Skip to main content

Significance and Biological Consequences of Polyploidization in Land Plant Evolution

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

Although plant polyploidization is ubiquitous in nature, polyploidy has long been considered an evolutionary dead end, precluding further species diversification. However, recent genome sequencing projects have revealed that most, if not all angiosperms are in fact ancient polyploids, and that many plant species have undergone multiple whole-genome duplications (WGDs) in their evolutionary history. Moreover, studies investigating the genomic remains of WGDs have revealed that genome duplications have been essential for the expansion of developmentally important gene families, that they may have been crucial for plant speciation, diversification and evolutionary innovation, and that they may have facilitated the survival of plant species following large-scale ecological catastrophes. Although the significance of polyploidy in the evolution of angiosperms is now undeniable, many questions remain unanswered. A better understanding of WGDs and their consequences is crucial to really understand plant evolution. In this chapter, we discuss how genomic traces of ancient WGDs can be identified and dated, we describe the molecular biological consequences of polyploidization on shorter and longer evolutionary timescales, and we discuss in detail how WGDs might have contributed to the evolutionary success of descendant plant lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aburomia R, Khaner O, Sidow A (2003) Functional evolution in the ancestral lineage of vertebrates or when genomic complexity was wagging its morphological tail. J Struct Funct Genomics 3:45–52

    PubMed  CAS  Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654

    PubMed  CAS  Google Scholar 

  • Albertin W, Balliau T, Brabant P, ChËvre A-M, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113

    PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Arnegard ME, Zwickl DJ, Lu Y, Zakon HH (2010) Old gene duplication facilitates origin and diversification of an innovative communication system―twice. Proc Natl Acad Sci USA 107:22172–22177

    PubMed  CAS  Google Scholar 

  • Barker MS (2013) Karyotype and genome evolution in pteridophytes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Wien, pp 245–253

    Google Scholar 

  • Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH (2008) Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol 25:2445–2455

    PubMed  CAS  Google Scholar 

  • Barker MS, Vogel H, Schranz ME (2009) Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol 1:391–399

    PubMed  Google Scholar 

  • Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dating molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 107:18724–18728

    PubMed  CAS  Google Scholar 

  • Berenbrink M, Koldkjaer P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757

    PubMed  CAS  Google Scholar 

  • Bergthorsson U, Andersson DI, Roth JR (2007) Ohno’s dilemma: evolution of new genes under continuous selection. Proc Natl Acad Sci USA 104:17004–17009

    PubMed  CAS  Google Scholar 

  • Bikard D, Patel D, Le Metté C, Giorgi V, Camilleri C, Bennett MJ, Loudet O (2009) Divergent evolution of duplicate genes leads to genetic incompatibilities within Arabidopsis thaliana. Science 323:623–626

    PubMed  CAS  Google Scholar 

  • Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226

    PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004a) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004b) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    PubMed  CAS  Google Scholar 

  • Blomme T, Vandepoele K, De Bodt S, Simillion C, Maere S, Van de Peer Y (2006) The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol 7:R43

    PubMed  Google Scholar 

  • Braasch I, Volff J-N, Schartl M (2008) The evolution of teleost pigmentation and the fish-specific genome duplication. J Fish Biol 73:1891–1918

    Google Scholar 

  • Brunet FG, Crollius HR, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M (2006) Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol 23:1808–1816

    PubMed  CAS  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KF, Rogers J, Quetier F, Oldroyd GE, Debelle F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103:14959–14964

    PubMed  CAS  Google Scholar 

  • Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc Natl Acad Sci USA 103:2730–2735

    PubMed  CAS  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N, Springer NM, Wendel JF (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182:503–517

    PubMed  CAS  Google Scholar 

  • Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA 94:3442–3447

    PubMed  CAS  Google Scholar 

  • Christoffels A, Koh EG, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151

    PubMed  CAS  Google Scholar 

  • Coate JE, Doyle JJ (2010) Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol Evol 2:534–546

    PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    PubMed  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol 3:129

    PubMed  Google Scholar 

  • Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    PubMed  CAS  Google Scholar 

