Skip to main content

Chiral Brønsted Acids and Hydrogen Bonding Donors

  • Chapter
  • First Online:
Asymmetric Organocatalysis in Natural Product Syntheses

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 96))

  • 1364 Accesses

Abstract

The field of natural product syntheses has been dominated by (transition-) metal catalyzed asymmetric reactions for decades. However, besides the very broad range of different transformations that can be achieved by metal catalysis, the use of substoichiometric amounts of small-organic molecule catalysts (organocatalysis) has proved also to possess an enormous potential for a variety of reactions. Over the last few years numerous impressive examples on the use of organocatalysts in the syntheses of complex natural products and other biologically active molecules have been reported. Very often these reactions have resulted in a significant reduction of reaction steps, leading to more efficient and elegant routes.

The intention of this contribution is to provide the reader with an illustrative overview concerning successful and widely used applications of organocatalysis in the field of natural product synthesis. The main focus will be on organocatalytic key-steps for each (multi-step) synthesis described, whereas other often particularly innovative transformations will be omitted, as this would be beyond the scope of this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dolling UH, Davis P, Grabowski EJJ (1984) Efficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysis. J Am Chem Soc 106:446

    Article  CAS  Google Scholar 

  2. Jacquemond-Collet I, Hannedouche S, Fabre N, Fouraste I, Moulis C (1999) Two tetrahydroquinoline alkaloids from Galipea officinalis. Phytochemistry 51:1167

    Article  CAS  Google Scholar 

  3. Lee TBK, Wong GSK (1991) Asymmetric alkylation of oxindoles: an approach to the total synthesis of (–)-physostigmine. J Org Chem 56:872

    Article  CAS  Google Scholar 

  4. Taylor MS, Jacobsen EN (2006) Asymmetric catalysis by chiral hydrogen-bond donors. Angew Chem Int Ed 45:1520

    Article  CAS  Google Scholar 

  5. Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis. Chem Rev 107:5713

    Article  CAS  Google Scholar 

  6. Yu XH, Wang W (2008) Hydrogen-bond-mediated asymmetric catalysis. Chem Asian J 3:516

    Article  Google Scholar 

  7. Akiyama T, Itoh J, Fuchibe K (2006) Recent progress in chiral Brønsted acid catalysis. Adv Synth Catal 348:999

    Article  CAS  Google Scholar 

  8. Cheon CH, Yamamoto H (2011) Super Brønsted acid catalysis. Chem Commun 47:3043

    Article  CAS  Google Scholar 

  9. Rueping M, Kuenkel A, Atodiresei I (2011) Chiral Brønsted acids in enantioselective carbonyl activations – activation modes and applications. Chem Soc Rev 40:4539

    Article  CAS  Google Scholar 

  10. Rueping M, Nachtsheim BJ, Ieawsuwan W, Atodiresei I (2011) Modulating the acidity: highly acidic Brønsted acids in asymmetric catalysis. Angew Chem Int Ed 50:6706

    Article  CAS  Google Scholar 

  11. Aleman J, Parra A, Jiang H, Jørgensen KA (2011) Squaramides: bridging from molecular recognition to bifunctional organocatalysis. Chem Eur J 17:6890

    Article  CAS  Google Scholar 

  12. Wassermann A (1942) Homogeneous catalysis of diene syntheses. A new type of third-order reaction. J Chem Soc 618

    Google Scholar 

  13. Yates P, Eaton P (1960) Acceleration of the Diels-Alder reaction by aluminum chloride. J Am Chem Soc 82:4436

    Article  CAS  Google Scholar 

  14. Rueping M, Antonchick AR, Theissmann T (2006) A highly enantioselective Brønsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. Angew Chem Int Ed 45:3683

    Article  CAS  Google Scholar 

  15. Rakotoson JH, Fabre N, Jacquemond-Collet I, Hannedouche S, Fouraste I, Moulis C (1998) Alkaloids from Galipea officinalis. Planta Med 64:762

    Article  CAS  Google Scholar 

  16. Houghton PJ, Woldemariam TZ, Watanabe Y, Yates W (1999) Activity against Mycobacterium tuberculosis of alkaloid constituents of angostura bark, Galipea officinalis. Planta Med 65:250

