Skip to main content

Endopolyploidy in Plants

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

Plant growth and development is precisely programmed and achieved through three processes: cell division (proliferation), growth and differentiation. These three processes may overlap during plant organ development, when some cells start to differentiate while others continue to divide e.g. leaf epidermal cells (Harashima and Schnittger 2010). Dividing cells, called meristematic cells, increase their number and supply new cells for post-embryonic plant development. Outside the meristems non-dividing cells expand and differentiate. Cell proliferation and expansion result in varied but determined cell sizes specific for the plant, organ and tissue. The next phase in plant development is cell-type specification along with the differentiation processes. The control of all processes and the determination of final cell mass and size are poorly understood but there is increasing knowledge about the molecular mechanisms underpinning the regulatory systems. Cell sizes in plants are usually closely related to their function. There are two strategies to enlarge cell size: one is based on water uptake and vacuolar growth and the other is to increase the nuclear DNA content or the level of polyploidy, this gives rise to endopolyploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman T, Damm B, Frommer WB, Martin T, Morris PC, Schweizer D, Wilmitzer L, Schmidt R (1994) Easy determination of ploidy level in Arabidopsis thaliana plants by means of pollen size measurement. Plant Cell Rep 13:652–656

    Article  Google Scholar 

  • Barow M (2006) Endopolyploidy in seed plants. Bioessays 23:271–281

    Article  CAS  Google Scholar 

  • Barow M, Jovtchev G (2007) Endopolyploidy in plants and its analysis by flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Weinheim, Wiley, pp 349–372

    Chapter  Google Scholar 

  • Barow M, Meister A (2003) Endopolyploidy in higher plants is correlated to systematics, life strategy and genome size. Plant Cell Environ 26:571–584

    Article  Google Scholar 

  • Bauer MJ, Birchler JA (2006) Organization of endoreduplicated chromosomes in the endosperm of Zea mays L. Chromosoma 115:383–394

    Article  PubMed  Google Scholar 

  • Beemster GTS, De Vusser K, De Tavernier E, Bock D, Inze D (2002) Variation in growth rate between Arabidopsis cytotypes is correlated with cell division and A-type cyclin dependent kinase activity. Plant Physiol 129:854–864

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston S (2003) Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25% larger than the Arabidopsis genome initiative estimate of 125 Mb. Ann Bot 91:547–557

    Article  PubMed  CAS  Google Scholar 

  • Berckmans B, De Veylder L (2009) Transcriptional control of the cell cycle. Curr Opin Plant Biol 12:599–605

    Article  PubMed  CAS  Google Scholar 

  • Berr A, Schubert I (2007) Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 176:853–856

    Article  PubMed  Google Scholar 

  • Bertin N (2005) Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann Bot 95:439–447

    Article  PubMed  CAS  Google Scholar 

  • Bertin N, Borel C, Brunel B, Cheniclet C, Causse M (2003) Do genetic make-up and growth manipulation affect tomato fruit size by cell number, or cell size and DNA endoreduplication? Ann Bot 92:415–424

    Article  PubMed  CAS  Google Scholar 

  • Bino RJ, Lanteri S, Verhoeven HA, Kraak HL (1993) Flow cytometric determination of nuclear replication stages in seed tissues. Ann Bot 72:181–187

    Article  Google Scholar 

  • Biradar DP, Rayburn AL, Bullock DG (1993) Endopolyploidy in diploid and tetraploid maize (Zea mays L.). Ann Bot 71:417–421

    Article  Google Scholar 

  • Bisbis B, Delmas F, Joubès J, Sicard A, Hernould M, Inzé D, Mouras A, Chevalier C (2006) Cyclin-dependent kinase (CDK) inhibitors regulate the CDK-cyclin complex activities in endoreduplicating cells of developing tomato fruit. J Biol Chem 281:7374–7383

    Article  PubMed  CAS  Google Scholar 

  • Boudolf V, Vlieghe K, Beemster GT, Magyar Z, Torres Acosta JA, Maes S, Van Der Schueren E, Inzé D, De Veylder L (2004) The plant-specific cyclin-dependent kinase CDKB1;1 and transcription factor E2Fa-DPa control the balance of mitotically dividing and endoreduplicating cells in Arabidopsis. Plant Cell 16:2683–2692

