Skip to main content

The Incidence of Polyploidy in Natural Plant Populations: Major Patterns and Evolutionary Processes

  • Chapter
  • First Online:

Abstract

Polyploidy, the multiplication of chromosome sets above the diploid state, is arguably as prevalent in plants as any other eukaryotic group. Over the past century, polyploidy has been linked with particular taxonomic groups (flowering plants, ferns), northern latitudes and extreme environments, and life histories such as perenniality, asexuality and self-fertilization. Here we review the current state of evidence for these patterns and their interpretations. Our understanding of the incidence of polyploidy in plants is still in flux due to a progression of advances in cytogenetics, flow cytometry, phylogenetics and genomics. We find polyploidy to be highly heterogeneous among plant groups and estimates of intraspecific variation and hybrid forms are increasing with high throughput analyses. Surprisingly, many accepted trends between polyploidy and geography, mating system, and comparative rates of species diversification have become less strong or conflicting with the development of new procedures, in particular with phylogenetic approaches. Our review suggests that while some patterns remain strong, many are not universal, suggesting there may be no unified explanation for the success of polyploids in plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Ahuja MR (2005) Polyploidy in gymnosperms: revisited. Silvae Genet 54:59–69

    Google Scholar 

  • Anderson JB, Sirjusingh C, Ricker N (2004) Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 168:1915–1923

    Article  PubMed  CAS  Google Scholar 

  • Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91:1782–1788

    Article  Google Scholar 

  • Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S (2009) Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot 104:965–973

    Article  PubMed  Google Scholar 

  • Baldwin SJ, Husband BC (2011) Genome duplication and conspecific pollen precedence. P Roy Soc Lond B Bio 278:2011–2017

    Article  Google Scholar 

  • Baquar SR (1976) Polyploidy in the flora of Pakistan in relation to latitude, life form, and taxonomic groups. Taxon 25:621–627

    Article  Google Scholar 

  • Barker MS (2013) Karyotype and genome evolution in pteridophytes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Wien, pp 245–253

    Google Scholar 

  • Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. Am J Bot 94:1527–1533

    Article  PubMed  Google Scholar 

  • Barringer BC, Geber MA (2008) Mating system and ploidy influence levels of inbreeding depression in Clarkia (Onagraceae). Evolution 62:1040–1051

    Article  PubMed  Google Scholar 

  • Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004

    Article  PubMed  CAS  Google Scholar 

  • Bennert W, Lubienski M, Körner S, Steinberg M (2005) Triploidy in Equisetum subgenus Hippochaete (Equisetaceae, Pteridophyta). Ann Bot 95:807–815

    Article  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95:1–6

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec 2010). http://data.kew.org/cvalues/

  • Bever JD, Felber F (1992) The theoretical population genetics of autopolyploidy. Oxford Surv Evol Biol 8:185–217

    Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Blakeslee AF, Avery BT (1919) Mutations in the Jimson weed. J Hered 10:111–120

    Google Scholar 

  • Bowden WM (1940) Diploidy, polyploidy, and winter hardiness relationships in the flowering plants. Am J Bot 27:357–371

    Article  Google Scholar 

  • Bretagnolle F, Lumaret R (1995) Bilateral polyploidization in Dactylis glomerata L. subsp. lusitanica: occurrence, morphological and genetic characteristics of first polyploids. Euphytica 84:197–207

    Article  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Bretagnolle F, Thompson JD (1996) An experimental study of ecological differences in winter growth between sympatric diploid and autotetraploid Dactylis glomerata. J Ecol 84:343–351

    Article  Google Scholar 

  • Bretagnolle F, Felber F, Calame F (1998) La polyploïdie chez les plantes. Bot Helv 108:5–37

    Google Scholar 

  • Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536

    Article  Google Scholar 

  • Brownsey PJ, Lovis JD (1987) Chromosome numbers for the New Zealand species of Psilotum and Tmesipteris, and the phylogenetic relationships of the Psilotales. New Zealand J Bot 25:439–454