    Article  CAS  Google Scholar 

  17. Rueping M, Antonchick AP (2007) Organocatalytic enantioselective reduction of pyridines. Angew Chem Int Ed 46:4562

    Article  CAS  Google Scholar 

  18. Sklenicka HM, Hsung RP, McLaughlin MJ, Wei LI, Gerasyuto AI, Brennessel WB (2002) Stereoselective formal [3+3] cycloaddition approach to cis-1-azadecalins and synthesis of ((–))-4a,8a-diepi-pumiliotoxin C. Evidence for the first highly stereoselective 6 π-electron eelectrocyclic ring closures of 1-azatrienes. J Am Chem Soc 124:10435

    Article  CAS  Google Scholar 

  19. Spande TF, Jain P, Garraffo HM, Pannell LK, Yeh HJC, Daly JW, Fukumoto S, Imamura K, Tokuyama T, Torres JA, Snelling RR, Jones TH (1999) Occurrence and significance of decahydroquinolines from dendrobatid poison frogs and a myrmicine ant: use of 1H and 13C NMR in their conformational analysis. J Nat Prod 62:5

    Article  CAS  Google Scholar 

  20. Sewgobind NV, Wanner MJ, Ingemann S, de Gelder R, van Maarseveen JH, Hiemstra H (2008) Enantioselective BINOL-phosphoric acid catalyzed Pictet-Spengler reactions of N-benzyltryptamine. J Org Chem 73:6405

    Article  CAS  Google Scholar 

  21. van Maarseveen JH, Wanner MJ, Boots RNA, Eradus B, de Gelder R, Hiemstra H (2009) Organocatalytic enantioselective total synthesis of (–)-arboricine. Org Lett 11:2579

    Article  Google Scholar 

  22. Lim KH, Komiyama K, Kam TS (2007) Arboricine and arboricinine, unusual tetracyclic indole regioisomers from Kopsia. Tetrahedron Lett 48:1143

    Article  CAS  Google Scholar 

  23. Herle B, Wanner MJ, van Maarseveen JH, Hiemstra H (2011) Total synthesis of (+)-yohimbine via an enantioselective organocatalytic Pictet-Spengler reaction. J Org Chem 76:8907

    Article  CAS  Google Scholar 

  24. Tamelen EEV, Shamma M, Burgstahler AW, Wolinsky J, Tamm R, Aldrich PE (1958) The total synthesis of yohimbine. J Am Chem Soc 80:5006

    Article  Google Scholar 

  25. Goldberg MR, Robertson D (1983) Yohimbine – a pharmacological probe for study of the α2-adrenoreceptor. Pharmacol Rev 35:143

    CAS  Google Scholar 

  26. Zuend SJ, Jacobsen EN, Mergott DJ (2008) Catalytic asymmetric total synthesis of (+)-yohimbine. Org Lett 10:745

    Article  Google Scholar 

  27. Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F (2011) The vinylogous aldol and related addition reactions: ten years of progress. Chem Rev 111:3076

    Article  CAS  Google Scholar 

  28. Sickert M, Schneider C (2008) The enantioselective, Brønsted acid catalyzed, vinylogous Mannich reaction. Angew Chem Int Ed 47:3631

    Article  CAS  Google Scholar 

  29. Giera DS, Sickert M, Schneider C (2008) Brønsted acid-catalyzed, enantioselective, vinylogous Mannich reaction of vinylketene silyl N,O-acetals. Org Lett 10:4259

    Article  CAS  Google Scholar 

  30. Giera DS, Sickert M, Schneider C (2009) A straightforward synthesis of (S)-anabasine via the catalytic, enantioselective vinylogous Mukaiyama-Mannich reaction. Synthesis 3797

    Google Scholar 

  31. Huang Y, Unni AK, Thadani AN, Rawal VH (2003) Hydrogen bonding: single enantiomers from a chiral-alcohol catalyst. Nature 424:146

    Article  CAS  Google Scholar 

  32. Du HF, Zhao DB, Ding KL (2004) Enantioselective catalysis of the hetero-Diels-Alder reaction between Brassard’s diene and aldehydes by hydrogen-bonding activation: a one-step synthesis of (S)-(+)-dihydrokawain. Chem Eur J 10:5964

