Skip to main content

Chiral Brønsted and Lewis Bases

  • Chapter
  • First Online:
Asymmetric Organocatalysis in Natural Product Syntheses

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 96))

  • 1342 Accesses

Abstract

The field of natural product syntheses has been dominated by (transition-) metal catalyzed asymmetric reactions for decades. However, besides the very broad range of different transformations that can be achieved by metal catalysis, the use of substoichiometric amounts of small-organic molecule catalysts (organocatalysis) has proved also to possess an enormous potential for a variety of reactions. Over the last few years numerous impressive examples on the use of organocatalysts in the syntheses of complex natural products and other biologically active molecules have been reported. Very often these reactions have resulted in a significant reduction of reaction steps, leading to more efficient and elegant routes.

The intention of this contribution is to provide the reader with an illustrative overview concerning successful and widely used applications of organocatalysis in the field of natural product synthesis. The main focus will be on organocatalytic key-steps for each (multi-step) synthesis described, whereas other often particularly innovative transformations will be omitted, as this would be beyond the scope of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaunt MJ, Johansson CCC, McNally A, Vo NT (2007) Enantioselective organocatalysis. Drug Discov Today 12:8

    Article  CAS  Google Scholar 

  2. Prelog V, Wilhelm M (1954) Untersuchungen über asymmetrische Synthesen, 6. Der Reaktionsmechanismus und der sterische Verlauf der asymmetrischen Cyanhydrin-Synthese. Helv Chim Acta 37:1634

    Article  CAS  Google Scholar 

  3. Pracejus H (1960) Organische Katalysatoren, LXI. Asymmetrische Synthesen mit Ketenen, 1. Alkaloid-katalysierte asymmetrische Synthesen von α-Phenyl-propionsäureestern. Justus Liebigs Ann Chem 634:9

    Article  CAS  Google Scholar 

  4. Li H, Chen YG, Deng L (2011) Cinchona alkaloids. In: Zhou QL (ed) Privileged catalysts and ligands in asymmetric catalysis. Wiley-VCH, Weinheim, p 361

    Chapter  Google Scholar 

  5. Tian SK, Chen YG, Hang JF, Tang L, McDaid P, Deng L (2004) Asymmetric organic catalysis with modified Cinchona alkaloids. Acc Chem Res 37:621

    Article  CAS  Google Scholar 

  6. Fu GC (2004) Asymmetric catalysis with “planar-chiral” derivatives of 4-(Dimethylamino)pyridine. Acc Chem Res 37:542

    Article  CAS  Google Scholar 

  7. Marcelli T, van Maarseveen JH, Hiemstra H (2006) Cupreines and cupreidines: an emerging class of bifunctional Cinchona organocatalysts. Angew Chem Int Ed 45:7496

    Article  CAS  Google Scholar 

  8. France S, Guerin DJ, Miller SJ, Lectka T (2003) Nucleophilic chiral amines as catalysts in asymmetric synthesis. Chem Rev 103:2985

    Article  CAS  Google Scholar 

  9. Enders D, Niemeier O, Henseler A (2007) Organocatalysis by N-heterocyclic carbenes. Chem Rev 107:5606

    Article  CAS  Google Scholar 

  10. Denmark SE, Beutner GL (2008) Lewis base catalysis in organic synthesis. Angew Chem Int Ed 47:1560

    Article  CAS  Google Scholar 

  11. Waldmann H, Khedkar V, Duckert H, Schumann M, Oppel IM, Kumar K (2008) Asymmetric synthesis of natural product inspired tricyclic benzopyrones by an organocatalyzed annulation reaction. Angew Chem Int Ed 47:6869

    Article  CAS  Google Scholar 

  12. Hiemstra H, Wynberg H (1981) Addition of aromatic thiols to conjugated cycloalkenones, catalyzed by chiral β-hydroxy amines – a mechanistic study on homogeneous catalytic asymmetric synthesis. J Am Chem Soc 103:417

    Article  CAS  Google Scholar 

  13. Sekino E, Kumamoto T, Tanaka T, Ikeda T, Ishikawa T (2004) Concise synthesis of anti-HIV-1 active (+)-inophyllum B and (+)-calanolide A by application of (–)-quinine-catalyzed intramolecular oxo-Michael addition. J Org Chem 69:2760

    Article  CAS  Google Scholar 

  14. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMahon JB, Currens MJ, Buckheit RW, Hughes SH, Cragg GM, Boyd MR (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35:2735