    Article  Google Scholar 

  • Burch JB (1964) Cytological studies of Planorbidae (Gastropoda: Basommatophora). I. The African subgenus Bulinus s. s. Malacologia 1:387–400

    Google Scholar 

  • Bureš P, Yi-Feng W, Horová L, Suda J (2004) Genome size variation in Central European species of Cirsium (Compositae) and their natural hybrids. Ann Bot 94:353–363

    Article  PubMed  CAS  Google Scholar 

  • Burton TL, Husband BC (1999) Population cytotype structure in the polyploid Galax urceolata (Diapensiaceae). Heredity 82:381–390

    Article  PubMed  Google Scholar 

  • Busbice TH, Wilsie CP (1966) Inbreeding depression and heterosis in autotetraploids with application to Medicago sativa L. Euphytica 15:52–67

    Google Scholar 

  • Clark GH, Fletcher J, Criddle N (1909) Farm weeds of Canada, 2nd edn. Department of Agriculture Seed Branch, Ottawa

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1945) Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae, vol 564. Carnegie Inst, Washington, Carnegie Inst Wash

    Google Scholar 

  • Cole KM (1990) Chromosomes. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 71–101

    Google Scholar 

  • Courties C, Perasso R, Chrétiennot-Dinet M-J, Gouy M, Guillou L, Troussellier M (1998) Phylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae). J Phycol 34:844–849

    Article  CAS  Google Scholar 

  • De Wet JMJ (1980) Origins of polyploids. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 3–16

    Google Scholar 

  • Denda T, Yokota M (2004) Cytogeography of Ixeris nakazonei (Asteraceae, Lactuceae) in the Ryukyu Archipelago of Japan and Taiwan. J Plant Res 117:3–11

    Article  PubMed  Google Scholar 

  • Dickinson TA, Lo E, Talent N (2007) Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications. Plant Syst Evol 266:59–78

    Article  Google Scholar 

  • Duchoslav M, Šafářová L, Krahulec F (2010) Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Ann Bot 105:719–735

    Article  PubMed  Google Scholar 

  • Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148

    Google Scholar 

  • Eckert CG, Lui K, Bronson K, Corradini P, Bruneau A (2003) Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Mol Ecol 12:331–334

    Article  PubMed  Google Scholar 

  • Ernst A (1918) Bastardierung als Ursache der Apogamie im Pflanzenreich. Gustav Fischer, Jena

    Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293

    Google Scholar 

  • Felber F (1991) Establishment of a tetraploid cytotype in a diploid population. J Evol Biol 4:195–207

    Article  Google Scholar 

  • Felber-Girard M, Felber F, Buttler A (1996) Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol 133:531–540

    Article  Google Scholar 

  • Fowler NL, Levin DA (1984) Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. Am Nat 124:703–711

    Article  Google Scholar 

  • Fritsch R (1991) Index to bryophyte chromosome counts. Bryophytorum Bibliotheca 40:1–352

    Google Scholar 

  • Goldblatt P (1980) Polyploidy in angiosperms: monocotyledons. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 219–240

    Google Scholar 

  • Grant V (1956) The influence of breeding habit on the outcome of natural hybridization in plants. Am Nat 90:319–322

    Article  Google Scholar 

  • Grant V (1963) The origin of adaptations. Columbia University Press, New York

    Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 585–675

    Chapter  Google Scholar 

  • Grif VG (2000) Some aspects of plant karyology and karyosystematics. Int Rev Cytol 196:131–175

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G (2010) Cryptic sex in the smallest eukaryotic marine green alga. Mol Biol Evol 27:47–54

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson A (1947) Apomixis in higher plants. Acta Univ Lund Kungl Fysiogr Sallsk Handl 42–44:1–370

    Google Scholar 

  • Gustafsson A (1948) Polyploidy, life-form, and vegetative reproduction. Hereditas 34:1–22

    Article  Google Scholar 

  • Hagerup O (1927) Empetrum hermaphroditum (Lange) Hagerup, a new tetraploid bisexual species. Dansk Bot Ark 5:1–17