    Article  CAS  Google Scholar 

  33. Gerard B, Cencic R, Pelletier J, Porco JA (2007) Enantioselective synthesis of the complex rocaglate (–)-silvestrol. Angew Chem Int Ed 46:7831

    Article  CAS  Google Scholar 

  34. Spino C, Mayes N, Desfosses H (1996) Enantioselective synthesis of (+) and (–)-dihydrokawain. Tetrahedron Lett 37:6503

    Article  CAS  Google Scholar 

  35. Klohs MW, Keller F, Williams RE, Toekes MI, Cronheim GE (1959) A chemical and pharmacological investigation of Piper methysticum forst. J Med Pharm Chem 1:95

    Article  CAS  Google Scholar 

  36. Hwang BY, Su BN, Chai HB, Mi QW, Kardono LBS, Afriastini JJ, Riswan S, Santarsiero BD, Mesecar AD, Wild R, Fairchild CR, Vite GD, Rose WC, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J Org Chem 69:3350

    Article  CAS  Google Scholar 

  37. Hwang BY, Su BN, Chai HB, Mi QW, Kardono LBS, Afriastini JJ, Riswan S, Santarsiero BD, Mesecar AD, Wild R, Fairchild CR, Vite GD, Rose WC, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kinghorn AD (2004) Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from aglaia silvestris. J Org Chem 69:6156

    Article  CAS  Google Scholar 

  38. Mi QW, Kim S, Hwang BY, Su BN, Chai H, Arbieva ZH, Kinghorn AD, Swanson SM (2006) Silvestrol regulates G2/M checkpoint Genes independent of p53 activity. Anticancer Res 26:3349

    CAS  Google Scholar 

  39. Ebada SS, Lajkiewicz N, Porco JA Jr, Li-Weber M, Proksch P (2011) Chemistry and biology of rocaglamides (= Flavaglines) and related derivatives from Aglaia species (Meliaceae). Prog Ch Org Nat Prod 94:1

    Article  CAS  Google Scholar 

  40. Gerard B, Jones G, Porco JA (2004) A biomimetic approach to the rocaglamides employing photogeneration of oxidopyryliums derived from 3-hydroxyflavones. J Am Chem Soc 126:13620

    Article  CAS  Google Scholar 

  41. Gerard B, Sangji S, O'Leary DJ, Porco JA (2006) Enantioselective photocycloaddition mediated by chiral Brønsted acids: asymmetric synthesis of the rocaglamides. J Am Chem Soc 128:7754

    Article  CAS  Google Scholar 

  42. Raheem IT, Thiara PS, Peterson EA, Jacobsen EN (2007) Enantioselective Pictet-Spengler-type cyclizations of hydroxylactams: H-bond donor catalysis by anion binding. J Am Chem Soc 129:13404

    Article  CAS  Google Scholar 

  43. Kam TS, Sim KM (1998) Alkaloids from Kopsia griffithii. Phytochemistry 47:145

    Article  CAS  Google Scholar 

  44. Chrzanowska M, Rozwadowska MD (2004) Asymmetric synthesis of isoquinoline alkaloids. Chem Rev 104:3341

    Article  CAS  Google Scholar 

  45. Kanemitsu T, Yamashita Y, Nagata K, Itoh T (2006) Catalytic asymmetric synthesis of (R)-(–)-calycotomine, (S)-(–)-salsolidine and (S)-(–)-carnegine. Synlett 1595

    Google Scholar 

  46. Vachal P, Jacobsen EN (2002) Structure-based analysis and optimization of a highly enantioselective catalyst for the Strecker reaction. J Am Chem Soc 124:10012

    Article  CAS  Google Scholar 

  47. Takemoto Y, Miyabe H (2007) The amino thiourea-catalyzed asymmetric nucleophilic reactions. Chimia 61:269

    Article  CAS  Google Scholar 

  48. Okino T, Hoashi Y, Takemoto Y (2003) Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J Am Chem Soc 125:12672

    Article  CAS  Google Scholar 

  49. Hoashi Y, Okino T, Takemoto Y (2005) Enantioselective Michael addition to α, β-unsaturated imides catalyzed by a bifunctional organocatalyst. Angew Chem Int Ed 44:4032