    Article  CAS  Google Scholar 

  15. Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, Caranfa MJ, Breen AL, Bartus HR, Johnson RK, Hertzberg RP, Westley JW (1993) The inophyllums, novel inhibitors of HIV-1 reverse-transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J Med Chem 36:4131

    Article  CAS  Google Scholar 

  16. de Figueiredo RM, Frohlich R, Christmann M (2007) Efficient synthesis and resolution of pyrrolizidines. Angew Chem Int Ed 46:2883

    Article  Google Scholar 

  17. Lambert TH, Danishefsky SJ (2006) Total synthesis of UCS1025A. J Am Chem Soc 128:426

    Article  CAS  Google Scholar 

  18. Nakai R, Ogawa H, Asai A, Ando K, Agatsuma T, Matsumiya S, Akinaga S, Yamashita Y, Mizukami T (2000) UCS1025A, a novel antibiotic produced by Acremonium sp. J Antibiot 53:294

    Article  CAS  Google Scholar 

  19. Agatsuma T, Akama T, Nara S, Matsumiya S, Nakai R, Ogawa H, Otaki S, Ikeda S, Saitoh Y, Kanda Y (2002) UCS1025A and B, new antitumor antibiotics from the fungus Acremonium sp. Org Lett 4:4387

    Article  CAS  Google Scholar 

  20. Liu L, Zhang SL, Xue F, Lou GS, Zhang HY, Ma SC, Duan WH, Wang W (2011) Catalytic enantioselective Henry reactions of isatins: application in the concise synthesis of (S)-(–)-spirobrassinin. Chem Eur J 17:7791

    Article  CAS  Google Scholar 

  21. Takasugi M, Monde K, Katsui N, Shirata A (1987) Spirobrassinin, a novel sulfur-containing phytoalexin from the daikon Rhaphanus sativus L. var. hortensis (Cruciferae). Chem Lett 1631

    Google Scholar 

  22. Pedras MSC, Okanga FI, Zaharia IL, Khan AQ (2000) Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation. Phytochemistry 53:161

    Article  CAS  Google Scholar 

  23. Pedras MSC, Hossain M (2006) Metabolism of crucifer phytoalexins in Sclerotinia sclerotiorum: detoxification of strongly antifungal compounds involves glucosylation. Org Biomol Chem 4:2581

    Article  CAS  Google Scholar 

  24. Mehta RG, Liu JF, Constantinou A, Hawthorne M, Pezzuto JM, Moon RC, Moriarty RM (1994) Structure-activity-relationships of brassinin in preventing the development of carcinogen-induced mammary lesions in organ culture. Anticancer Res 14:1209

    CAS  Google Scholar 

  25. Calter MA, Bi FC (2000) Catalytic, asymmetric synthesis of the C1′-C10′ segment of pamamycin 621A. Org Lett 2:1529

    Article  CAS  Google Scholar 

  26. Calter MA, Liao WS, Struss JA (2001) Catalytic, asymmetric synthesis of siphonarienal. J Org Chem 66:7500

    Article  CAS  Google Scholar 

  27. Calter MA, Guo X (2002) Synthesis of the C21-C34-segment of the aplyronines using the dimer of methylketene. Tetrahedron 58:7093

    Article  CAS  Google Scholar 

  28. Calter MA, Liao WS (2002) First total synthesis of a natural product containing a chiral, β-diketone: synthesis and stereochemical reassignment of siphonarienedione and siphonarienolone. J Am Chem Soc 124:13127

    Article  CAS  Google Scholar 

  29. Calter MA (1996) Catalytic, asymmetric dimerization of methylketene. J Org Chem 61:8006

    Article  CAS  Google Scholar 

  30. Papageorgiou CD, de Dios MAC, Ley SV, Gaunt MJ (2004) Enantioselective organocatalytic cyclopropanation via ammonium ylides. Angew Chem Int Ed 43:4641

    Article  CAS  Google Scholar 

  31. Bremeyer N, Smith SC, Ley SV, Gaunt MJ (2004) An intramolecular organocatalytic cyclopropanation reaction. Angew Chem Int Ed 43:2681

    Article  CAS  Google Scholar 

  32. Johansson CCC, Bremeyer N, Ley SV, Owen DR, Smith SC, Gaunt MJ (2006) Enantioselective catalytic intramolecular cyclopropanation using modified Cinchona alkaloid organocatalysts. Angew Chem Int Ed 45:6024