    Google Scholar 

  • Halverson K, Heard SB, Nason JD, Stireman JO (2008) Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). Am J Bot 95:50–58

    Article  PubMed  Google Scholar 

  • Hardy OJ, De Loose M, Vekemans X, Meerts P (2001) Patterns of allozymic variation in diploid and tetraploid Centaurea jacea at different spatial scales. Evolution 55:943–954

    Article  PubMed  CAS  Google Scholar 

  • Haufler CH (1987) Electrophoresis is modifying our concepts of evolution in homosporous pteridophytes. Am J Bot 74:953–966

    Article  Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341

    PubMed  CAS  Google Scholar 

  • Hijmans RJ, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM (2007) Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Global Ecol Biogeogr 16:485–495

    Article  Google Scholar 

  • Hirayoshi I, Nakamura Y (1943) Chromosome number of Sequoia sempervirens. Bot Zool 2:73–75

    Google Scholar 

  • Hoshaw RW, McCourt RM (1988) The Zygnemataceae (Chlorophyta): a twenty-year update of research. Phycologia 27:511–548

    Article  Google Scholar 

  • Howard DJ (1999) Conspecific sperm and pollen precedence and speciation. Annu Rev Ecol Syst 30:109–132

    Article  Google Scholar 

  • Howard DJ, Reece M, Gregory PJ, Chu J, Cain ML (1998) The evolution of barriers to fertilization between closely related organisms. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 279–288

    Google Scholar 

  • Husband BC (2000) Constraints on polyploidy evolution: a test of the minority cytotype exclusion principle. Proc Roy Soc Lond B Bio 267:217–233

    Article  CAS  Google Scholar 

  • Husband BC (2004) The role of triploids in the evolutionary dynamics of mixed-ploidy populations. Biol J Linn Soc 82:537–546

    Article  Google Scholar 

  • Husband BC, Sabara HA (2004) Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). Am J Bot 85:1688–1694

    Article  Google Scholar 

  • Husband BC, Schemske DW (1995) Magnitude and timing of inbreeding depression in a diploid population of Epilobium angustifolium (Onagraceae). Heredity 75:206–215

    Article  Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70

    Article  Google Scholar 

  • Husband BC, Schemske DW (1997) The effect of inbreeding in diploid and tetraploid populations of Epilobium angustifolium (Onagraceae): implications for the genetic basis of inbreeding depression. Evolution 51:737–746

    Article  Google Scholar 

  • Husband BC, Schemske DW (1998) Cytotype distribution at a diploid-tetraploid contact zone in Chamerion (Epilobium) angustifolium (Onagraceae). Am J Bot 85:1688–1694

    Article  PubMed  CAS  Google Scholar 

  • Husband BC, Schemske DW, Burton TL, Goodwillie C (2002) Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proc Roy Soc Lond B Bio 269:2565–2571

    Article  Google Scholar 

  • Husband BC, Ozimec B, Martin SL, Pollock L (2008) Mating consequences of genome duplication: current patterns and insights from neopolyploids. Int J Plant Sci 169:195–206

    Article  Google Scholar 

  • Ickert-Bond SM (2003) Systematics of New World Ephedra L. (Ephedraceae): integrating morphological and molecular data. Thesis, Arizona State University, pp 363

    Google Scholar 

  • Ickert-Bond SM, Wojciechowski MF (2004) Phylogenetic relationships in Ephedra (Gnetales): evidence from nuclear and chloroplast DNA sequence data. Syst Bot 29:834–849

    Article  Google Scholar 

  • Jackson RC (1976) Evolution and systematic significance of polyploidy. Annu Rev Ecol Syst 7:209–234

    Article  Google Scholar 

  • Jackson RC, Casey J (1982) Cytogenetic analyses of autopolyploids: models and methods for triploids to octoploids. Am J Bot 69:487–501

    Article  Google Scholar 

  • Jersáková J, Castro S, Sonk N, Milchreit K, Schödelbaurová I, Tolasch T, Dötterl S (2010) Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae). Evol Ecol 24:1199–1218

