Skip to main content

The Plant Nucleus at War and Peace: Genome Organization in the Interphase Nucleus

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

The interphase nucleus is highly dynamic, anything but the ‘resting stage’ of the cell cycle. In terms of genome organisation the diploid nucleus is the most ‘peaceful’, but contrasting structural arrangements may be found in apparently comparable plants at every physical level, from the conservation or not of Rabl organisation as genome size increases through to the presence or absence of expressed genes within a species. This plasticity may mean that virtually every individual of a species represents a unique combination of gene copy numbers, heterochromatic and mobile element content and interchromosomal associations. Tensions in the nucleus are most apparent in newly created interspecific hybrids and allopolyploids, where two genomes share a common cytoplasm and experience numerous and rapid interactions, including: loss or gain of sequences, transposon activation, epigenetic changes, interaction of regulatory elements, genome drift and modifications to cell cycling. The story of order and chaos in the plant nucleus is thus incomplete and open-ended, since our current knowledge is based on only a small number of model species. We also have to bear in mind recent findings that many diploids, if not all, have a history of having passed through earlier cycles of ploidy events, and still bear the duplications as evidence. New discoveries on genome readjustment in hybrids and allopolyploids have implications for our understanding of genome change in evolution, as well as presenting opportunities for the release of new forms of genetic and epigenetic variation in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abranches R, Beven AF, Aragón-Alcaide L, Shaw PJ (1998) Transcription sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol 143:5–12

    PubMed  CAS  Google Scholar 

  • Alcazar R, Garcia AV, Parker JE, Reymond M (2009) Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc Natl Acad Sci USA 106:334–339

    PubMed  CAS  Google Scholar 

  • Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant P 11:563–576

    CAS  Google Scholar 

  • Ammiraju JS, Fan C, Yu Y, Song X, Cranston KA, Pontaroli AC, Lu F, Sanyal A, Jiang N, Rambo T, Currie J, Collura K, Talag J, Bennetzen JL, Chen M, Jackson S, Wing RA (2010) Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant J 63:430–442

    CAS  Google Scholar 

  • Anamthawat-Jonsson K (1999) Variable genome composition in Triticum × Leymus amphiploids. Theor Appl Genet 99:1087–1093

    CAS  Google Scholar 

  • Anamthawat-Jonsson K, Schwarzacher T, Heslop-Harrison JS (1993) Behaviour of parental genomes in the hybrid Hordeum vulgare × H. bulbosum. J Hered 84:78–82

    Google Scholar 

  • Armstrong SJ, Franklin FCH, Jones GH (2001) Nucleolus-associated telomere clustering precedes meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    PubMed  CAS  Google Scholar 

  • Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 17:513–518

    PubMed  CAS  Google Scholar 

  • Bailey JA, Eichler EE (2006) Primate segmental duplications: crucibles of evolution diversity and disease. Nat Rev Genet 7:552–564

    PubMed  CAS  Google Scholar 

  • Bartolome C, Bello X, Maside X (2009) Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 10:R22

    PubMed  Google Scholar 

  • Baubec T, Dinh HQ, Pecinka A, Rakic B, Rozhon W, Wohlrab B, von Haeseler A, Mittelsten Scheid O (2010) Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states in Arabidopsis. Plant Cell 22:34–47

    PubMed  CAS  Google Scholar 

  • Bennett MD, Finch RA, Barclay IR (1976) The time, rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma 54:175–200

    Google Scholar 

  • Bento M, Gustafson JP, Viegas W, Silva M (2011) Size matters in Triticeae polyploids: larger genomes have higher remodelling. Genome 54:175–183

    PubMed  Google Scholar 

  • Bomblies K (2009) Too much of a good thing? Hybrid necrosis as a by-product of plant immune system diversification. Botany-Botanique 87:1013–1022

    CAS  Google Scholar 

  • Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5:1962–1972

    CAS  Google Scholar 

  • Boveri T (1909) Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenindividualität. Arch Zellforsch 3:181–268

    Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725

    PubMed  CAS  Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genome instability and epigenetic modification - heritable responses to environmental stress? Curr Op Plant Biol 14:260–266