    Article  PubMed  CAS  Google Scholar 

  • Boudolf V, Lammens T, Boruc J, Van Leene J, Van Den Daele H, Maes S, Van Isterdael G, Russinova E, Kondorosi E, Witters E, De Jaeger G, Inzé D, De Veylder L (2009) CDKB1;1 forms a functional complex with CYCA2;3 to suppress endocycle onset. Plant Physiol 150:1482–1493

    Article  PubMed  CAS  Google Scholar 

  • Breuer C, Stacey N, Westd C, Zhaoe Y, Choryf J, Tsukaya H, Azumii Y, Maxwell A, Roberts K, Sugimoto-Shirasu K (2007) BIN4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis. Plant Cell 19:3655–3668

    Article  PubMed  CAS  Google Scholar 

  • Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K (2009) The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. Plant Cell 21:2307–2322

    Article  PubMed  CAS  Google Scholar 

  • Brossard D (1978) Microspectrophotometric and ultrastructural analyses of a case of cell differentiation without endopolyploidization: the pith of Crepis capillaris (L.) Wallr. Protoplasma 93:369–380

    Article  Google Scholar 

  • Butcher DN, Sogeke AK, Tommerup IC (1975) Factors influencing changes in ploidy and nuclear DNA levels in cells from normal, crown-gall and habituated cultures of Helianthus annuus L. Protoplasma 86:295–308

    Article  CAS  Google Scholar 

  • Carvalheira G (2000) Plant polytene chromosomes. Genet Mol Biol 23:1043–1050

    Article  Google Scholar 

  • Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95:147–175

    Article  PubMed  CAS  Google Scholar 

  • Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde JP, Renaudin JP (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994

    Article  PubMed  CAS  Google Scholar 

  • Chevalier C, Nafati M, Mathieu-Rivet E, Bourdon M, Frangne N, Cheniclet C, Renaudin J-P, Gévaudant F, Hernould M (2011) Elucidating the functional role of endoreduplication in tomato fruit development. Ann Bot 107:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Churchman M, Brown M, Kato N, Kirik V, Hülskamp M, Inzé D, De Veylder L, Walker JD, Zheng Z, Oppenheimer DG, Gwin T, Churchman J, Larkin J (2006) SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18:3145–3157

    Article  PubMed  CAS  Google Scholar 

  • Coelho CM, Dante RA, Sabelli PA, Sun Y, Dilkes BP, Gordon-Kamm WJ, Larkins BA (2005) Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant Physiol 138:2323–2336

    Article  PubMed  CAS  Google Scholar 

  • D’Amato F (1964) Endopolyploidy as a factor in plant tissue development. Caryologia 17:41–52

    Google Scholar 

  • D’Amato F (1984) Role of polyploidy in reproductive organs and tissue. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin/Heidelberg/New York, pp 519–566

    Chapter  Google Scholar 

  • D’Amato F (1986) Cytogenetics of plant cell and tissue cultures and their regenerates. CRC Crit Rev Plant Sci 3:73–112

    Article  Google Scholar 

  • D’Amato F (1989) Polyploidy in cell differentiation. Caryologia 42:183–211

    Google Scholar 

  • De Rocher EJ, Harkins KR, Galbraith DW, Bohner HJ (1990) Developmentally regulated systemic endopolyploidy in succulents with small genomes. Science 250:99–100

    Article  PubMed  Google Scholar 

  • del Castellano MM, del Pozo JC, Ramirez-Parra E, Brown S, Gutierrez C (2001) Expression and stability of Arabidopsis CDC6 are associated with endoreplication. Plant Cell 13:2671–2678

    PubMed  CAS  Google Scholar 

  • del Castellano M, Boniotti MB, Caro E, Schnittger A, Gutierrez C (2004) DNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner. Plant Cell 16:2380–2393

    Article  CAS  Google Scholar 

  • Del Pozo JC, Lopes-Matas A, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123:173–183

    Article  CAS  Google Scholar 

  • Del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C (2006) The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell 18:2224–2235

    Article  PubMed  CAS  Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  PubMed  CAS  Google Scholar 

  • Dewitte W, Scofield S, Alcasabas A, Maughan S, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray J (2007) Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc Natl Acad Sci USA 104:14537–14542

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    Article  PubMed  CAS  Google Scholar 