    Article  Google Scholar 

  • Johnson MAT, Kenton AY, Bennett MD, Brandham PE (1989) Voanioala gerardii has the highest known chromosome number in the monocotyledons. Genome 32:328–333

    Article  Google Scholar 

  • Joly S, Bruneau A (2004) Evolution of triploidy in Apios americanum (Leguminosae) revealed by genealogical analysis of the histone H3-D gene. Evolution 58:284–295

    PubMed  CAS  Google Scholar 

  • Jorgensen CA (1928) The experimental formation of heteroploid plants in the genus Solanum. Genetics 19:133–211

    Article  Google Scholar 

  • Kao RH (2007) Asexuality and the coexistence of cytotypes. New Phytol 175:764–772

    Article  PubMed  Google Scholar 

  • Kao RH (2008) Origins and widespread distribution of co-existing polyploids in Arnica cordifolia (Asteraceae). Ann Bot 101:145–152

    Article  PubMed  CAS  Google Scholar 

  • Kapraun DF (2005) Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. Ann Bot 95:7–44

    Article  PubMed  CAS  Google Scholar 

  • Kapraun DF (2007) Nuclear DNA content estimates in green algal lineages: chlorophyta and streptophyta. Ann Bot 99:677–701

    Article  PubMed  CAS  Google Scholar 

  • Karlin EF, Gardner GP, Lukshis K, Boles S, Shaw AJ (2010) Allopolyploidy in Sphagnum mendocinum and S. papillosum (Sphagnaceae). Bryologist 113:114–119

    Article  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  PubMed  Google Scholar 

  • Kennedy BF, Sabara HA, Haydon D, Husband BC (2006) Pollinator-mediated assortative mating in mixed ploidy populations of Chamerion angustifolium (Onagraceae). Oecologia 150:398–408

    Article  PubMed  Google Scholar 

  • Khandelwal S (1990) Chromosome evolution in the genus Ophioglossum L. Bot J Linn Soc 102:205–217

    Article  Google Scholar 

  • Khoshoo TN (1959) Polyploidy in gymnosperms. Evolution 13:24–39

    Article  Google Scholar 

  • Khoshoo TN, Ahuja MR (1963) The chromosomes and relationships of Welwitschia mirabilis. Chromosoma 14:522–533

    Article  Google Scholar 

  • Kihara H, Ono T (1926) Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Z Zellforsch Mikr Anat 4:475–481

    Article  Google Scholar 

  • King GC (1960) The cytology of the desmids: the chromosomes. New Phytol 59:65–72

    Article  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23

    Article  PubMed  CAS  Google Scholar 

  • Klekowski EJ, Baker HG (1966) Evolutionary significance of polyploidy in the Pteridophyta. Science 153:305–307

    Article  PubMed  Google Scholar 

  • Kolář F, Fér T, Štech M, Trávníček P, Dušková E, Schönswetter P, Suda J (2012) Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7:e39988

    Article  PubMed  CAS  Google Scholar 

  • Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, Vít P, Kubešová M, Suda J (2009) Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot 103:963–974

    Article  PubMed  Google Scholar 

  • Koutecký P (2007) Morphological and ploidy level variation of Centaurea phrygia agg. (Asteraceae) in the Czech Republic, Slovakia and Ukraine. Folia Geobot 42:77–102

    Article  Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Kubátová B, Trávníček P, Bastlová D, Čurn V, Jarolímová V, Suda J (2008) DNA ploidy-level variation in native and invasive populations of Lythrum salicaria at a large geographical scale. J Biogeogr 35:167–176

    Google Scholar 

  • Kuta E, Przywara L (1997) Polyploidy in mosses. Acta Biol Cracov Ser Bot 39:17–26

    Google Scholar 

  • Lande R, Schemske DW (1985) The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39:24–40

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley, Weinheim, 153–176

    Google Scholar 

  • Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 307–322

    Google Scholar 

  • Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43

    Article  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New York

    Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  PubMed  Google Scholar 

  • Li D, Liu Y, Zhong C, Huang H (2010) Morphological and cytotype variation of wild kiwifruit (Actinidia chinensis complex) along an altitudinal and longitudinal gradient in central-west China. Bot J Linn Soc 164:72–83