    Google Scholar 

  • Braszewska-Zalewska A, Bernas T, Maluszynska J (2009) Epigenetic chromatin modifications in Brassica genomes. Genome 53:203–210

    Google Scholar 

  • Buggs RJA, Soltis PS, Soltis DE (2009) Does hybridization between divergent progenitors drive whole-genome duplication? Mol Ecol 18:3334–3339

    PubMed  Google Scholar 

  • Canter PH, Pašakinskienė I, Jones RN, Humphreys MW (1999) Chromosome substitutions and recombination in the amphiploid Lolium perenne × Festuca pratensis cv. Prior (2n = 4x = 28). Theor Appl Genet 98:809–814

    Google Scholar 

  • Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P, Hermus MC, van Asperen R, Boon K, Voûte PA, Heisterkamp S, van Kampen A, Versteeg R (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291:1289–1292

    PubMed  CAS  Google Scholar 

  • Chang PL, Dilkes BP, McMahon M, Comai L, Nuzhdin CL (2010) Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biol 11:R125

    PubMed  CAS  Google Scholar 

  • Charles M, Belcram H, Just J, Huneau C, Viollet A, Couloux A, Segurens B, Carter M, Huteau V, Coriton O, Appels R, Samain S, Chalhoub B (2008) Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics 180:1071–1086

    PubMed  CAS  Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    PubMed  CAS  Google Scholar 

  • Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252

    PubMed  Google Scholar 

  • Chen Q, Han Z, Jiang H, Tian D, Yang S (2010) Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. J Mol Evol 70:137–148

    PubMed  CAS  Google Scholar 

  • Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1567

    PubMed  CAS  Google Scholar 

  • Cowan CR, Carlton PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organisation and the bouquet. Plant Physiol 125:532–538

    PubMed  CAS  Google Scholar 

  • Cremer T, Cremer M (2010) Chromosome territories. Cold Spring Harb Perspect Biol 2:a00388

    Google Scholar 

  • David P, Chen NW, Pedrosa-Harand A, Thareau V, Sévignac M, Cannon SB, Debouck D, Langin T, Geffroy V (2009) A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol 151:1048–1065

    PubMed  CAS  Google Scholar 

  • DeBolt S (2010) Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evol 2:441–453

    PubMed  Google Scholar 

  • Ding J, Araki H, Wang Q, Zhang P, Yang S, Chen JQ, Tian D (2007) Highly asymmetric rice genomes. BMC Genomics 8:154

    PubMed  Google Scholar 

  • Dong S, Adams K (2011) Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytol 190:1045–1057

    PubMed  CAS  Google Scholar 

  • Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–558

    PubMed  CAS  Google Scholar 

  • Du C, Fefelova N, Caronna J, He L, Dooner HK (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106:19916–19921

    PubMed  CAS  Google Scholar 

  • Ebisuya M, Yamamoto T, Nakajima M, Nishida E (2008) Ripples from neighbouring transcription. Nat Cell Biol 10:1106–1113

    PubMed  CAS  Google Scholar 

  • Fang Y, Spector DL (2005) Centromere positioning and dynamics in living Arabidopsis plants. Mol Biol Cell 16:5710–5718

    PubMed  CAS  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had chance to survive the Cretaceous – Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742

    PubMed  CAS  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    PubMed  CAS  Google Scholar 

  • Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    PubMed  CAS  Google Scholar 

  • Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88:386–393

    Google Scholar 

  • Finch RA, Bennett MD (1983) The mechanism of somatic chromosome elimination in Hordeum. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. Allen and Unwin, London, pp 147–154

    Google Scholar 

  • Finch RA, Smith JB, Bennett MD (1981) Hordeum and Secale mitotic genomes lie apart in a hybrid. J Cell Sci 52:391–403

    PubMed  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193

    PubMed  CAS  Google Scholar 

  • Fransz P, de Jong H (2011) From nucleosome to chromosome: a dynamic organization of genetic information. Plant J 66:4–17

    PubMed  CAS  Google Scholar 

  • Fransz P, De Jong H, Lysák M, Castiglione MF, Schubert I (2002) Interphase chromosomes in Arabidopsis are organised as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA 99:14584–14589