    Article  CAS  Google Scholar 

  50. Okino T, Hoashi Y, Furukawa T, Xu XN, Takemoto Y (2005) Enantio- and diastereoselective Michael reaction of 1,3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea. J Am Chem Soc 127:119

    Article  CAS  Google Scholar 

  51. Hoashi Y, Yabuta T, Yuan P, Miyabe H, Takemoto Y (2006) Enantioselective tandem Michael reaction to nitroalkene catalyzed by bifunctional thiourea: total synthesis of (–)-epibatidine. Tetrahedron 62:365

    Article  CAS  Google Scholar 

  52. Spande TF, Garraffo HM, Edwards MW, Yeh HJC, Pannell L, Daly JW (1992) Epibatidine – a novel (Chloropyridyl)azabicycloheptane with potent analgesic activity from an Ecuadorian poison frog. J Am Chem Soc 114:3475

    Article  CAS  Google Scholar 

  53. Badio B, Daly JW (1994) Epibatidine, a potent analgesic and nicotinic agonist. Mol Pharmacol 45:563

    CAS  Google Scholar 

  54. Bui T, Syed S, Barbas CF (2009) Thiourea-catalyzed highly enantio- and diastereoselective additions of oxindoles to nitroolefins: application to the formal synthesis of (+)-physostigmine. J Am Chem Soc 131:8758

    Article  CAS  Google Scholar 

  55. Jakubec P, Cockfield DM, Dixon DJ (2009) Total synthesis of (–)-nakadomarin A. J Am Chem Soc 131:16632

    Article  CAS  Google Scholar 

  56. Farmer RL, Biddle MM, Nibbs AE, Huang XK, Bergan RC, Scheidt KA (2010) Concise syntheses of the abyssinones and discovery of new inhibitors of prostate cancer and MMP-2 expression. ACS Med Chem Lett 1:400

    Article  CAS  Google Scholar 

  57. Bassas O, Huuskonen J, Rissanen K, Koskinen AMP (2009) A simple organocatalytic enantioselective synthesis of pregabalin. Eur J Org Chem 2009:1340

    Article  Google Scholar 

  58. Hynes PS, Stupple PA, Dixon DJ (2008) Organocatalytic asymmetric total synthesis of (R)-rolipram and formal synthesis of (3S,4R)-paroxetine. Org Lett 10:1389

    Article  CAS  Google Scholar 

  59. Li DR, Murugan A, Falck JR (2008) Enantioselective, organocatalytic oxy-Michael addition to γ/δ-hydroxy-α, β-enones: boronate-amine complexes as chiral hydroxide synthons. J Am Chem Soc 130:46

    Article  CAS  Google Scholar 

  60. Macleod JK, Schaffeler L (1995) A short enantioselective synthesis of a biologically active compound from Persea americana. J Nat Prod 58:1270

    Article  CAS  Google Scholar 

  61. Dollt H, Hammann P, Blechert S (1999) Synthesis of (+)-(S)-streptenol A and biomimetic synthesis of (2R,4S)- and (2S,4S)-2-(Pent-3-enyl)piperidin-4-ol. Helv Chim Acta 82:1111

    Article  CAS  Google Scholar 

  62. Li H, Chen YG, Deng L (2011) Cinchona alkaloids. In: Zhou QL (ed) Privileged catalysts and ligands in asymmetric catalysis. Wiley-VCH, Weinheim, p 361

    Chapter  Google Scholar 

  63. Wang BM, Wu FH, Wang Y, Liu XF, Deng L (2007) Control of diastereoselectivity in tandem asymmetric reactions generating nonadjacent stereocenters with bifunctional catalysis by Cinchona alkaloids. J Am Chem Soc 129:768

    Article  CAS  Google Scholar 

  64. Wang Y, Liu XF, Deng L (2006) Dual-function Cinchona alkaloid catalysis: catalytic asymmetric tandem conjugate addition-protonation for the direct creation of nonadjacent stereocenters. J Am Chem Soc 128:3928