    Article  Google Scholar 

  • Lokki J, Saura A (1980) Genetic polymorphism and evolution in parthenogenetic animals XI. Genetic differentiation in parthenogenetic populations. Hereditas 92:275–282

    Article  Google Scholar 

  • Löve Á, Löve D (1943) The significance of differences in the distribution of diploids and polyploids. Hereditas 29:145–163

    Article  Google Scholar 

  • Löve Á, Löve D, Pichi-Sermolli REG (1977) Cytotaxonomical atlas of the Pteridophyta, vol 3, Cytotaxonomical atlases. J. Cramer, Vaduz

    Google Scholar 

  • Lutz AM (1907) A preliminary note on the chromosomes of Oenothera lamarckiana and one of its mutants, O. gigas. Science 26:151–152

    Article  PubMed  CAS  Google Scholar 

  • Mahelka V, Suda J, Jarolímová V, Trávníček P, Krahulec F (2005) Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae: Triticeae) and their hybrid. Folia Geobot 40:367–384

    Article  Google Scholar 

  • Maherali H, Walden AE, Husband BC (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721–731

    Article  PubMed  CAS  Google Scholar 

  • Mainx F (1927) Untersuchungen über die Ernährung und Zellteilung bei Eremosphaera viridis De Bary. Arch Protistenk 57:1–13

    Google Scholar 

  • Mandáková T, Münzbergová Z (2006) Distribution and ecology of cytotypes of the Aster amellus aggregates in the Czech Republic. Ann Bot 98:845–856

    Article  PubMed  Google Scholar 

  • Martin SL, Husband BC (2009) Influence of phylogeny and ploidy on species ranges of North American angiosperms. J Ecol 97:913–922

    Article  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423

    Article  PubMed  CAS  Google Scholar 

  • Meyers LA, Levin DA (2006) On the abundance of polyploids in flowering plants. Evolution 60:1198–1206

    PubMed  Google Scholar 

  • Miller JS, Venable DL (2000) Polyploidy and the evolution of gender dimorphism in plants. Science 289:2335–2338

    Article  PubMed  CAS  Google Scholar 

  • Moretti A, Sabato S (1984) Karyotype evolution by centromeric fission in Zamia (Cycadales). Plant Syst Evol 146:215–223

    Article  Google Scholar 

  • Mosquin T, Small E (1971) An example of parallel evolution in Epilobium (Onagraceae). Evolution 25:678–682

    Article  Google Scholar 

  • Mráz P, Šingliarová B, Urfus T, Krahulec F (2008) Cytogeography of Pilosella officinarum (Compositae): altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. Ann Bot 101:59–71

    Article  PubMed  Google Scholar 

  • Muller HJ (1925) Why polyploidy is rarer in animals than in plants. Am Nat 59:346–353

    Article  Google Scholar 

  • Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:236–378

    Google Scholar 

  • Nakagawa M (2006) Ploidy, geographical distribution and morphological differentiation of Parasenecio auriculata (Senecioneae; Asteraceae) in Japan. J Plant Res 119:51–61

    Article  PubMed  Google Scholar 

  • Nesom GL (1983) Galax (Diapensiaceae): geographic variation in chromosome number. Syst Bot 8:1–14

    Article  Google Scholar 

  • Nichols HW (1980) Polyploidy in algae. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 151–161

    Google Scholar 

  • Nielsen EL (1947) Polyploidy and winter survival in Panicum virgatum L. J Am Soc Agron 29:822–827

    Article  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin/Heidelberg/New York, pp 475–518

    Chapter  Google Scholar 

  • Ornduff R (1970) Cytogeography of Nymphoides (Menyanthaceae). Taxon 19:715–719

    Article  Google Scholar 

  • Orr HA (1990) “Why polyploidy is rare in animals than plants” revisited. Am Nat 136:759–770

    Article  Google Scholar 

  • Orzechowska M, Siwinska D, Maluszynska J (2010) Molecular cytogenetic analyses of haploid and allopolyploid Pellia species. J Bryol 32:113–121