  • Exner V, Henning L (2008) Chromatin rearrangements in development. Curr Opin Plant Biol 11:64–69

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16:5710–5718

    Article  PubMed  CAS  Google Scholar 

  • Fras A, Maluszynska J (2004) The correlation between the chromosome variation in callus and genotype of explants of Arabidopsis thaliana. Genetica 121:145–154

    Article  PubMed  Google Scholar 

  • Fras A, Juchimiuk J, Siwinska D, Maluszynska J (2007) Cytological events in explants of Arabidopsis thaliana during early callogenesis. Plant Cell Rep 26:1933–1939

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW (2007) Analysis of plant gene expression using flow cytometry and sorting. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 405–422

    Chapter  Google Scholar 

  • Galbraith DW, Harkins KR, Knapp S (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol 96:985–989

    Article  PubMed  CAS  Google Scholar 

  • Geitler L (1939) Die Entstehung der polyploiden Somakerne der Heteropteren durch Chromosomenteilung ohne Kernteilung. Chromosoma 1:1–22

    Article  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  PubMed  CAS  Google Scholar 

  • Gendreau E, Höfte H, Grandjean O, Brown S, Traas J (1998) Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyls. Plant J 13:221–230

    Article  PubMed  CAS  Google Scholar 

  • Gendreau E, Hofte H, Orbovic V, Traas J (1999) Gibberellin and ethylene control endoreduplication levels in the Arabidopsis thaliana hypocotyl. Planta 209:513–516

    PubMed  CAS  Google Scholar 

  • Gendreau E, Romaniello S, Barad S, Leymarie J, Benech-Arnold RL, Corbineau F (2008) Regulation of cell cycle activity in the embryo of barley seeds during germination as related to grain hydration. J Exp Bot 59:203–212

    Article  PubMed  CAS  Google Scholar 

  • Gilissen LJ, Staveren MJ, Creemers-Molenaar J, Verhoeven HA (1993) Development of polysomaty in seedling and plants of Cucumis sativus. Science 91:171–179

    CAS  Google Scholar 

  • Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A (2007) The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J 51:642–655

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C (2009) The Arabidopsis cell division cycle. In: Last R, Chang C, Jander G, Kliebenstein D, McClung R, Millar H (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, pp 1–19

    Google Scholar 

  • Hajdera I, Siwinska D, Hasterok R, Maluszynska J (2003) Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. Theor Appl Genet 107:988–996

    Article  PubMed  CAS  Google Scholar 

  • Harashima H, Schnittger A (2010) The integration of cell division, growth and differentiation. Curr Opin Plant Biol 13:66–74

    Article  PubMed  CAS  Google Scholar 

  • Henriques R, Magyar Z, Monardes A, Khan S, Zalejski C, Orellana J, Szabados L, de la Torre C, Koncz C, Bögre L (2010) Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1-E2F pathway activity. EMBO J 29:2979–2993

    Article  PubMed  CAS  Google Scholar 

  • Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12:1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Hirano H, Harashima H, Shinmyo A, Sekine M (2008) Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 is involved in G1 phase cell cycle arrest caused by sucrose starvation. Plant Mol Biol 66:259–275

    Article  PubMed  CAS  Google Scholar 

  • Horvath BM, Magyar Z, Zhang Y, Hamburger AW, Bako L, Visser RG, Bachem CW, Bogre L (2006) EBP1 regulates organ size through cell growth and proliferation in plants. EMBO J 25:4909–4920

    Article  PubMed  CAS  Google Scholar 

  • Huskins CL (1947) The subdivision of the chromosomes and their multiplication in nondividing tissues: possible interpretation in term of gene structure and gene action. Am Nat 81:401–434

    Article  PubMed  CAS  Google Scholar 

  • Imai KK, Ohashi Y, Tsuge T, Yoshizumi T, Matsui M, Oka A, Aoyama T (2006) The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. Plant Cell 18:382–396

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Fujiwara S, Miura K, Stacey N, Yoshimura M, Schneider K, Adachi S, Minamisawa K, Umeda M, Sugimoto K (2009) SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis. Plant Cell 2:2284–2297

    Google Scholar 

  • Ishida T, Adachi S, Yoshimura M, Shimizu K, Umeda M, Sugimoto K (2010) Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis. Development 137:63–71