    Article  CAS  Google Scholar 

  65. Kobayashi J, Kanda F, Ishibashi M, Shigemori H (1991) Manzacidins A-C, novel tetrahydropyrimidine alkaloids from the Okinawan marine sponge Hymeniacidon sp. J Org Chem 56:4574

    Article  CAS  Google Scholar 

  66. Faulkner DJ (1998) Marine natural products. Nat Prod Rep 15:113

    Article  CAS  Google Scholar 

  67. Hashimoto T, Maruoka K (2008) Syntheses of manzacidins: a stage for the demonstration of synthetic methodologies. Org Biomol Chem 6:829

    Article  CAS  Google Scholar 

  68. Tran K, Lombardi PJ, Leighton JL (2008) An efficient asymmetric synthesis of manzacidin C. Org Lett 10:3165

    Article  CAS  Google Scholar 

  69. Kobayashi J, Watanabe D, Kawasaki N, Tsuda M (1997) Nakadomarin A, a novel hexacyclic manzamine-related alkaloid from Amphimedon sponge. J Org Chem 62:9236

    Article  CAS  Google Scholar 

  70. Kobayashi J, Tsuda M, Ishibashi M (1999) Bioactive products from marine micro- and macro-organisms. Pure Appl Chem 71:1123

    Article  CAS  Google Scholar 

  71. Jakubec P, Kyle AF, Calleja J, Dixon DJ (2011) Total synthesis of (–)-nakadomarin A: alkyne ring-closing metathesis. Tetrahedron Lett 52:6094

    Article  CAS  Google Scholar 

  72. Kamat VS, Chuo FY, Kubo I, Nakanishi K (1981) Anti-microbial agents from an East African medicinal plant Erythrina abyssinica. Heterocycles 15:1163

    Article  CAS  Google Scholar 

  73. Lee D, Bhat KPL, Fong HHS, Farnsworth NR, Pezzuto JM, Kinghorn AD (2001) Aromatase inhibitors from Broussonetia papyrifera. J Nat Prod 64:1286

    Article  CAS  Google Scholar 

  74. Chen P, Bao X, Zhang LF, Ding M, Han XJ, Li J, Zhang GB, Tu YQ, Fan CA (2011) Asymmetric synthesis of bioactive hydrodibenzofuran alkaloids: (–)-lycoramine, (–)-galanthamine, and (+)-lunarine. Angew Chem Int Ed 50:8161

    Article  CAS  Google Scholar 

  75. Kondo H, Tomimura K, Ishiwata S (1932) Alkaloids of Lycoris radiata Herb. V and VI. Yakugaku Zasshi 52:433

    CAS  Google Scholar 

  76. Proskurnina NF, Yakovleva AP (1952) Alkaloids of Galanthus woronowi. II. Isolation of a new alkaloid. Zh Obshch Khim 22:1899

    CAS  Google Scholar 

  77. Marco-Contelles J, Carreiras MD, Rodriguez C, Villarroya M, Garcia AG (2006) Synthesis and pharmacology of galantamine. Chem Rev 106:116

    Article  CAS  Google Scholar 

  78. Han SY, Sweeney JE, Bachman ES, Schweiger EJ, Forloni G, Coyle JT, Davis BM, Joullie MM (1992) Chemical and pharmacological characterization of galanthamine, an acetylcholinesterase inhibitor, and its derivatives – a potential application in Alzheimer’s disease. Eur J Med Chem 27:673

    Article  CAS  Google Scholar 

  79. Reeb E (1911) Lunaria annua and its active principle. Les Nouv Remedes 27:481

    CAS  Google Scholar 

  80. Hamilton CJ, Saravanamuthu A, Poupat C, Fairlamb AH, Eggleston IM (2006) Time dependent inhibitors of trypanothione reductase: analogues of the spermidine alkaloid lunarine and related natural products. Bioorg Med Chem 14:2266

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Waser, M. (2012). Chiral Brønsted Acids and Hydrogen Bonding Donors. In: Asymmetric Organocatalysis in Natural Product Syntheses. Progress in the Chemistry of Organic Natural Products, vol 96. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1163-5_7

Download citation

Publish with us

Policies and ethics