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  PubMed  CAS  Google Scholar 

  • Ozimec B, Husband BC (2011) Effect of recurrent selfing on inbreeding depression and mating system evolution in an autopolyploid plant. Evolution 65:2038–2049

    Google Scholar 

  • Packer JG (1969) Polyploidy in the Canadian arctic archipelago. Arctic Alpine Res 1:15–28

    Article  Google Scholar 

  • Pandit MK (2006) Continuing the search for pattern among rare plants: are diploid species more likely to be rare? Evol Ecol Res 8:543–552

    Google Scholar 

  • Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99:1365–2745

    Article  Google Scholar 

  • Petit C, Thompson JD (1999) Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evol Ecol 13:45–66

    Article  Google Scholar 

  • Petit C, Lesbros P, Ge X, Thompson JD (1997) Variation in flowering phenology and selfing rate across a contact zone between a diploid and tetraploid Arrhenatherum elatius (Poaceae). Heredity 79:31–40

    Article  Google Scholar 

  • Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029

    Article  Google Scholar 

  • Price DC, Chan CX, Yoon HS et al. (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    Article  PubMed  CAS  Google Scholar 

  • Przywara L, Kuta E (1995) Karyology of bryophytes. Polish Bot Stud 9:1–83

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in the flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Rausch JH, Morgan MT (2005) The effect of self-fertilization, inbreeding depression and population size on autopolyploid establishment. Evolution 59:1867–1875

    PubMed  Google Scholar 

  • Ricca M, Beecher FW, Boles SB, Temsch E, Greilhuber J, Karlin EF, Shaw AJ (2008) Cytotype variation and allopolyploidy in North American species of the Sphagnum subsecundum complex (Sphagnaceae). Am J Bot 95:1606–1620

    Article  PubMed  Google Scholar 

  • Rivero-Guerra AO (2008) Cytogenetics, geographical distribution, and pollen fertility of diploid and tetraploid cytotypes of Santolina pectinata Lag. (Asteraceae: Anthemideae). Bot J Linn Soc 156:657–667

    Article  Google Scholar 

  • Rodriguez DJ (1996) A model for the establishment of polyploidy in plants. Am Nat 147:33–46

    Article  Google Scholar 

  • Ronfort J (1999) The mutation load under tetrasomic inheritance and its consequences for the evolution of the selfing rate in autotetraploid species. Genet Res 74:31–42

    Article  Google Scholar 

  • Rosquist R (2001) Reproductive biology in diploid Anthericum ramosum and tetraploid A. liliago (Anthericaceae). Oikos 92:143–152

    Article  Google Scholar 

  • Rousseau-Gueutin M, Gaston A, Ainouche A, Ainouche ML, Olbricht K, Staudt G, Richard L, Denoyes-Rothan B (2009) Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol Phyl Evol 51:515–530

    Article  CAS  Google Scholar 

  • Sabara HA (2008) The evolution of reproductive isolation between diploid and tetraploid Chamerion angustifolium (Onagraceae). Ph.D. thesis, University of Guelph, Canada

    Google Scholar 

  • Sarma YSRK (1982) Chromosome numbers in algae. Nucleus 25:66–108

    Google Scholar 

  • Schranz ME, Osborn TC (2004) De novo variation in life-history traits and responses to growth conditions of resynthesized polyploid Brassica napus (Brassicaceae). Am J Bot 91:174–183

    Article  PubMed  Google Scholar 

  • Schultz RJ (1969) Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am Nat 103:605–619

    Article  Google Scholar 

  • Segraves KA, Thompson JN (1999) Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114–1127

    Article  Google Scholar 

  • Shimotomai N (1933) Zur Karyogenetic der Gattung Chrysanthemum. J Sci Hiroshima Univ Ser B Div 2:1–100

    Google Scholar 

  • Slovák M, Vít P, Urfus T, Suda J (2009) Complex pattern of genome size variation in a polymorphic member of the Asteraceae. J Biogeogr 36:372–384