    PubMed  CAS  Google Scholar 

  • Fu HH, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns ― from conservation to diversity. Trends Plant Sci 11:199–208

    PubMed  CAS  Google Scholar 

  • Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814

    PubMed  CAS  Google Scholar 

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    PubMed  CAS  Google Scholar 

  • Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Brüss C, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell 17:2431–2438

    PubMed  CAS  Google Scholar 

  • Gill BS (1991) Nucleo-cytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploid plants. In: Sasakuma T, Kinoshita T (eds) pp 48–53, Proceedings of the Kihara memorial symposium on cytoplasmic engineering in wheat. Yokohama, Japan

    Google Scholar 

  • Goetze S, Mateos-Langerak J, Gierman HJ, de Leeuw W, Giromus O, Indemans MH, Koster J, Ondrej V, Versteeg R, van Driel R (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27:4475–4487

    PubMed  CAS  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    PubMed  CAS  Google Scholar 

  • Haig D, Westoby M (1989) Parent-specific gene-expression and the triploid endosperm. Am Nat 134:147–155

    Google Scholar 

  • Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu SH, Jiang N (2009) The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell 21:25–38

    PubMed  CAS  Google Scholar 

  • Hanelt P (1990) Taxonomy, evolution, and history. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, vol I, Botany, physiology and genetics. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  • He LM, Dooner HK (2009) Haplotype structure strongly affects recombination in a maize genetic interval polymorphic for Helitron and retrotransposon insertions. Proc Natl Acad Sci USA 106:8410–8416

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165:411–423

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18:R435–R444

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridisation in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Barker GL, Brennan AC, Abbott RJ, Edwards KJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans Roy Soc Lond B Bio 363:3055–3069

    CAS  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose. I. Jahrb Wiss Bot 69:762–818

    Google Scholar 

  • Herr AJ, Jensen MB, Dalmay T, Baulcombe DC (2005) RNA polymerase IV directs silencing of endogenous DNA. Science 308:118–120

    PubMed  CAS  Google Scholar 

  • Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108:2322–2327

    PubMed  CAS  Google Scholar 

  • Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA 108:1755–1762

    PubMed  CAS  Google Scholar 

  • Humphreys MW, Thomas HM, Morgan WG, Meredith MR, Harper JA, Thomas H, Zwierzykowski Z, Ghesquiére M (1995) Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridisation. Heredity 75:171–174

    Google Scholar 

  • Ishii T, Ueda T, Tanaka H, Tsujimoto H (2010) Chromosome elimination by wide hybridisation between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res 18:821–831

    PubMed  CAS  Google Scholar 

  • Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-box proteins in rice. Genome-wide analysis classification temporal and spatial gene expression during panicle and seed development and regulation by light and abiotic stress. Plant Physiol 143:1467–1483

    PubMed  CAS  Google Scholar 

  • Jenkins G, White J (1990) Elimination of synaptonemal complex irregularities in a Lolium hybrid. Heredity 64:45–53

    Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    PubMed  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    PubMed  CAS  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    PubMed  Google Scholar 

  • Jones RN (1991) Cytogenetics of alliums. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution, Part B. Elsevier, Amsterdam, pp 215–227

    Google Scholar 

  • Jones RN, Hegarty M (2009) Order out of chaos in the hybrid plant nucleus. Cytogenet Genome Res 126:376–389

    PubMed  CAS  Google Scholar 

  • Jones RN, Pašakinskienė I (2005) Genome conflict in the Gramineae. New Phytol 165:391–410

    PubMed  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    PubMed  CAS  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis TH, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    PubMed  CAS  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesised wheat allotetraploid. Genetics 160:1651–1659

    PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    PubMed  CAS  Google Scholar 

  • Kaufmann K, Pajoro A, Angenent GC (2010) Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11:830–842

    PubMed  CAS  Google Scholar 

  • Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ (eds) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer-Verlag, Wien, pp 17–34

    Google Scholar 

  • Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquière M, Doležel J (2006) Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113:731–742

    PubMed  Google Scholar 

  • Kopecký D, Bartoš J, Lukaszewski AJ, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Craig V, Lübberstedt T, Studer B, Shaw B, Dolezel J, Kilian A (2009) Development and mapping of DArT markers within the Festuca-Lolium complex. BMC Genomics 10:473