    Article  PubMed  CAS  Google Scholar 

  • Jasencakova Z, Soppe WJ, Meister A, Gernand D, Turner BM, Schubert I (2003) Histone modifications in Arabidopsis—high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J 33:471–480

    Article  PubMed  CAS  Google Scholar 

  • John PC, Qi R (2008) Cell division and endoreduplication: doubtful engines of vegetative growth. Trends Plant Sci 13:121–127

    Article  PubMed  CAS  Google Scholar 

  • Joubes J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745

    Article  PubMed  CAS  Google Scholar 

  • Jovtchev G, Schubert V, Meister V, Barow M, Schubert I (2006) Nuclear DNA content and cell volume are positively correlated in angiosperms. Cytogenet Genome Res 114:77–82

    Article  PubMed  CAS  Google Scholar 

  • Jovtchev G, Barow M, Meister A, Schubert I (2007) Impact of environmental and endogenous factors on endopolyploidization in angiosperms. Environ Exp Bot 60:404–411

    Article  CAS  Google Scholar 

  • Kasili R, Walker J, Simmons L, Zhou J, De Veylder L, Larkin JC (2010) SIAMESE cooperates with the CDH1-like protein CCS52A1 to establish endoreplication in Arabidopsis thaliana trichomes. Genetics 185:257–268

    Article  PubMed  CAS  Google Scholar 

  • Kirik V, Schrader A, Uhrig JF, Hulskamp M (2007) MIDGET unravels functions of the Arabidopsis topoisomerase VI complex in DNA endoreduplication, chromatin condensation, and transcriptional silencing. Plant Cell 19:3100–3110

    Article  PubMed  CAS  Google Scholar 

  • Kolano B, Siwinska D, Maluszynska J (2009) Endopolyploidy patterns during development of Chenopodium quinoa. Acta Biol Cracov Ser Bot 51:85–92

    Google Scholar 

  • Kondorosi E, Kondorosi A (2004) Endoreduplication and activation of the anaphase-promoting complex during symbiotic cell development. FEBS Lett 567:152–157

    Article  PubMed  CAS  Google Scholar 

  • Kondorosi E, Roudier F, Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3:488–492

    Article  PubMed  CAS  Google Scholar 

  • Kudo N, Kimura Y (2001a) Patterns of endopolyploidy during seedling development in cabbage (Brassica oleracea L.). Ann Bot 87:275–281

    Article  Google Scholar 

  • Kudo N, Kimura Y (2001b) Flow cytometric evidence for endopolyploidization in cabbage flowers. Sex Plant Reprod 13:279–283

    Article  Google Scholar 

  • Kudo N, Kimura Y (2002) Nuclear DNA endoreduplication during petal development in cabbage: relationship between ploidy levels and cell size. J Exp Bot 53:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Lammens T, Boudolf V, Kheibarshekan L, Zalmas L, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue N, Govaerts W, Inzé D, de Veylder L (2008) Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Natl Acad Sci U S A 105:14721–14726

    Article  PubMed  CAS  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo Y, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183–192

    Article  PubMed  CAS  Google Scholar 

  • Lee H-C, Chiou D-W, Chen W-H, Markhart AH, Chen Y-H, Lin T-Y (2004) Dynamics of cell growth and endoreduplication during orchid flower development. Plant Sci 166:659–667

    Article  CAS  Google Scholar 

  • Lee HO, Davidson JM, Duronio RJ (2009) Endoreplication: polyploidy with purpose. Genes Dev 23:2461–2477

    Article  PubMed  CAS  Google Scholar 

  • Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo YM, Maddock S, Gordon-Kamm WJ, Larkins BA (2004) A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 16:1854–1869

    Article  PubMed  CAS  Google Scholar 

  • Lemontey C, Mousset-Declas C, Munier-Jolain N, Boutin JP (2000) Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed. J Exp Bot 51:167–175

    Article  PubMed  CAS  Google Scholar 

  • Levan A (1939) Cytological phenomena connected with root swelling caused by growth substances. Hereditas 25:87–96

    Article  CAS  Google Scholar 

  • Li Z, Larson-Rabin Z, Masson P, Day C (2009) FZR2/CCS52A1 mediated endoreduplication in Arabidopsis development. Plant Signal Behav 4:451–453

    Article  PubMed  CAS  Google Scholar 

  • Lim WL, Loh CS (2003) Endopolyploidy in Vanda ‘Miss Joaquim’ (Orchidaceae). New Phytol 159:279–287