    Article  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2009) Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol 9:37

    Article  PubMed  CAS  Google Scholar 

  • Sokolovskaya AP, Strelkova OS (1940) Karyological investigation of the alpine flora on the main Caucasus range and the problem of geographical distribution of polyploids. Dokl Akad Nauk SSSR 29:415–418

    Google Scholar 

  • Soltis DE, Soltis PS (1987) Polyploidy and breeding systems in homosporous Pteridophyta: a re-evaluation. Am Nat 130:219–232

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1988) Are lycopods with high chromosome numbers ancient polyploids? Am J Bot 75:238–247

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: origins of species and genome evolution. Trends Ecol Evol 14:349–351

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:70051–77057

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  • Sonnleitner MR, Flatscher P, García E, Rauchová J, Suda J, Schneeweiss JM, Hülber K, Schönswetter P (2010) Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the eastern Alps. Ann Bot 106:967–977

    Article  PubMed  Google Scholar 

  • Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477

    Article  Google Scholar 

  • Stebbins GL (1938) Cytological characteristics associated with the different growth habits in the dicotyledons. Am J Bot 25:189–198

    Article  Google Scholar 

  • Stebbins GL (1941) Apomixis in the angiosperms. Bot Rev 7:507–542

    Article  Google Scholar 

  • Stebbins GL (1947) Types of polyploids: their classification and significance. Adv Genet 1:403–429

    Article  PubMed  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in the higher plants. Am Nat 91:337–354

    Article  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, London

    Google Scholar 

  • Stebbins GL (1980) Polyploidy in plants: unsolved problems and prospects. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 495–520

    Google Scholar 

  • Stebbins GL (1985) Polyploidy, hybridization, and the invasion of new habitats. Ann Missouri Bot Gard 72:824–832

    Article  Google Scholar 

  • Stebbins GL, Dawe JC (1987) Polyploidy and distribution in the European flora: a reappraisal. Bot Jahrb Syst 108:343–354

    Google Scholar 

  • Stone JL (2002) Molecular mechanisms underlying the breakdown of gametophytic self-incompatibility. Quart Rev Biol 77:17–32

    Article  PubMed  CAS  Google Scholar 

  • Štorchová Z, Breneman A, Cande J, Dunn J, Burbank K, O’Toole E, Pellman D (2006) Genome-wide genetic analysis of polyploidy in yeast. Nature 443:541–547

    Article  PubMed  CAS  Google Scholar 

  • Stuessy TF, Weiss-Schneeweiss H, Keil DJ (2004) Diploid and polyploid cytotype distribution in Melampodium cinereum and M. leucanthum (Asteraceae, Heliantheae). Am J Bot 91:889–898

    Article  PubMed  Google Scholar 

  • Suda J (2003) Sympatric occurrences of various cytotypes of Vaccinium sect. Oxycoccus (Ericaceae). Nord J Bot 22:593–601

    Article  Google Scholar 

  • Suda J, Kron P, Husband BC, Trávníček P (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolution. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley–VCH, Weinheim, pp 103–130

    Google Scholar 

  • Suda J, Loureiro J, Trávníček P, Rauchová J, Vít P, Urfus T, Kubešová M, Dreyer LL, Oberlander KC, Wester P, Roets F (2009) Flow cytometry and its applications in plant population biology, ecology and biosystematics: new prospects for the Cape flora. S Afr J Bot 75:389

    Article  Google Scholar 

  • Tate JA, Soltis DE, Soltis PS (2005) Polyploidy in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 371–426

    Chapter  Google Scholar 

  • Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80

    Google Scholar 

  • Thompson JD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–307

    Article  PubMed  CAS  Google Scholar 

  • Thompson JN, Cunningham BM, Segraves KA, Althoff DM, Wagner D (1997) Plant polyploidy and insect/plant interactions. Am Nat 150:730–743

    Article  PubMed  CAS  Google Scholar 

  • Thorpe PH, González-Barrera S, Rothstein R (2007) More is not always better: the genetic constraints of polyploidy. Trends Genet 23:263–266