    PubMed  Google Scholar 

  • Kopecký D, Bartoš J, Christelová P, Černoch V, Kilian A, Doležel J (2011) Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array. Theor Appl Genet 122:355–363

    PubMed  Google Scholar 

  • Kraitshtein Z, Yaakov B, Khasdan V, Kashkush K (2010) Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics 186:801–812

    PubMed  CAS  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y, Ni P, Zhang J, Li D, Guo X, Ye K, Jian M, Wang B, Zheng H, Liang H, Zhang X, Wang S, Chen S, Li J, Fu Y, Springer NM, Yang H, Wang J, Dai J, Schnable PS, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    PubMed  CAS  Google Scholar 

  • Laibach F (1907) Zur Frage nach der Individualität der Chromosomen im Pflanzenreich. Beih Bot Centralbl 22:191–210

    Google Scholar 

  • Laurie DA, Bennett MD (1988) Chromosome behaviour in wheat × maize, wheat × sorghum and barley × maize crosses. In: Brandham PE (ed) Kew chromosome conference III. HMSO, London, pp 167–177

    Google Scholar 

  • Laurie DA, Bennett MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32:953–961

    Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Google Scholar 

  • Leitch AR, Mosgoller W, Schwarzacher T, Bennett MD, Heslop-Harrison JS (1990) Genomic in situ hybridisation to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci 95:335–341

    PubMed  CAS  Google Scholar 

  • Leitch AR, Schwarzacher T, Mosgoller W, Bennett MD, Heslop-Harrison JS (1991) Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma 101:206–213

    CAS  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593

    PubMed  CAS  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    PubMed  CAS  Google Scholar 

  • Lim KY, Soltis DE, Soltis PS, Tate J, Matyasek R, Srubarova H, Kovarik A, Pires JC, Xiong Z, Leitch AR (2008) Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae). PLoS One 3:e3353

    PubMed  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    PubMed  CAS  Google Scholar 

  • Lukaszewski AJ, Lapiński B, Rybka K (2005) Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgression in wheat. Cytogenet Genome Res 109:373–377

    PubMed  CAS  Google Scholar 

  • Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129:733–746

    PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 138:1067–1082

    PubMed  CAS  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    PubMed  CAS  Google Scholar 

  • Matzke MA, Mittelsten Scheid O, Matzke AJM (1999) Rapid stuctural and epigenetic changes in polyploid and aneuploid genomes. Bioessays 21:761–767

    PubMed  CAS  Google Scholar 

  • Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    PubMed  CAS  Google Scholar 

  • Mestiri I, Chagué V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86–101

    PubMed  CAS  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:1–8

    Google Scholar 

  • Mochida K, Tsujimoto H, Sasakuma T (2004) Confocal analysis of chromosome behaviour in wheat × maize zygotes. Genome 47:199–205

    PubMed  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    PubMed  CAS  Google Scholar 

  • Nahon JL (2003) Birth of ‘human-specific’ genes during primate evolution. Genetica 118:193–208

    PubMed  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    PubMed  CAS  Google Scholar 

  • Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS (2005) Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120:613–622

    PubMed  CAS  Google Scholar 

  • Ouyang YD, Liu YG, Zhang QF (2010) Hybrid sterility in plant: stories from rice. Curr Opin Plant Biol 13:186–192

    PubMed  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747

    PubMed  CAS  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    PubMed  CAS  Google Scholar 

  • Pašakinskienė I, Anamthawat-Jonsson K, Humphreys MW, Jones RN (1997) Novel diploids following chromosome elimination and somatic recombination in Lolium multiflorum × Festuca arundinacea hybrids. Heredity 78:464–469

    Google Scholar 

  • Pašakinskienė I, Anamthawat-Jonsson K, Humphreys MW, Paplauskiene V, Jones RN (1998) New molecular evidence on genome relationships and chromosome identification in Festuca and Lolium. Heredity 81:659–665

    Google Scholar 

  • Pašakinskienė I, Jones RN (2005) A decade of ‘chromosome painting’ in Lolium and Festuca: species relationships and genome adjustment in hybrids. Cytogenet Genome Res 109:393–399