    Article  CAS  Google Scholar 

  • López-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, Murray JA, Beemster GT, Bögre L, Shanahan H (2008) Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. Plant Cell 20:947–968

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewska E, Sliwinska E (2007) Most organs of sugar-beet (Beta vulgaris L.) plants at the vegetative and reproductive stages of development are polysomatic. Sex Plant Reprod 20:99–107

    Article  Google Scholar 

  • Lur HS, Setter TL (1993) Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol 10:273–280

    Google Scholar 

  • Magyar Z, De Veylder L, Atanassova A, Bakó L, Inzé D, Bögre L (2005) The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell 17:2527–2541

    Article  PubMed  CAS  Google Scholar 

  • Magyar Z, Ito M, Binarová P, Mohamed B, Bogre L (2013) Cell cycle modules in plants for entry into proliferation and for mitosis. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 77–97

    Google Scholar 

  • Maluszynska J (1990) B chromosomes of Crepis capillaris (L.) Wallr. in vivo and in vitro. University of Silesia, Katowice

    Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1:159–166

    Article  Google Scholar 

  • Mathieu O, Jasencakova Z, Vaillant I, Gendrel AV, Colot V, Schubert I, Tourmente S (2003) Changes in 5 S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell 15:2929–2939

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJM, Henttel B, von der Winden J, Matzke M (2005) Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol 139:1586–1596

    Article  PubMed  CAS  Google Scholar 

  • Mauseth JD (2009) Botany: an introduction to plant biology, 4th edn. Jones and Bartlett Publishers, London, p 71

    Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668

    PubMed  Google Scholar 

  • Menges M, de Jager SM, Gruissem W, Murray JA (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 4:546–566

    Article  CAS  Google Scholar 

  • Menges M, Samland AK, Planchais S, Murray JAH (2006) The D-type cyclin CYCD3;1 is limiting for the G1-to-S phase transition in Arabidopsis. Plant Cell 18:893–906

    Article  PubMed  CAS  Google Scholar 

  • Mishiba K, Mii M (2000) Polysomaty analysis in diploid and tetraploid Portulaca grandiflora. Plant Sci 156:213–219

    Article  PubMed  CAS  Google Scholar 

  • Mittelsten Scheid O, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J (1996) A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA 93:7114–7119

    Article  PubMed  CAS  Google Scholar 

  • Morohashi K, Grotewold E (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5:e1000396

    Article  PubMed  CAS  Google Scholar 

  • Nagl W (1976) DNA endoreduplication and polyteny understood as evolutionary strategies. Nature 261:614–615

    Article  PubMed  CAS  Google Scholar 

  • Newcomb W, Sippell D, Peterson RL (1979) The early morphogenesis of Glycine max and Pisum sativum root nodules. Can J Bot 57:2603–2616

    Article  Google Scholar 

  • Olszewska MJ, Osiecka R (1982) The relationship between 2 C DNA content, life cycle type, systematic position and the level of DNA endoreduplication in nuclei of parenchyma cells during growth and differentiation of roots in some monocotyledonous species. Biochem Physiol Pfl 177:319–336

    Google Scholar 

  • Olszewska JM, Osiecka R (1983) The relationship between 2 C DNA content, life cycle type, systematic position and the dynamics of DNA replication in parenchyma nuclei during growth and differentiation of roots in some dicotyledonous herbaceous species. Biochem Physiol Pfl 178:581–599

    CAS  Google Scholar 

  • Papes D, Garej-Verhovac V, Jelaska S, Kolevska-Pletikapic B (1983) Chromosome behaviour in cultured cell populations of higher plants. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. George Allen and Unwin, London, pp 155–163

    Google Scholar 

  • Park JA, Ahn JW, Kim YK, Kim SJ, Kim JK, Kim WT, Pai HS (2005) Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J 42:153–163

    Article  PubMed  CAS  Google Scholar 

  • Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysák MA, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269

    Article  PubMed  CAS  Google Scholar 

  • Perazza D, Vachon G, Herzog M (1998) Gibberellins promote trichome formation by up-regulating GLABROUS1 in Arabidopsis. Plant Physiol 117:375–383