    Article  PubMed  CAS  Google Scholar 

  • Tindale MD, Roy SK (2002) A cytotaxonomic survey of the Pteridophyta of Australia. Austral Syst Bot 15:839–937

    Article  Google Scholar 

  • Tischler G (1935) Die Bedeutung der Polyploidie für die Verbreitung der Angiospermen erläutert an den Arten Schleswig-Holsteins, mit Ausblicken auf andere Florengebiete. Bot Jahrb 67:1–36

    Google Scholar 

  • Tischler G (1937) Die Halligenflora der Nordsee im Lichte cytologischer Forschung. Cytologia 8:162–170

    Article  Google Scholar 

  • Trávníček P, Eliášová A, Suda J (2010) The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia 82:149–163

    Google Scholar 

  • Trávníček P, Kubátová B, Čurn V, Rauchová J, Krajníková E, Jersáková J, Suda J (2011a) Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann Bot 107:77–87

    Article  PubMed  Google Scholar 

  • Trávníček P, Dočkalová Z, Rosenbaumová R, Kubátová B, Szeląg Z, Chrtek J (2011b) Bridging global and microgeographic scales: ploidy distribution in Pilosella echioides (Asteraceae) in Central Europe. Ann Bot 107:443–454

    Article  PubMed  Google Scholar 

  • Troìa A (2001) The genus Isoëtes L. (Lycophyta, Isoëtaceae): synthesis of karyological data. Webbia 56:201–218

    Google Scholar 

  • Uhl CH (1978) Chromosomes of Mexican Sedum II. Section Pachysedum. Rhodora 80:491–512

    Google Scholar 

  • Vamosi JC, Dickinson TA (2006) Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int J Plant Sci 167:349–358

    Article  Google Scholar 

  • van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans Roy Soc Lond B Bio 358:1113–1120

    Article  CAS  Google Scholar 

  • van Dijk HM, Hartog M, van Delden W (1992) Single cytotype areas in autopolyploid Plantago media L. Bot J Linn Soc 46:315–331

    Article  Google Scholar 

  • Vida G (1976) The role of polyploidy in evolution. In: Novak VJA, Pacltová I (eds) Evolutionary biology. Czechoslovak Academy of Sciences, Prague, pp 267–304

    Google Scholar 

  • Voglmayer H (2000) Nuclear DNA amounts in mosses (Musci). Ann Bot 85:531–546

    Article  CAS  Google Scholar 

  • Wettstein F (1927) Die Erscheinung der Heteroploidie, besonders im Pflanzenreich. Ergeb Biol 2:311–356

    Google Scholar 

  • White MJD (1954) Animal cytology and evolution, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169:169–182

    Article  Google Scholar 

  • Winge Ö (1917) The chromosomes: their number and general importance. Compt Rend Trav Lab Carlsberg 13:131–275

    Google Scholar 

  • Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, Becker B (2011) Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 11:104

    Article  PubMed  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    Article  PubMed  CAS  Google Scholar 

  • Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879

    Article  PubMed  CAS  Google Scholar 

  • Wyatt R, Odrzykoski IJ, Stoneburner A, Bass HW, Galau GA (1988) Allopolyploidy in bryophytes: multiple origins of Plagiomnium medium. Proc Natl Acad Sci USA 85:5601–5604

    Article  PubMed  CAS  Google Scholar 

  • Xie-Kui C, Ao CQ, Zhang Q, Chen LT, Liu JQ (2008) Diploid and tetraploid distribution of Allium przewalskianum Regel (Liliaceae) in the Qinghai–Tibetan Plateau and adjacent regions. Caryologia 61:190–198

    Google Scholar 

  • Zeyl C, Vanderford T, Carter M (2003) An evolutionary advantage of haploidy in large yeast populations. Science 299:555–558

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Husband .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Husband, B.C., Baldwin, S.J., Suda, J. (2013). The Incidence of Polyploidy in Natural Plant Populations: Major Patterns and Evolutionary Processes. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_16

Download citation

Publish with us

Policies and ethics