    Article  CAS  Google Scholar 

  33. Waser M, Herchl R, Müller N (2011) Ammonium ylides for the diastereoselective synthesis of glycidic amides. Chem Commun 47:2170

    Article  CAS  Google Scholar 

  34. Herchl R, Stiftinger M, Waser M (2011) Identification of the best-suited leaving group for the diastereoselective synthesis of glycidic amides from stabilised ammonium ylides and aldehydes. Org Biomol Chem 9:7023

    Article  CAS  Google Scholar 

  35. Kumaraswamy G, Padmaja M (2008) Enantioselective total synthesis of eicosanoid and its congener, using organocatalytic cyclopropanation, and catalytic asymmetric transfer hydrogenation reactions as key steps. J Org Chem 73:5198

    Article  CAS  Google Scholar 

  36. Kumaraswamy G, Ramakrishna G, Sridhar B (2011) Enantioselective synthesis of cyclopropyl δ-lactonealdehydes and dodecyl-5-ene-1-yne-3-ol: advanced intermediates of solandelactone A and B. Tetrahedron Lett 52:1778

    Article  CAS  Google Scholar 

  37. Gerwick WH (1993) Carbocyclic oxylipins of marine origin. Chem Rev 93:1807

    Article  CAS  Google Scholar 

  38. Seo YW, Cho KW, Rho JR, Shin JH, Kwon BM, Bok SH, Song JI (1996) Solandelactones A-I, lactonized cyclopropyl oxylipins isolated from the hydroid Solanderia secunda. Tetrahedron 52:10583

    Article  CAS  Google Scholar 

  39. Masson G, Housseman C, Zhu JP (2007) The enantioselective Morita-Baylis-Hillman reaction and its aza counterpart. Angew Chem Int Ed 46:4614

    Article  CAS  Google Scholar 

  40. Ma GN, Jiang JJ, Shi M, Wei Y (2009) Recent extensions of the Morita-Baylis-Hillman reaction. Chem Commun 2009:5496

    Article  Google Scholar 

  41. Iwabuchi Y, Sugihara T, Esumi T, Hatakeyama S (2001) An enantio- and stereocontrolled route to epopromycin B via Cinchona alkaloid-catalyzed Baylis-Hillman reaction. Tetrahedron Lett 42:7867

    Article  CAS  Google Scholar 

  42. Tsuchiya K, Kobayashi S, Nishikiori T, Nakagawa T, Tatsuta K (1997) Epopromycins, novel cell wall synthesis inhibitors of plant protoplast produced by Streptomyces sp. NK04000. J Antibiot 50:261

    Article  CAS  Google Scholar 

  43. Iwabuchi Y, Furukawa M, Esumi T, Hatakeyama S (2001) An enantio- and stereocontrolled synthesis of (–)-mycestericin E via Cinchona alkaloid-catalyzed asymmetric Baylis-Hillman reaction. Chem Commun 2030

    Google Scholar 

  44. Sarkar SM, Wanzala EN, Shibahara S, Takahashi K, Ishihara J, Hatakeyama S (2009) Enantio- and stereoselective route to the phoslactomycin family of antibiotics: formal synthesis of (+)-fostriecin and (+)-phoslactomycin B. Chem Commun 5907

    Google Scholar 

  45. Shibasaki M, Kanai M (2005) Synthetic strategies of fostriecin. Heterocycles 66:727

    Article  CAS  Google Scholar 

  46. Druais V, Hall MJ, Corsi C, Wendeborn SV, Meyer C, Cossy J (2009) A convergent approach toward the C1-C11 subunit of phoslactomycins and formal synthesis of phoslactomycin B. Org Lett 11:935

    Article  CAS  Google Scholar 

  47. Wang YG, Takeyama R, Kohayashi Y (2006) Total synthesis of phoslactomycin B and its biosynthetic deamino precursor. Angew Chem Int Ed 45:3320

    Article  CAS  Google Scholar 

  48. Choi CH, Tian SK, Deng L (2001) A formal catalytic asymmetric synthesis of (+)-biotin with modified Cinchona alkaloids. Synthesis 1737

    Google Scholar 

  49. Gerfaud T, Xie CS, Neuville L, Zhu JP (2011) Protecting-group-free total synthesis of (E)- and (Z)-alstoscholarine. Angew Chem Int Ed 50:3954