  • Crepet WL (2000) Progress in understanding angiosperm history, success, and relationships: Darwin’s abominably “perplexing phenomenon”. Proc Natl Acad Sci USA 97:12939–12941

    PubMed  CAS  Google Scholar 

  • Crow KD, Wagner GP (2006) What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887–892

    PubMed  CAS  Google Scholar 

  • Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    PubMed  CAS  Google Scholar 

  • Davis JC, Petrov DA (2005) Do disparate mechanisms of duplication add similar genes to the genome? Trends Genet 21:548–551

    PubMed  CAS  Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    PubMed  Google Scholar 

  • Des Marais DL, Rausher MD (2008) Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454:762–765

    PubMed  CAS  Google Scholar 

  • Donoghue PCJ, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312–319

    PubMed  Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    PubMed  CAS  Google Scholar 

  • Edger PP, Pires JC (2009) Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res 17:699–717

    PubMed  CAS  Google Scholar 

  • Fawcett JA, Innan H (2011) Neutral and non-neutral evolution of duplicated genes with gene conversion. Genes 2:191–209

    CAS  Google Scholar 

  • Fawcett JA, Van de Peer Y (2010) Angiosperm polyploids and their road to evolutionary success. Trends Evol Biol 2:e3

    Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous- Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742

    PubMed  CAS  Google Scholar 

  • Feild TS, Arens NC (2007) The ecophysiology of early angiosperms. Plant Cell Environ 30:291–309

    PubMed  CAS  Google Scholar 

  • Flagel L, Udall J, Nettleton D, Wendel J (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:16

    PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Francino MP (2005) An adaptive radiation model for the origin of new gene functions. Nat Genet 37:573–577

    PubMed  CAS  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    PubMed  CAS  Google Scholar 

  • Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    PubMed  CAS  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    PubMed  CAS  Google Scholar 

  • Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven CT

    Google Scholar 

  • Gould SJ, Lewontin CR (1979) The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc Roy Soc Lond B Bio 205:581–598

    CAS  Google Scholar 

  • Ha M, Li W-H, Chen ZJ (2007) External factors accelerate expression divergence between duplicate genes. Trends Genet 23:162–166

    PubMed  CAS  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang X-J, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18:R435–R444

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652–1659

    PubMed  CAS  Google Scholar 

  • Hegarty MJ, Barker GL, Brennan AC, Edwards KJ, Abbott RJ, Hiscock SJ (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans Roy Soc Lond B Bio 363:3055–3069

    CAS  Google Scholar 

  • Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA 105:2946–2950

    PubMed  CAS  Google Scholar 

  • Hendrickson H, Slechta ES, Bergthorsson U, Andersson DI, Roth JR (2002) Amplification-mutagenesis: evidence that “directed” adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc Natl Acad Sci USA 99:2164–2169

    PubMed  CAS  Google Scholar 

  • Hittinger CT, Carroll SB (2007) Gene duplication and the adaptive evolution of a classic genetic switch. Nature 449:677–681

    PubMed  CAS  Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    PubMed  CAS  Google Scholar 

  • Holland PW (2003) More genes in vertebrates? J Struct Funct Genomics 3:75–84

    PubMed  CAS  Google Scholar 

  • Holland ND, Chen J (2001) Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology. Bioessays 23:142–151

    PubMed  CAS  Google Scholar 

  • Holland PW, Garcia-Fernandez J (1996) Hox genes and chordate evolution. Dev Biol 173:382–395

    PubMed  CAS  Google Scholar 

  • Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernandez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallbook F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, Putnam NH, Rokhsar DS, Satoh N, Holland PW (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18:1100–1111

    PubMed  CAS  Google Scholar 

  • Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI (2007) A new time scale for ray-finned fish evolution. Proc Roy Soc Lond B Bio 274:489–498

    CAS  Google Scholar 

  • Jackson S, Chen ZJ (2010) Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 13:153–159

    PubMed  CAS  Google Scholar 

  • Jacquemin J, Laudié M, Cooke R (2009) A recent duplication revisited: phylogenetic analysis reveals an ancestral duplication highly-conserved throughout the Oryza genus and beyond. BMC Plant Biol 9:146

    PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    PubMed  CAS  Google Scholar 

  • Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, Lind-Halldén C, Nordborg M (2006) A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Mol Biol Evol 23:1217–1231

    PubMed  CAS  Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee S-B, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32

    PubMed  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali A, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    PubMed  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    PubMed  CAS  Google Scholar 

  • Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19:547–552

    PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    PubMed  CAS  Google Scholar 

  • Kejnovsky E, Leitch IJ, Leitch AR (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582

    PubMed  Google Scholar 

  • Khaner O (2007) Evolutionary innovations of the vertebrates. Integ Zool 2:60–67

    Google Scholar 

  • Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    PubMed  CAS  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    PubMed  CAS  Google Scholar 

  • Koh J, Soltis PS, Soltis DE (2010) Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics 11:97

    PubMed  Google Scholar 

  • Kovarik A, Dadejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823

    PubMed  CAS  Google Scholar 

  • Lee HS, Chen ZJ (2001) Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA 98:6753–6758

    PubMed  CAS  Google Scholar 

  • Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Leebens-Mack J, da Silva FR, Santos CM, D’Hont A, Garsmeur O, Vilarinhos AD, Kanamori H, Matsumoto T, Ronning CM, Cheung F, Haas BJ, Althoff R, Arbogast T, Hine E, Pappas GJ Jr, Sasaki T, Souza MT Jr, Miller RN, Glaszmann JC, Town CD (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9:58

    PubMed  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    PubMed  CAS  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    PubMed  CAS  Google Scholar 

  • Lysák MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    PubMed  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    PubMed  CAS  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    PubMed  CAS  Google Scholar 

  • Mano S, Innan H (2008) The evolutionary rate of duplicated genes under concerted evolution. Genetics 180:493–505

    PubMed  Google Scholar 

  • Marais GA, Campos PR, Gordo I (2010) Can intra-Y gene conversion oppose the degeneration of the human Y chromosome? A simulation study. Genome Biol Evol 2:347–357

    PubMed  Google Scholar 

  • Mellgren EM, Johnson SL (2002) The evolution of morphological complexity in zebrafish stripes. Trends Genet 18:128–134

    PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang ML, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Na JK, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Perez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo MC, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    PubMed  CAS  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    PubMed  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    PubMed  CAS  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    PubMed  CAS  Google Scholar 

  • Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    PubMed  CAS  Google Scholar 

  • Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien M-A (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45

    PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, ur Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    PubMed  CAS  Google Scholar 

  • Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol 27:2465–2473

    PubMed  CAS  Google Scholar 

  • Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien M-A, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147

    PubMed  CAS  Google Scholar 

  • Pillon Y, Fay MF, Hedrén M, Bateman R, Devey D, Shipunov A, van der Bank M, Chase MW (2007) Evolution and temporal diversification of western European polyploid species complexes in Dactylorhiza (Orchidaceae). Taxon 56:1185–1208

    Google Scholar 

  • Postlethwait J, Amores A, Cresko W, Singer A, Yan Y-L (2004) Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481–490

    PubMed  CAS  Google Scholar 

  • Proost S, Bel MV, Sterck L, Billiau K, Parys TV, Van de Peer Y, Vandepoele K (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21:3718–3731

    PubMed  CAS  Google Scholar 

  • Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV,Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071

    PubMed  CAS  Google Scholar 

  • Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci USA 108:7096–7101

    PubMed  CAS  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Google Scholar 

  • Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    PubMed  CAS  Google Scholar 

  • Rensing SA, Ick J, Fawcett JA, Lang D, Zimmer A, Van de Peer Y, Reski R (2007) An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evol Biol 7:130

    PubMed  Google Scholar 

  • Rensing SA, Beike AK, Lang D (2013) Evolutionary importance of generative polyploidy for genome evolution of haploid-dominant land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 295–305

    Google Scholar 

  • Riddle NC, Birchler JA (2003) Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends Genet 19:597–600