    Article  PubMed  CAS  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446

    Article  PubMed  CAS  Google Scholar 

  • Polizzi E, Natali L, Muscio AM, Giordani T, Cionini G, Cavallini A (1998) Analysis of chromatin and DNA during chromosome endoreduplication in the endosperm of Triticum durum Desf. Protoplasma 203:175–185

    Article  CAS  Google Scholar 

  • Ren H, Santner A, del Pozo JC, Murray JA, Estelle M (2008) Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J 53:705–711

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  PubMed  CAS  Google Scholar 

  • Sako K, Maki Y, Imai KK, Aoyama T, Goto DB, Yamaguchi J (2010) Control of endoreduplication of trichome by RPT2a, a subunit of the 19 S proteasome in Arabidopsis. J Plant Res 123:701–706

    Article  PubMed  CAS  Google Scholar 

  • Sangwan RS, Bourgeois Y, Dubois F, Sangwan-Norrel BS (1992) In vitro regeneration of Arabidopsis thaliana from cultured zygotic embryos and analysis regenerants. J Plant Physiol 140:588–595

    Article  CAS  Google Scholar 

  • Schlichtinger F (1956) Karyologische Untersuchungen an endopolyploiden Chromozentrenkernen von Gibbaeum Heathii im Zusammenhang mit der Differenzierung. Österr Bot Z 103:485–528

    Article  Google Scholar 

  • Schnittger A, Weinl C, Bouyer D, Schöbinger U, Hülskamp M (2003) Misexpression of the cyclin-dependent kinase inhibitor ICK1/KRP1 in single-celled Arabidopsis trichomes reduces endoreduplication and cell size and induces cell death. Plant Cell 15:303–315

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Klatte M, Pecinka A, Meister A, Jasencakova Z, Schubert I (2006) Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 172:467–475

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Kim YM, Schubert I (2008) Arabidopsis sister chromatids often show complete alignment or separation along a 1.2-Mb euchromatic region but no cohesion “hot spots”. Chromosoma 117:261–266

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I (2009) Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma 118:591–605

    Article  PubMed  CAS  Google Scholar 

  • Sheridan WF (1975) Plant regeneration and chromosome stability in tissue cultures. In: Ledoux L (ed) Genetic manipulation with plant material. Plenum Publishing, New York, pp 263–267

    Google Scholar 

  • Shimotohno A, Ohno R, Bisova K, Sakaguchi N, Huang J, Koncz C, Uchimiya H, Umeda M (2006) Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant J 47:701–710

    Article  PubMed  CAS  Google Scholar 

  • Sliwinska E, Lukaszewska E (2005) Polysomaty in growing in vitro sugar-beet (Beta vulgaris L.) seedlings of different ploidy level. Plant Sci 168:1067–1074

    Article  CAS  Google Scholar 

  • Smulders MJM, Rus-Kortekaas W, Gilissen LJW (1994) Development of polysomaty during differentiation in diploid and tetraploid tomato (Lycopersicon esculentum) plants. Plant Sci 97:53–60

    Article  Google Scholar 

  • Sorrell DA, Marchbank A, McMaho K, Dickinson JR, Rogers HJ, Francis D (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215:518–522

    Article  PubMed  CAS  Google Scholar 

  • Sozzani R, Maggio C, Varotto S, Canova S, Bergounioux C, Albani D, Cella R (2006) Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant Physiol 140:1355–1366

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto-Shirasu K, Stacey NJ, Corsar J, Roberts K, McCann MC (2002) DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Curr Biol 12:1782–1786

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto-Shirasu K, Roberts GR, Stacey NJ, McCann MC, Maxwell A, Roberts K (2005) RHL1 is an essential component of the plant DNA topoisomerase VI complex and is required for ploidy-dependent cell growth. Proc Natl Acad Sci USA 102:18736–18741

    Article  PubMed  CAS  Google Scholar 

  • Takatsuka H, Ohno R, Umeda M (2009) The Arabidopsis cyclin-dependent kinase-activating kinase CDKF;1 is a major regulator of cell proliferation and cell expansion but is dispensable for CDKA activation. Plant J 59:475–487

    Article  PubMed  CAS  Google Scholar 

  • Teyssier E, Bernacchia G, Maury S, How Kit A, Stammitti-Bert L, Rolin D, Gallusci P (2008) Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta 228:391–399