    Article  CAS  Google Scholar 

  50. Cai XH, Du ZZ, Luo XD (2007) Unique monoterpenoid indole alkaloids from Alstonia scholaris. Org Lett 9:1817

    Article  CAS  Google Scholar 

  51. Kaneko S, Yoshino T, Katoh T, Terashima S (1998) Synthetic studies of huperzine A and its fluorinated analogues. 1. Novel asymmetric syntheses of an enantiomeric pair of huperzine A. Tetrahedron 54:5471

    Article  CAS  Google Scholar 

  52. Wu FH, Hong R, Khan JH, Liu XF, Deng L (2006) Asymmetric synthesis of chiral aldehydes by conjugate additions with bifunctional organocatalysis by Cinchona alkaloids. Angew Chem Int Ed 45:4301

    Article  CAS  Google Scholar 

  53. Singh IP, Milligan KE, Gerwick WH (1999) Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 62:1333

    Article  CAS  Google Scholar 

  54. Tian SK, Hong R, Deng L (2003) Catalytic asymmetric cyanosilylation of ketones with chiral Lewis base. J Am Chem Soc 125:9900

    Article  CAS  Google Scholar 

  55. Nicolaou KC, Simonsen KB, Vassilikogiannakis G, Baran PS, Vidali VP, Pitsinos EN, Couladouros EA (1999) Biomimetic explorations towards the bisorbicillinoids: total synthesis of bisorbicillinol, bisorbibutenolide, and trichodimerol. Angew Chem Int Ed 38:3555

    Article  CAS  Google Scholar 

  56. Lu XY, Zhang CM, Xu ZR (2001) Reactions of electron-deficient alkynes and allenes under phosphine catalysis. Acc Chem Res 34:535

    Article  CAS  Google Scholar 

  57. Methot JL, Roush WR (2004) Nucleophilic phosphine organocatalysis. Adv Synth Catal 346:1035

    Article  CAS  Google Scholar 

  58. Ye LW, Zhou J, Tang Y (2008) Phosphine-triggered synthesis of functionalized cyclic compounds. Chem Soc Rev 37:1140

    Article  CAS  Google Scholar 

  59. Marinetti A, Voituriez A (2010) Enantioselective phosphine organocatalysis. Synlett 174

    Google Scholar 

  60. Fujiwara Y, Fu GC (2011) Application of a new chiral phosphepine to the catalytic asymmetric synthesis of highly functionalized cyclopentenes that bear an array of heteroatom-substituted quaternary stereocenters. J Am Chem Soc 133:12293

    Article  CAS  Google Scholar 

  61. Tan B, Candeias NR, Barbas CF (2011) Core-structure-motivated design of a phosphine-catalyzed [3+2] cycloaddition reaction: enantioselective syntheses of spirocyclopenteneoxindoles. J Am Chem Soc 133:4672

    Article  CAS  Google Scholar 

  62. Sun JW, Fu GC (2010) Phosphine-catalyzed formation of carbon-sulfur bonds: catalytic asymmetric synthesis of γ-thioesters. J Am Chem Soc 132:4568

    Article  CAS  Google Scholar 

  63. Tran YS, Kwon O (2005) An application of the phosphine-catalyzed [4+2] annulation in indole alkaloid synthesis: formal syntheses of (+/−)-alstonerine and (+/−)-macroline. Org Lett 7:4289

    Article  CAS  Google Scholar 

  64. Agapiou K, Krische MJ (2003) Catalytic crossed Michael cycloisomerization of thioenoates: total synthesis of (+/−)-ricciocarpin A. Org Lett 5:1737

    Article  CAS  Google Scholar 

  65. Wang JC, Krische MJ (2003) Intramolecular organocatalytic [3+2] dipolar cycloaddition: stereospecific cycloaddition and the total synthesis of (+/−)-hirsutene. Angew Chem Int Ed 42:5855

    Article  CAS  Google Scholar 

  66. Du YS, Lu XY (2003) A phosphine-catalyzed [3+2] cycloaddition strategy leading to the first total synthesis of (–)-hinesol. J Org Chem 68:6463

    Article  CAS  Google Scholar 

  67. Mergott DJ, Frank SA, Roush WR (2004) Total synthesis of (–)-spinosyn A. Proc Natl Acad Sci USA 101:11955

    Article  CAS  Google Scholar 

  68. Jones RA, Krische MJ (2009) Asymmetric total synthesis of the iridoid β-glucoside (+)-geniposide via phosphine organocatalysis. Org Lett 11:1849

    Article  CAS  Google Scholar 

  69. Morita M, Nakanishi H, Morita H, Mihashi S, Itokawa H (1996) Structures and spasmolytic activities of derivatives from sesquiterpenes of Alpinia speciosa and Alpinia japonica. Chem Pharm Bull 44:1603