    PubMed  Google Scholar 

  • Paun O, Forest F, Fay MF, Chase MW (2009) Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytol 182:507–518

    PubMed  Google Scholar 

  • Pecinka A, Schubert V, Meister A, Kreth G, Klatte M, Lysák MA, Fuchs J, Schubert I (2004) Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma 113:258–269

    PubMed  CAS  Google Scholar 

  • Petersena G, Aagesenb L, Seberga O, Larsen IH (2011) When is enough, enough in phylogenetics? A case in point from Hordeum (Poaceae). Cladistics 27:1–19

    Google Scholar 

  • Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181:1147–1157

    PubMed  CAS  Google Scholar 

  • Rabl C (1885) Über Zelltheilung. Morphol Jahrb 10:214–330

    Google Scholar 

  • Rajapakse I, Groudine M (2011) On emerging nuclear order. J Cell Biol 192:711–721

    PubMed  CAS  Google Scholar 

  • Rapp RA, UdalL JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. BMC Biol 7:18

    PubMed  Google Scholar 

  • Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF (2010) Gene expression in developing fibers of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 8:139

    PubMed  Google Scholar 

  • Reinders J, Wulff BB, Mirouze M, Marí-Ordóñez A, Dapp M, Rozhon W, Bucher E, Theiler G, Paszkowski J (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950

    PubMed  CAS  Google Scholar 

  • Riddle NC, Birchler JA (2003) Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends Genet 19:597–600

    PubMed  CAS  Google Scholar 

  • Riera-Lizarazu O, Rines HW, Phillips RL (1996) Cytological and molecular characterisation of oat × maize partial hybrids. Theor Appl Genet 93:123–135

    CAS  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Google Scholar 

  • Rieseberg LH, Blackman BK (2010) Speciation genes in plants. Ann Bot 106:439–455

    PubMed  CAS  Google Scholar 

  • Rieseberg LH, Wood TE, Baack EJ (2006) The nature of plant species. Nature 440:524–527

    PubMed  CAS  Google Scholar 

  • Riley MC, Clare A, King R (2007) Locational distribution of gene functional classes in Arabidopsis thaliana. BMC Bioinformatics 8:112

    PubMed  Google Scholar 

  • Rosloski SM, Jali SS, Balasubramanian S, Weigel D, Grbic V (2010) Natural diversity in flowering responses of Arabidopsis thaliana caused by variation in a tandem gene array. Genetics 186:263–276

    PubMed  CAS  Google Scholar 

  • Rouquette J, Cremer C, Cremer T, Fakan S (2010) Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 282:1–90

    PubMed  CAS  Google Scholar 

  • Sanei M, Pickering R, Fuchs J, Banaei Moghaddam AM, Dziurlikowska A, Houben DA (2010) Interspecific hybrids of Hordeum marinum ssp. marinum × H. bulbosum are mitotically stable and reveal no gross alterations in chromatin properties. Cytogenet Genome Res 129:110–116

    PubMed  CAS  Google Scholar 

  • Santos AP, Shaw P (2004) Interphase chromosomes and the Rabl configuration: does genome size matter? J Microsc 214:201–206

    PubMed  CAS  Google Scholar 

  • Santos AP, Abranches R, Stroger E, Beven A, Viegas W, Shaw PJ (2002) The architecture of interphase chromosomes and gene positioning are altered by changes in DNA methylation and histone acetylation. J Cell Sci 115:4597–4605

    PubMed  CAS  Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108:4069–4074

    PubMed  CAS  Google Scholar 

  • Schön CC, Dhillon BS, Utz HF, Melchinger AE (2010) High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor Appl Genet 120:321–332

    PubMed  Google Scholar 

  • Schubert I, Shaw P (2011) Organization and dynamics of plant interphase chromosomes. Trends Plant Sci 16:273–281

    PubMed  CAS  Google Scholar 

  • Schubert V, Klatte M, Pecinka A, Meister A, Jasencakova Z, Schubert I (2006) Sister chromatids are often incompletely aligned in meristematic and endopolyploid interphase nuclei of Arabidopsis thaliana. Genetics 172:467–475

    PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS, Anamthawat-Jonsson K (1992) Parental genome separation in reconstruction of somatic and premeiotic metaphases of Hordeum vulgare × H. bulbosum. J Cell Sci 101:13–24

    Google Scholar 

  • Selker EU (2002) Repeat-induced gene silencing in fungi. Adv Genet 46:439–450

    PubMed  CAS  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridisation and allopolyploidy in wheat. Plant Cell 13:1749–1759

    PubMed  CAS  Google Scholar 

  • Shen J, Araki H, Chen L, Chen JQ, Tian D (2006) Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 172:1243–1250

    PubMed  CAS  Google Scholar 

  • Shi JH, Dawe RK (2006) Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173:1571–1583

    PubMed  CAS  Google Scholar 

  • Shull GH (1948) What is “heterosis”? Genetics 33:439–446

    PubMed  CAS  Google Scholar 

  • Slotkin RK, Nuthikattu S, Jiang N (2012) The impact of transposable elements on gene and genome evolution. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ (eds) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer-Verlag, Wien, pp 35–58

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    PubMed  Google Scholar 

  • Song KM, Lu P, Tang KL, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    PubMed  CAS  Google Scholar 

  • Soppe WJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559

    PubMed  CAS  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    PubMed  Google Scholar 

  • Stupar RM, Springer NM (2006) Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F-1 hybrid. Genetics 173:2199–2210

    PubMed  CAS  Google Scholar 

  • Stupar RM, Bhaskar PB, Yandell BS, Rensink WA, Hart AL, Ouyang S, Veilleux RE, Busse JS, Erhardt RJ, Buell CR, Jiang J (2007) Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176:2055–2067

    PubMed  CAS  Google Scholar 

  • Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8:33

    PubMed  Google Scholar 

  • Sun X, Zhang Y, Yang S, Chen JQ, Hohn B, Tian D (2008) Insertion DNA promotes ectopic recombination during meiosis in Arabidopsis. Mol Biol Evol 25:2079–2083

    PubMed  CAS  Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    PubMed  CAS  Google Scholar 

  • Tessadori F, Schulkes RK, van Driel R, Fransz P (2007) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J 50:848–857

    PubMed  CAS  Google Scholar 

  • Thomas HM, Pickering RA (1983) Chromosome elimination in Hordeum vulgare × H. bulbosum hybrids. I. Comparisons of stable and unstable amphiploids. Theor Appl Genet 66:135–140

    Google Scholar 

  • Tian Z, Yu Y, Lin F, Yu Y, Sanmiguel PJ, Wing RA, McCouch SR, Ma J, Jackson SA (2011) Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis. BMC Genomics 12:142

    PubMed  Google Scholar 

  • Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RA, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465:632–636

    PubMed  CAS  Google Scholar 

  • Uchida N, Tasaka M (2010) Intersections between immune responses and morphological regulation in plants. J Exp Bot 61:2539–2547

    PubMed  CAS  Google Scholar 

  • Ungerer MC, Strakosh SC, Zhen Y (2007) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873

    Google Scholar 

  • Vazquez F, Blevins T, Ailhas J, Boller T, Meins F Jr (2008) Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 36:6429–6438

    PubMed  CAS  Google Scholar 

  • Verhoeven KJ, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    PubMed  CAS  Google Scholar 

  • Vielle-Calzada JP, Martínez de la Vega O, Hernández-Guzmán G, Ibarra-Laclette E, Alvarez-Mejía C, Vega-Arreguín JC, Jiménez-Moraila B, Fernández-Cortés A, Corona-Armenta G, Herrera-Estrella L, Herrera-Estrella A (2009) The Palomero genome suggests metal effects on domestication. Science 326:1078

    PubMed  CAS  Google Scholar 

  • Vuylsteke M, van Eeuwijk F, Van Hummelen P, Kuiper M, Zabeau M (2005) Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171:1267–1275

    PubMed  CAS  Google Scholar 

  • Wang Q, Dooner HK (2006) Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci USA 103:17644–17649

    PubMed  CAS  Google Scholar 

  • Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genome-wide nonadditive genes regulation in Arabidopsis allotetraploids. Genetics 17:507–517

    Google Scholar 

  • Wang WK, Ho CW, Hung KH, Wang KH, Huang CC, Araki H, Hwang CC, Hsu TW, Osada N, Chiang TY (2010) Multilocus analysis of genetic divergence between outcrossing Arabidopsis species: evidence of genome-wide admixture. New Phytol 188:488–500

    PubMed  Google Scholar 

  • Wicker T, Krattinger SG, Lagudah ES, Komatsuda T, Pourkheirandish M, Matsumoto T, Cloutier S, Reiser L, Kanamori H, Sato K, Perovic D, Stein N, Keller B (2009) Analysis of intraspecies diversity in wheat and barley genomes identifies breakpoints of ancient haplotypes and provides insight into the structure of diploid and hexaploid Triticeae gene pools. Plant Physiol 149:258–270

    PubMed  CAS  Google Scholar 

  • Williams EJB, Bowles DJ (2004) Coexpression of neighbouring genes in the genome of Arabidopisis thaliana. Genome Res 14:1060–1067

    PubMed  CAS  Google Scholar 

  • Wolny E, Lesniewska K, Hasterok R, Langdon T (2011) Compact genomes and complex evolution in the genus Brachypodium. Chromosoma 120:199–212

    PubMed  Google Scholar 

  • Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harbor Perspect Biol 2:a000596

    Google Scholar 

  • Wright KM, Pires C, Madlung A (2009) Mitotic instability in resynthesised and natural polyploids of the genus Arabidopsis (Brassicaceae). Am J Bot 96:1656–1664

    PubMed  CAS  Google Scholar 

  • Yaakov B, Kashkush K (2011) Methylation transcription and rearrangements of transposable elements in synthetic allopolyploids. Int J Plant Genomics. Article ID 569826. doi:10.1155/2011/569826

    Google Scholar 

  • Yanai I, Hunter CP (2009) Comparison of diverse developmental transcriptomes reveals that coexpression of gene neighbors is not evolutionarily conserved. Genome Res 19:2214–2220

    PubMed  CAS  Google Scholar 

  • Yi H, Richards EJ (2007) A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. Plant Cell 19:2929–2939

    PubMed  CAS  Google Scholar 

  • Zeller G, Clark RM, Schneeberger K, Bohlen A, Weigel D, Rätsch G (2008) Detecting polymorphic regions in Arabidopsis thaliana with resequencing microarrays. Genome Res 18:918–929

    PubMed  CAS  Google Scholar 

  • Zhang X, Henderson IR, Lu C, Green PJ, Jacobsen SE (2007) Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci USA 104:4536–4541

    PubMed  CAS  Google Scholar 

  • Zhang X, Byrnes JK, Gal TS, Li WH, Borevitz JO (2008a) Whole genome transcriptome polymorphisms in Arabidopsis thaliana. Genome Biol 9:R165

    PubMed  Google Scholar 

  • Zhang P, Li W, Friebe B, Gill BS (2008b) The origin of a ‘Zebra’ chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromosome evolution and step changes in chromosome number. Genetics 179:1169–1177

    PubMed  Google Scholar 

  • Zhao XX, Chai Y, Wang HY, Zhao N, Liu B (2010) Rapid genomic alteration in an ‘incompatible’ pair of maize reciprocal F(1) hybrids – a possible cause for the accumulation of inter-strain genetic diversity. Hereditas 147:1–9

    PubMed  Google Scholar 

  • Zheng B, Wang Z, Li S, Yu B, Liu JY, Chen X (2009) Intergenic transcription by RNA Polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev 23:2850–2860

    PubMed  CAS  Google Scholar 

  • Zwierzykowski Z, Tayyar R, Brunell M, Lukaszewski AJ (1998) Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J Hered 89:324–328

    Google Scholar 

  • Zwierzykowski Z, Kosmala A, Zwierzykowska E, Jones RN, Jokś W, Bocianowski J (2006) Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne. Theor Appl Genet 113:539–547

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Neil Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Jones, R.N., Langdon, T. (2013). The Plant Nucleus at War and Peace: Genome Organization in the Interphase Nucleus. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_2

Download citation

Publish with us

Policies and ethics