    Article  PubMed  CAS  Google Scholar 

  • Tojo T, Tsuda K, Yoshizumi T, Ikeda A, Yamaguchi J, Matsui M, Yamazaki K (2009) Arabidopsis MBF1s control leaf cell cycle and its expansion. Plant Cell Physiol 50:254–264

    Article  PubMed  CAS  Google Scholar 

  • Traas J, Hulskamp M, Gendreau E, Hofte H (1998) Endoreduplication and development: rule without dividing? Curr Opin Plant Biol 1:498–503

    Article  PubMed  CAS  Google Scholar 

  • Tschermak-Woess E (1956a) Karyologische Pflanzenanatomie. Protoplasma 46:798–834

    Article  Google Scholar 

  • Tschermak-Woess E (1956b) Notizen über die Riesenkerne und “Riesenchromosomen” von Aconitum. Chromosoma 8:114–134

    Article  Google Scholar 

  • Tschermak-Woess E (1963) Strukturtypen der Ruhekerne von Pflanzen und Tieren. Protoplasmatologia V/1. Springer, Wien

    Book  Google Scholar 

  • Tsumoto Y, Yoshizumi T, Kuroda H, Kawashima M, Ichikawa T, Nakazawa M, Yamamoto N, Matsui M (2006) Light-dependent polyploidy control by a CUE protein variant in Arabidopsis. Plant Mol Biol 61:817–828

    Article  PubMed  CAS  Google Scholar 

  • Umeda M, Umeda-Hara C, Uchimiya H (2000) A cyclin-dependent kinase-activating kinase regulates differentiation of root initial cells in Arabidopsis. Proc Natl Acad Sci USA 97:13396–13400

    Article  PubMed  CAS  Google Scholar 

  • Van den Bulk RW, Lofller HJM, Lindhout WH, Koornneef M (1990) Somaclonal variation in tomato. Effects of explant source and comparison with chemical mutagenesis. Theor Appl Genet 80:817–825

    Article  Google Scholar 

  • Verkest A, Manes CL, Vercruysse S, Maes S, Van Der Schueren E, Beeckman T, Genschik P, Kuiper M, Inze D, De Veylder L (2005a) The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell 17:1723–1736

    Article  PubMed  CAS  Google Scholar 

  • Verkest A, Weinl C, Inze D, De Veylder L, Schnittger A (2005b) Switching the cell cycle. KIP-related proteins in plant cell cycle control. Plant Physiol 139:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev 10:385–397

    Article  CAS  Google Scholar 

  • Vilhar B, Greilhuber J, Dolenc Koce J, Temsch EM, Dermastia M (2001) Plant genome size measurement with DNA image cytometry. Ann Bot 87:719–728

    Article  CAS  Google Scholar 

  • Vlieghe K, Boudolf V, Beemster GTS, Maes S, Magyar Z, Atanassova A, De Almeida EJ, De Groodt R, Inzé D, De Veylder L (2005) The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr Biol 15:59–63

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhou Y, Fowke LC (2006) The emerging importance of cyclin-dependent kinase inhibitors in the regulation of the plant cell cycle and related processes. Can J Bot 84:640–650

    Article  CAS  Google Scholar 

  • Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:1477–1486

    Article  PubMed  CAS  Google Scholar 

  • Weiss H, Maluszynska J (2001) Molecular cytogenetic analysis of polyploidization in the anther tapetum of diploid and autotetraploid Arabidopsis thaliana plants. Ann Bot 87:729–735

    Article  CAS  Google Scholar 

  • Wildermuth MC (2010) Modulation of host nuclear ploidy: a common plant biotroph mechanism. Curr Opin Plant Biol 13:449–458

    Article  PubMed  CAS  Google Scholar 

  • Xia JC, Zhao H, Liu WZ, Li LG, He YK (2009) Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regul 57:211–222

    Article  CAS  Google Scholar 

  • Yang M, Loh CS (2004) Systemic endopolyploidy in Spathoglottis plicata (Orchidaceae) development. BMC Cell Biol 5:33

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Gong F, Lambert G, Galbraith D (2005) Cell type-specific characterization of nuclear DNA contents within complex tissues and organs. Plant Method 1:7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Maluszynska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Maluszynska, J., Kolano, B., Sas-Nowosielska, H. (2013). Endopolyploidy in Plants. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_7

Download citation

Publish with us

Policies and ethics