    Article  CAS  Google Scholar 

  70. Satoh K, Nagai F, Kano I (2000) Inhibition of H+, K+-ATPase by hinesol, a major component of So-jutsu, by interaction with enzyme in the E1-state. Biochem Pharmacol 59:881

    Article  CAS  Google Scholar 

  71. Inouye H, Saito S, Taguchi H, Endo T (1969) Two new iridoglucosides gardenoside and geniposide from Gardenia jasminoides. Tetrahedron Lett 10:2347

    Article  Google Scholar 

  72. Ueda S, Iwahashi Y, Tokuda H (1991) Production of anti-tumor-promoting iridoid glucosides in Genipa americana and its cell cultures. J Nat Prod 54:1677

    Article  CAS  Google Scholar 

  73. Lee MJ, Hsu JD, Wang CJ (1995) Inhibition of 12-O-tetradecanoylphorbol-13-acetate-caused tumor promotion in benzo[a]pyrene-initiated CD-1 mouse skin by geniposide. Anticancer Res 15:411

    CAS  Google Scholar 

  74. Kirst HA, Michel KH, Martin JW, Creemer LC, Chio EH, Yao RC, Nakatsukasa WM, Boeck L, Occolowitz JL, Paschal JW, Deeter JB, Jones ND, Thompson GD (1991) A83543a-D, unique fermentation-derived tetracyclic macrolides. Tetrahedron Lett 32:4839

    Article  CAS  Google Scholar 

  75. Enders D, Balensiefer T (2004) Nucleophilic carbenes in asymmetric organocatalysis. Acc Chem Res 37:534

    Article  CAS  Google Scholar 

  76. Zeitler K (2005) Extending mechanistic routes in heterazolium catalysis – promising concepts for versatile synthetic methods. Angew Chem Int Ed 44:7506

    Article  CAS  Google Scholar 

  77. Enders D, Niemeier O, Henseler A (2007) Organocatalysis by N-heterocyclic carbenes. Chem Rev 107:5606

    Article  CAS  Google Scholar 

  78. Gillingham DG, Hoveyda AH (2007) Chiral N-heterocyclic carbenes in natural product synthesis: application of Ru-catalyzed asymmetric ring-opening/cross-metathesis and Cu-catalyzed allylic alkylation to total synthesis of baconipyrone C. Angew Chem Int Ed 46:3860

    Article  CAS  Google Scholar 

  79. Harrington PE, Tius MA (2001) Synthesis and absolute stereochemistry of roseophilin. J Am Chem Soc 123:8509

    Article  CAS  Google Scholar 

  80. Christmann M (2005) New developments in the asymmetric Stetter reaction. Angew Chem Int Ed 44:2632

    Article  CAS  Google Scholar 

  81. Struble JR, Bode JW (2009) Formal synthesis of salinosporamide A via NHC-catalyzed intramolecular lactonization. Tetrahedron 65:4957

    Article  CAS  Google Scholar 

  82. Chiang PC, Kim Y, Bode JW (2009) Catalytic amide formation with α′-hydroxyenones as acylating reagents. Chem Commun 4566

    Google Scholar 

  83. Candish L, Lupton DW (2010) The total synthesis of (–)-7- deoxyloganin via N-heterocyclic carbene catalyzed rearrangement of α, β-unsaturated enol esters. Org Lett 12:4836

    Article  CAS  Google Scholar 

  84. Stetter H, Kuhlmann H (1975) Addition of aldehydes to activated double bonds. 7. New simple synthesis of cis-jasmon and dihydrojasmon. Synthesis 379

    Google Scholar 

  85. Trost BM, Shuey CD, Dininno F, Mcelvain SS (1979) Stereocontrolled total synthesis of (+/−)-hirsutic acid C. J Am Chem Soc 101:1284

    Article  CAS  Google Scholar 

  86. Hayakawa Y, Kawakami K, Seto H, Furihata K (1992) Structure of a new antibiotic, roseophilin. Tetrahedron Lett 33:2701

    Article  Google Scholar 

  87. Fürstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem Int Ed 42:3582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Waser, M. (2012). Chiral Brønsted and Lewis Bases. In: Asymmetric Organocatalysis in Natural Product Syntheses. Progress in the Chemistry of Organic Natural Products, vol 96. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1163-5_8

Download citation

Publish with us

Policies and ethics