    PubMed  CAS  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    PubMed  CAS  Google Scholar 

  • Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    PubMed  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    PubMed  CAS  Google Scholar 

  • Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134

    PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    PubMed  CAS  Google Scholar 

  • Scannell DR, Byrne KP, Gordon JL, Wong S, Wolfe KH (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440:341–345

    PubMed  CAS  Google Scholar 

  • Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Shoemaker RC (2004) Mining EST databases to resolve evolutionary events in major crop species. Genome 47:868–876

    PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Buren PV, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    PubMed  CAS  Google Scholar 

  • Semon M, Wolfe KH (2007a) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512

    PubMed  CAS  Google Scholar 

  • Semon M, Wolfe KH (2007b) Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet 23:108–112

    PubMed  CAS  Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome. Trends Genet 20:461–464

    PubMed  CAS  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    PubMed  CAS  Google Scholar 

  • Shi T, Huang H, Barker MS (2010) Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann Bot 106:497–504

    PubMed  Google Scholar 

  • Shimeld SM, Holland PW (2000) Vertebrate innovations. Proc Natl Acad Sci USA 97:4449–4452

    PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057

    PubMed  CAS  Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosperms. Ann N Y Acad Sci 1133:3–25

    PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    PubMed  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Process of organic evolution. Englewood Cliffs, NJ

    Google Scholar 

  • Stellwag EJ (2004) Are genome evolution, organism complexity and species diversity linked ? Integr Comp Biol 44:358–365

    PubMed  CAS  Google Scholar 

  • Stuessy TF (2004) A transitional-combinatorial theory for the origin of angiosperms. Taxon 53:3–16

    Google Scholar 

  • Sugino RP, Innan H (2006) Selection for more of the same product as a force to enhance concerted evolution of duplicated genes. Trends Genet 22:642–644

    PubMed  CAS  Google Scholar 

  • Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008a) Synteny and collinearity in plant genomes. Science 320:486–488

    PubMed  CAS  Google Scholar 

  • Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH (2008b) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954

    PubMed  CAS  Google Scholar 

  • Tang H, Bowers JE, Wang X, Paterson AH (2010) Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc Natl Acad Sci USA 107:472–477

    PubMed  CAS  Google Scholar 

  • The Rice Chromosomes 11 and 12 Sequencing Consortia TRCaS (2005) The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications. BMC Biol 3:20

    Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5:752–763

    PubMed  Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009a) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688

    PubMed  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009b) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732

    PubMed  Google Scholar 

  • Vandepoele K, Simillion C, Van de Peer Y (2002) Detecting the undetectable: uncovering duplicated segments in Arabidopsis by comparison with rice. Trends Genet 18:606–608

    PubMed  CAS  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638–1643

    PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Ri AD, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagn’e D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouz’e P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus domestica Borkh.). Nat Genet 42:833–839

    PubMed  CAS  Google Scholar 

  • Veron AS, Kaufmann K, Bornberg-Bauer E (2007) Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Mol Biol Evol 24:670–678

    PubMed  CAS  Google Scholar 

  • Wagner A (2008) Gene duplications, robustness and evolutionary innovations. Bioessays 30:367–373

    PubMed  CAS  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    PubMed  CAS  Google Scholar 

  • Wang J, Tian L, Lee H-S, Chen ZJ (2006a) Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173:965–974

    PubMed  CAS  Google Scholar 

  • Wang J, Tian L, Lee H-S, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006b) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    PubMed  CAS  Google Scholar 

  • Wang X, Tang H, Bowers JE, Paterson AH (2009) Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Res 19:1026–1032

    PubMed  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    PubMed  CAS  Google Scholar 

  • Werth CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137:515–526

    Google Scholar 

  • Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

SM is a fellow of the Fund for Scientific Research-Flanders. JAF is a JSPS (Japan Society for the Promotion of Science) postdoctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Maere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Fawcett, J.A., Van de Peer, Y., Maere, S. (2013). Significance and Biological Consequences of Polyploidization in Land Plant Evolution. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_17

Download citation

Publish with us

Policies and ethics