, Fleming SM et al (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787

    Article  PubMed  CAS  Google Scholar 

  • Scharfman HE, Hen R (2007) Neuroscience. Is more neurogenesis always better? Science 315:336–338

    Article  PubMed  CAS  Google Scholar 

  • Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784–1793

    PubMed  CAS  Google Scholar 

  • Shin YJ, Choi JS et al (2010) Enhanced expression of vascular endothelial growth factor receptor-3 in the subventricular zone of stroke-lesioned rats. Neurosci Lett 469:194–198

    Article  PubMed  CAS  Google Scholar 

  • Shingo T, Gregg C et al (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299:117–120

    Article  PubMed  CAS  Google Scholar 

  • Shors TJ, Miesegaes G et al (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  PubMed  CAS  Google Scholar 

  • Suh H, Consiglio A et al (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528

    Article  PubMed  CAS  Google Scholar 

  • Teramoto T, Qiu J et al (2003) EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J Clin Invest 111:1125–1132

    PubMed  CAS  Google Scholar 

  • Thored P, Arvidsson A et al (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24:739–747

    Article  PubMed  CAS  Google Scholar 

  • Torup L (2007) Neuroprotection with or without erythropoiesis; sometimes less is more. Br J Pharmacol 151:1141–1142

    Article  PubMed  CAS  Google Scholar 

  • Tsai PT, Ohab JJ et al (2006) A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 26:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • van den Berge SA, Middeldorp J et al (2010) Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta. Aging Cell 9:313–326

    Article  PubMed  CAS  Google Scholar 

  • van Praag H, Kempermann G et al (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • van Praag H, Schinder AF et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Veizovic T, Beech JS et al (2001) Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke 32:1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Deng Y et al (2008) SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 1195:104–112

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Mao X et al (2009) Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J Cereb Blood Flow Metab 29:1644–1654

    Article  PubMed  Google Scholar 

  • Wang C, Liu F et al (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21:1534–1550

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cooke MJ et al (2012) Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials 33:2681–2692

    Article  PubMed  CAS  Google Scholar 

  • Wechsler LR (2009) Stem cell therapies as an emerging paradigm in stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke 40:510–515

    Article  Google Scholar 

  • Weiss S, Dunne C et al (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    PubMed  CAS  Google Scholar 

  • Wittko IM, Schanzer A et al (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 29:8704–8714

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Ninomiya M et al (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26:6627–6636

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Zhang Z et al (2004) Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab 24:441–448

    Article  PubMed  Google Scholar 

  • Zhang L, Li Y et al (2011) Delayed administration of human umbilical tissue-derived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke 42:1437–1444

    Article  PubMed  Google Scholar 

  • Zhao LR, Duan WM et al (2002) Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Corbett, D., Morshead, C., Shoichet, M. (2013). Efficacy of Transplant and Endogenous Precursor and Stem Cell Interventions on Stroke Recovery: A Critical Assessment. In: Jolkkonen, J., Walczak, P. (eds) Cell-Based Therapies in Stroke. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1175-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1175-8_4

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1174-1

  • Online ISBN: 978-3-7091-1175-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics