Skip to main content

Karyotype Diversity and Evolutionary Trends in Angiosperms

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

Karyotypic change constitutes an important evolutionary mechanism contributing to in angiosperm diversification and speciation. Comparative analyses of the karyotype usually include numerical features (chromosome number) and their changes (dysploidy, aneuploidy, polyploidy), as well as morphological features (chromosome size, karyotype length and genome size, centromere position and karyotype symmetry, secondary constrictions, supernumerary chromosomal material). More detailed characterization of angiosperm karyotypes involves also analyses of the abundance, distribution, and organization of specific molecular landmarks of different types (heterochromatin, ribosomal DNA, telomeric sequences, transposable elements, tandemly repeated DNA) and sizes (ranging from small genomic blocks to entire chromosome sets). This chapter describes the above mentioned karyotypic features and discusses their variation and evolutionary trends within angiosperms with respect to, for instance, their phylogenetic distribution and significance, directionality of chromosome number changes, or the nature and function of genetic elements involved in genome diploidization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth CC, Parker JS, Horton DM (1983) Chromosome variation and evolution in Scilla autumnalis. In: Brandham PE, Bennett MD (eds) Kew chromosome conference II. Georg Allen and Unwin, London, pp 261–268

    Google Scholar 

  • Ali HBM, Lysák MA, Schubert I (2005) Chromosomal localization of rDNA in the Brassicaceae. Genome 48:341–346

    PubMed  CAS  Google Scholar 

  • Ambrožová K, Mandáková T, Bureš P, Neumann P, Leitch IJ, Koblízková A, Macas J, Lysák MA (2010) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot 107:255–268

    PubMed  Google Scholar 

  • Anderson LC, Kyhos DW, Mosquin T, Powell AM, Raven PH (1974) Chromosome numbers in compositae. IX. Haplopappus and other Astereae. Am J Bot 61:665–671

    Google Scholar 

  • Babcock EB (1947) The genus Crepis I. The taxonomy, phylogeny, distribution and evolution of Crepis. University of California Press, Berkeley/Los Angeles

    Google Scholar 

  • Babcock EB, Jenkins JA (1943) Chromosomes and phylogeny in Crepis III: the relationships of one hundred and thirteen species. Univ Calif Publ Agric Sci 18:241–292

    Google Scholar 

  • Baeza CM, Schrader O, Budahn H (2007) Characterization of geographically isolated accessions in five Alstroemeria L. species (Chile) using FISH of tandemly repeated DNA sequences and RAPD analysis. Plant Syst Evol 269:1–14

    CAS  Google Scholar 

  • Bakker FT, Culham A, Pankhurst CV, Gibby M (2000) Mitochondrial and chloroplast DNA-based phylogeny of Pelargonium (Geraniaceae). Am J Bot 87:727–734

    PubMed  CAS  Google Scholar 

  • Barber JC, Ortega JF, Santos-Guerra A, Marrero A, Jansen RK (2000) Evolution of endemic Sideritis (Lamiaceae) in Macaronesia: insights from a chloroplast DNA restriction site analysis. Syst Bot 25:633–647

    Google Scholar 

  • Bennett MD (1998) Plant genome values: how much do we know? Proc Natl Acad Sci USA 95:2011–2016

    PubMed  CAS  Google Scholar 

  • Bennetzen JL (2000) The many hues of plant heterochromatin. Genome Biol 1:107.1–107.4

    Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    PubMed  CAS  Google Scholar 

  • Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    PubMed  CAS  Google Scholar 

  • Blöch C, Weiss-Schneeweiss H, Schneeweiss GM, Barfuss MHJ, Rebernig CA, Villaseñor JL, Stuessy TF (2009) Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Mol Phylogenet Evol 53:220–233

    PubMed  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    PubMed  CAS  Google Scholar 

  • Brandham PE (1971) The chromosomes of the Liliaceae: II. Polyploidy and karyotype variation in the Aloineae. Kew Bull 25:381–389

    Google Scholar 

  • Brandham PE, Doherty MJ (1998) Genome size variation in the Aloaceae, an angiosperm family displaying karyotypic orthoselection. Ann Bot 82(Suppl A):67–73

    Google Scholar 

  • Brighton CA (1978) Telocentric chromosomes in Corsican Crocus L. (Iridaceae). Plant Syst Evol 129:299–314

    Google Scholar 

  • Brown SW (1966) Heterochromatin. Science 151:417–425

    PubMed  CAS  Google Scholar 

  • Buitendijk J, Peters A, Quene R, Ramanna M (1998) Genome size variation and C-band polymorphism in Alstroemeria aurea, A. ligtu and A. magnifica (Alstroemeriaceae). Plant Syst Evol 212:87–106

    Google Scholar 

  • Bureš P, Zedek F, Marková M (2013) Holocentric chromosomes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 187–208

    Google Scholar 

  • Camacho JPM, Cabrero J (1987) New hypotheses about the origin of supernumerary chromosome segments in grasshoppers. Heredity 58:341–343

    Google Scholar 

  • Cerbah M, Coulaud J, Siljak-Yakovlev S (1998) rDNA organization and evolutionary relationships in the genus Hypochaeris (Asteraceae). J Hered 89:312–318

    CAS  Google Scholar 

  • Cheng YM, Lin BY (2003) Cloning and characterization of maize B chromosome sequences derived from microdissection. Genetics 164:299–310

    PubMed  CAS  Google Scholar 

  • Chester M, Sýkorová E, Fajkus J, Leitch AR (2008) Single integration and spread of a copia-like sequence nested in rDNA intergenic spacers of Allium cernuum (Alliaceae). Cytogenet Genome Res 129:35–46

    Google Scholar 

  • Chester M, Leitch AR, Soltis PS, Soltis DE (2010) Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Genes 1:166–192

    CAS  Google Scholar 

  • Choi H-K, Mun J-H, Kim D-J, Zhu H, Baek J-M, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    PubMed  CAS  Google Scholar 

  • Choi H-W, Kim J-S, Lee S-H, Bang J-W (2008) Physical mapping by FISH and GISH of rDNA loci and discrimination of genomes A and B in Scilla scilloides complex distributed in Korea. J Plant Biol 51:408–412

    CAS  Google Scholar 

  • Chung K-S, Weber JA, Hipp AL (2011) Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae). Am J Bot 98:122–129

    PubMed  Google Scholar 

  • Clarkson JJ, Lim KY, Kovařík A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252

    PubMed  CAS  Google Scholar 

  • Cleland RE (1972) Oenothera: cytogenetics and evolution. Academic, New York

    Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    PubMed  CAS  Google Scholar 

  • Cremonini R (2005) Low chromosome number angiosperms. Caryologia 58:403–409

    Google Scholar 

  • Cuadrado A, Jouve N (2002) Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. J Hered 93:339–345

    PubMed  CAS  Google Scholar 

  • da Silva CRM, González-Elizondo MS, Vanzela ALL (2005) Reduction of chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocations. Bot J Linn Soc 149:457–464

    Google Scholar 

  • Darlington CD (1956) Chromosome botany. George Allen and Unwin, London

    Google Scholar 

  • Darlington CD (1963) Chromosome botany and the origins of cultivated plants. Hafner, New York

    Google Scholar 

  • Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. Georg Allen and Unwin, London

    Google Scholar 

  • de la Herrán R, Robles F, Cuñado N, Santos JL, Ruiz Rejón M, Garrido-Ramos MA, Ruiz Rejón C (2001) A heterochromatic satellite DNA is highly amplified in a single chromosome of Muscari (Hyacinthaceae). Chromosoma 110:197–202

    PubMed  Google Scholar 

  • Dechyeva D, Gindullis F, Schmidt T (2003) Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Chromosome Res 11:3–21

    PubMed  CAS  Google Scholar 

  • Deumling B (1981) Sequence arrangement of a highly methylated satellite DNA of a plant, Scilla: a tandemly repeated inverted repeat. Proc Natl Acad Sci USA 78:338–342

    PubMed  CAS  Google Scholar 

  • Deumling B, Greilhuber J (1982) Characterization of heterochromatin in different species of the Scilla siberica group (Liliaceae) by in situ hybridization of satellite DNAs and fluorochrome banding. Chromosoma 84:535–555

    CAS  Google Scholar 

  • Devos K (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    PubMed  CAS  Google Scholar 

  • Dhar MK, Friebe B, Koul AK, Gill BS (2002) Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma 111:332–340

    PubMed  CAS  Google Scholar 

  • Dimitrova D, Greilhuber J (2000) Karyotype and DNA content in ten species of Crepis (Asteraceae) distributed in Bulgaria. Bot J Linn Soc 132:281–297

    Google Scholar 

  • Dimitrova D, Greilhuber J (2001) C-banding patterns and quantitative karyotype characteristics of Bulgarian species of Crepis (Asteraceae). Plant Biol 3:88–97

    Google Scholar 

  • Dixon CJ, Schönswetter P, Suda J, Wiedermann MM, Schneeweiss GM (2009) Reciprocal Pleistocene origin and postglacial range formation of an allopolyploid and its sympatric ancestors (Androsace adfinis group, Primulaceae). Mol Phylogenet Evol 50:74–83

    PubMed  CAS  Google Scholar 

  • Dobeš C, Vitek E (2000) Documented chromosome number checklist of Austrian vascular plants. Naturhistorisches Museum Wien, Wien

    Google Scholar 

  • Dobigny G, Ducroz J-F, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53:470–484

    PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Rauscher JT, Brown AHD (2004) Evolution of the perennial soybean polyploid complex (Glycine subgenus Glycine): a study of contrasts. Biol J Linn Soc 82:583–597

    Google Scholar 

  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (1995) Ribosomal DNA multigene loci are nomads in the Triticeae genomes. Genetics 140:1367–1377

    PubMed  CAS  Google Scholar 

  • Ebert I, Greilhuber J, Speta F (1996) Chromosome banding and genome size differentiation in Prospero (Hyacinthaceae): diploids. Plant Syst Evol 203:143–177

    Google Scholar 

  • Ehrendorfer F (1958) Ein Variabilitätszentrum als “fossiler” Hybrid-Komplex: Der ost mediterrane Galium graecum L.-G. canum Req.-Formenkreis. Eine Monographie. (Zur Phylogenie der Gattung Galium, VI.). Plant Syst Evol 105:229–279

    Google Scholar 

  • Ehrendorfer F (1964) Cytologie, Taxonomie und Evolution bei Samenpflanzen. Vistas Bot 4:99–186

    Google Scholar 

  • Ehrendorfer F (1970) Evolutionary patterns and strategies in seed plants. Taxon 19:185–195

    Google Scholar 

  • Ehrendorfer F (1980) Polyploidy and distribution. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York/London, pp 45–59

    Google Scholar 

  • Elder JF Jr, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Quart Rev Biol 70:297–320

    PubMed  CAS  Google Scholar 

  • Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium–Leguminosae). Mol Phylogenet Evol 39:688–705

    PubMed  CAS  Google Scholar 

  • Enke N, Gemeinholzer B (2008) Babcock revisited: new insights into generic delimitation and character evolution in Crepis L. (Compositae: Cichorieae) from ITS and matK sequence data. Taxon 57:756–768

    Google Scholar 

  • Evans GM, Macefield AJ (1972) The suppression of homoeologous pairing by B-chromosomes in a Lolium species hybrid. Nature 236:110–111

    CAS  Google Scholar 

  • Fajkus J, Sýkorová E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469–479

    PubMed  CAS  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have a better chance to survive the Cretaceous-Tertiary exctinction event. Proc Natl Acad Sci USA 106:5735–5742

    Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293

    Google Scholar 

  • Fedorov AN (ed) (1969) Chromosome numbers of flowering plants. Acad Sci USSR, Leningrad

    Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962

    PubMed  CAS  Google Scholar 

  • Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA, Stacey G (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185:727–744

    PubMed  CAS  Google Scholar 

  • Forrest LL, Jong K (2004) Karyotype asymmetry in Galtonia and Pseudogaltonia (Hyacinthaceae). Edinburgh J Bot 60:569–579

    Google Scholar 

  • Frello S, Heslop-Harrison JS (2000) Chromosomal variation in Crocus vernus Hill (Iridaceae) investigated by in situ hybridization of rDNA and a tandemly repeated sequence. Ann Bot 86:317–322

    CAS  Google Scholar 

  • Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher plants. Plant Syst Evol 196:227–241

    CAS  Google Scholar 

  • Fuchs J, Strehl S, Brandes A, Schweizer D, Schubert I (1998) Molecular-cytogenetic characterization of the Vicia faba genome: heterochromatin differentiation, replication patterns and sequence localization. Chromosome Res 6:219–230

    PubMed  CAS  Google Scholar 

  • Fukui K, Nakayama S (1996) Plant chromosomes. Laboratory methods. CRC Press, Boca Raton

    Google Scholar 

  • Garcia S, Panero JL, Siroky J, Kovařík A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol 10:176

    PubMed  Google Scholar 

  • Garrido-Ramos MA, Jamilena M, de la Herrán R, Ruiz Rejón C, Camacho JPM, Ruiz-Rejón M (1998) Inheritance and fitness effects of a pericentric inversion and a supernumerary chromosome segment in Muscari comosum (Liliaceae). Heredity 80:724–731

    Google Scholar 

  • Gaut BS, Ross-Ibarra J (2008) Selection on major components of angiosperm genomes. Science 320:484–486

    PubMed  CAS  Google Scholar 

  • Golczyk H, Hasterok R, Joachimiak AJ (2005) FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea. Genome 48:145–153

    PubMed  CAS  Google Scholar 

  • Goldblatt P, Johnson DE (eds) (1979) Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis

    Google Scholar 

  • Goodspeed TH (1933) Chromosome number and morphology in Nicotiana VI. Chromosome numbers of forty species. Proc Natl Acad Sci USA 19:649–653

    PubMed  CAS  Google Scholar 

  • Góralski G, Lubczyńska P, Joachimiak AJ (2009) Chromosome number database. http://www.binoz.uj.edu.pl:8080/chromosomes/ accessed 30.03.2011

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Grant V (1982) Chromosome number patterns in primitive angiosperms. Bot Gaz 143:390–394

    Google Scholar 

  • Grant WF (1991) Chromosomal evolution and aneuploidy in Lotus. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plant genetics: genetics, breeding, evolution. Part B. Elsevier, Amsterdam, pp 429–447

    Google Scholar 

  • Greilhuber J (1982) Trends in der Chromosomenevolution von Scilla (Liliaceae). Stapfia 10:11–51

    Google Scholar 

  • Greilhuber J (1995) Chromosomes of the monocotyledons (general aspects). In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 379–414

    Google Scholar 

  • Greilhuber J, Speta F (1978) Quantitative analysis of the C-banded karyotypes and systematics in the cultivated species of the Scilla siberica group (Liliaceae). Plant Syst Evol 129:63–109

    Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777

    PubMed  CAS  Google Scholar 

  • Guerra M (1986) Reviewing chromosome nomenclature of Levan et al. Rev Brasil Genet 4:741–743

    Google Scholar 

  • Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041

    Google Scholar 

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350

    PubMed  CAS  Google Scholar 

  • Guerra M, García MA (2004) Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 47:134–140

    PubMed  CAS  Google Scholar 

  • Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas MJ (2010) Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res 129:82–96

    PubMed  CAS  Google Scholar 

  • Guillén A, Ruiz Rejón M (1984) Structural variability and chromosome numbers variation in natural populations of Scilla autumnalis (Liliaceae). Plant Syst Evol 144:201–207

    Google Scholar 

  • Haga T, Noda S (1976) Cytogenetics of the Scilla scilloides complex. Genetica 46:161–176

    Google Scholar 

  • Haizel T, Lim YK, Leitch AR, Moore G (2005) Molecular analysis of holocentric centromeres of Luzula species. Cytogenet Genome Res 109:134–143

    PubMed  CAS  Google Scholar 

  • Hall KJ, Parker JS (1995) Stable chromosome fission associated with rDNA mobility. Chromosome Res 3:417–422

    PubMed  CAS  Google Scholar 

  • Hamouche Y, Amirouche N, Misset M-T, Amirouche R (2010) Cytotaxonomy of autumn flowering species of Hyacinthaceae from Algeria. Plant Syst Evol 285:177–187

    Google Scholar 

  • Han F, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    PubMed  CAS  Google Scholar 

  • Hanmoto H, Kataoka R, Ohmido N, Yonezawa Y (2007) Interstitial telomere-like repeats in the Haplopappus gracilis (Asteraceae) genome revealed by fluorescence in situ hybridization. Cytologia 72:483–488

    Google Scholar 

  • Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen W, Małuszyńska J (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216

    PubMed  CAS  Google Scholar 

  • Hawkins JS, Kim HR, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    PubMed  CAS  Google Scholar 

  • Hawkins JS, Grover CE, Wendel JF (2008) Repeated big bangs and the expanding universe: directionality in plant genome size evolution. Plant Sci 174:557–562

    CAS  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose. Jahrb Wiss Botanik 69:762–818

    Google Scholar 

  • Hejnowicz Z, Feldman LJ (2000) The consequences of a non-uniform tension across kinetochores: lessons from segregation of chromosomes in the permanent translocation heterozygote Oenothera. Chromosome Res 8:165–172

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Brandes A, Schwarzacher T (2003) Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 11:241–253

    PubMed  CAS  Google Scholar 

  • Hipp AL (2007) Non-uniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61:2175–2194

    PubMed  Google Scholar 

  • Hipp AL, Rothrock PE, Roalson EH (2009) The evolution of chromosome arrangements in Carex (Cyperaceae). Bot Rev 75:96–109

    Google Scholar 

  • Hirsch CD, Jiang J (2012) Centromeres: sequences, structure, and biology. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ (eds) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer-Verlag, Wien, pp 59–70

    Google Scholar 

  • Houben A, Schubert I (2003) DNA and proteins of plant centromeres. Curr Opin Plant Biol 6:554–560

    PubMed  CAS  Google Scholar 

  • Houben A, Verlin D, Leach CR, Timmis JN (2001) The genomic complexity of micro B chromosomes of Brachycome dichromosomatica. Chromosoma 110:451–459

    PubMed  CAS  Google Scholar 

  • Houben A, Moghaddam AMB, Klemme S (2013) Biology and evolution of B chromosomes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Wien, pp 149–165

    Google Scholar 

  • Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J (2010) Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204

    PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EAG, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WuZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim J-Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    PubMed  CAS  Google Scholar 

  • Hudakova S, Künzel G, Endo TR, Schubert I (2002) Barley chromosome arms longer than half of the spindle axis interfere with nuclear divisions. Cytogenet Genome Res 98:101–107

    PubMed  CAS  Google Scholar 

  • Husband BC, Baldwin SJ, Suda J (2013) The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 255–276

    Google Scholar 

  • Imai HT (1978) On the origin of telocentric chromosomes in mammals. J Theor Biol 78:619–637

    Google Scholar 

  • Imai HT, Maruyama T, Gojobori T, Inoue Y, Crozier RH (1986) Theoretical bases for karyotype evolution. 1. The minimum interaction hypothesis. Am Nat 128:900–920

    Google Scholar 

  • Jackson RC (1962) Interspecific hybridization in Haplopappus and its bearing on chromosome evolution in the Blepharodon section. Am J Bot 49:119–132

    Google Scholar 

  • Jaillon O et al, The French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    PubMed  CAS  Google Scholar 

  • Jamilena M, Mariotti B, Manzano S (2008) Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 120:255–264

    PubMed  CAS  Google Scholar 

  • Janoušek B, Hobza R, Vyskot B (2013) Chromosomes and sex diffrentiation. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 167–186

    Google Scholar 

  • Jenkins GM, Jones RN (2004) B chromosomes in hybrids of temperate cereals and grasses. Cytogenet Genome Res 106:314–319

    PubMed  CAS  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    PubMed  CAS  Google Scholar 

  • John B, Miklos GLG (1979) Functional aspects of heterochromatin and satellite DNA. Int Rev Cytol 58:1–114

    PubMed  CAS  Google Scholar 

  • Johnson MAT, Kenton AY, Bennett MD, Brandham PE (1989) Voanioala gerardii has the highest known chromosome number in the monocotyledons. Genome 32:328–333

    Google Scholar 

  • Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    PubMed  CAS  Google Scholar 

  • Jones K (1977) The role of Robertsonian change in karyotype evolution in higher plants. In: de la Chapelle A, Sorea M (eds) Chromosomes today. Elsevier, Amsterdam, pp 121–129

    Google Scholar 

  • Jones K (1978) Aspects of chromosome evolution in higher plants. Adv Bot Res 6:119–194

    Google Scholar 

  • Jones K (1998) Robertsonian fusion and centric fission in karyotype evolution of higher plants. Bot Rev 64:273–289

    Google Scholar 

  • Jones RN, Rees H (1967) Genotypic control of chromosome behaviour in rye. XI. The influence of B-chromosomes on meiosis. Heredity 22:333–347

    Google Scholar 

  • Jones RN, Rees H (1982) B chromosomes. Academic, New York

    Google Scholar 

  • Jones RN, Viegas W, Houben A (2008) A century of B chromosomes in plants: so what? Ann Bot 101:767–775

    PubMed  Google Scholar 

  • Kamstra SA, Kuipers AG, De Jeu MJ, Ramanna MS, Jacobsen E (1997) Physical localisation of repetitive DNA sequences in Alstroemeria: karyotyping of two species with species-specific and ribosomal DNA. Genome 40:652–658

    PubMed  CAS  Google Scholar 

  • Karlov GI, Fesenko IA, Andreeva GN, Khrustaleva LI (2010) Chromosome organization of Ty1-copia-like retrotransposons in the tomato genome. Russ J Genet 46:677–681

    CAS  Google Scholar 

  • Kejnovský E, Hobza R, Čermák T, Kubat Z, Vyskot B (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541

    PubMed  Google Scholar 

  • Kenton A (1981) Chromosome evolution in the Gibasis linearis alliance (Commelinaceae). Chromosoma 84:291–304

    Google Scholar 

  • Kihara H, Ono T (1927) Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. Zeitschr wiss Biol B 4:475–481

    Google Scholar 

  • Koehler S, Cabral JS, Whitten WM, Williams NH, Singer RB, Neubig KM, Guerra M, Souza AP, Amaral Mdo C (2008) Molecular phylogeny of the neotropical genus Christensonella (Orchidaceae, Maxillariinae): species delimitation and insights into chromosome evolution. Ann Bot 102:491–507

    PubMed  Google Scholar 

  • Koo D-H, Jiang J (2008) Extraordinary tertiary constrictions of Tripsacum dactyloides chromosomes: implications for karyotype evolution of polyploids driven by segmental chromosome losses. Genetics 179:1119–1123

    PubMed  CAS  Google Scholar 

  • Koo D-H, Nam Y-W, Choi D, Bang J-W, de Jong H, Hur Y (2010) Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res 18:325–336

    PubMed  CAS  Google Scholar 

  • Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, Rutten T, Fuchs J, Endo T, Nasuda S, Ghukasyan A, Houben A (2010) The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 56:146–155

    PubMed  Google Scholar 

  • Koukalova B, Moraes AP, Renny-Byfield S, Matyášek R, Leitch AR, Kovařík A (2010) Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. New Phytol 186:148–160

    PubMed  CAS  Google Scholar 

  • Kovařík A, Pires JC, Leitch AR, Lim KY, Sherwood A, Matyášek R, Rocca J, Soltis DE, Soltis PS (2005) Rapid concerted evolution of nuclear ribosomal DNA in two allopolyploids of recent and recurrent origin. Genetics 169:931–944

    PubMed  Google Scholar 

  • Kuipers AG, Kamstra SA, de Jeu MJ, Visser RG (2002) Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species. Chromosome Res 10:389–398

    PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    PubMed  CAS  Google Scholar 

  • Kuta E, Bohanec B, Dubas E, Vizintin L, Przywara L (2004) Chromosome and nuclear DNA study on Luzula—a genus with holokinetic chromosomes. Genome 47:246–256

    PubMed  CAS  Google Scholar 

  • Lamb JC, Yu W, Han F, Birchler JA (2007) Plant chromosomes from end to end: telomeres, heterochromatin and centromeres. Curr Opin Plant Biol 10:116–122

    PubMed  CAS  Google Scholar 

  • Lee H-R, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    PubMed  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    PubMed  CAS  Google Scholar 

  • Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 307–322

    Google Scholar 

  • Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF (2010) Genome size dynamics and evolution in monocots. J Bot 2010:1–18, Article ID 862516

    Google Scholar 

  • Levan A (1932) Cytological studies in Allium. I. Chromosome morphological contributions. Hereditas 16:257–264

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, Oxford

    Google Scholar 

  • Levin DA, Funderburg SW (1979) Genome size in angiosperms: temperate versus tropical species. Am Nat 114:784–795

    Google Scholar 

  • Levin DA, Wilson AC (1976) Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc Natl Acad Sci USA 73:2086–2090

    PubMed  CAS  Google Scholar 

  • Levin DA, Palestis BG, Jones RN, Trivers R (2005) Phyletic hot spots for B chromosomes in angiosperms. Evolution 59:962–969

    PubMed  Google Scholar 

  • Levitzky GA (1931) The karyotype in systematics. Bull Appl Bot Genet Plant Breed 27:220–240

    Google Scholar 

  • Lewis H (1951) The origin of supernumerary chromosomes in natural populations of Clarkia elegans. Evolution 5:142–157

    Google Scholar 

  • Lewis WH, Oliver RL, Suda Y (1967) Cytogeography of Claytonia virginica and its allies. Ann Miss Bot Garden 54:153–171

    Google Scholar 

  • Lim KY, Matyášek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258

    PubMed  CAS  Google Scholar 

  • Lim KY, Kovařík A, Matyášek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007a) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763

    PubMed  CAS  Google Scholar 

  • Lim KY, Matyášek R, Kovařík A, Leitch AR (2007b) Parental origin and genome evolution in the allopolyploid Iris versicolor. Ann Bot 100:219–224

    PubMed  CAS  Google Scholar 

  • Liu Z, Moore PH, MA H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    PubMed  CAS  Google Scholar 

  • Löve Á, Löve D (1974) Cytotyxonomical atlas of the Slovenian flora. Cramer, Lehre

    Google Scholar 

  • Luceño M, Vanzela ALL, Guerra M (1998) Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can J Bot 76:440–449

    Google Scholar 

  • Lukaszewski A, Gustafson JP (1983) Translocations and modifications of chromosomes in triticale wheat hybrids. Theor Appl Genet 64:239–248

    Google Scholar 

  • Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 137–147

    Google Scholar 

  • Lysák MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229

    PubMed  Google Scholar 

  • Lysák M, Mandáková T, Lacombe E (2010) Reciprocal and multi-species chromosome BAC painting in crucifers (Brassicaceae). Cytogenet Genome Res 129:184–189

    PubMed  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    PubMed  CAS  Google Scholar 

  • Macas J, Pozárková D, Navrátilová A, Nouzová M, Neumann P (2000) Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Gen Genet 263:741–751

    PubMed  CAS  Google Scholar 

  • Macas J, Meszaros T, Nouzová M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35

    PubMed  CAS  Google Scholar 

  • Macas J, Navrátilová A, Koblízková A (2006) Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma 115:437–447

    PubMed  CAS  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427

    PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. http://mesquiteproject.org, accessed 30.03.2011

  • Madej A, Kuta E (2001) Holokinetic chromosomes of Luzula luzuloides (Juncaceae) in callus culture. Acta Biol Cracov Bot 43:33–43

    Google Scholar 

  • Małuszyńska J, Schweizer D (1989) Ribosomal RNA genes in B chromosomes of Crepis capillaris detected by non-radioactive in situ hybridization. Heredity 62:59–65

    PubMed  Google Scholar 

  • Małuszyńska J, Hasterok R, Weiss H (1998) rRNA genes: their distribution and activity in plants. In: Małuszyńska J (ed) Plant cytogenetics. Silesian University Press, Katowice, pp 75–95

    Google Scholar 

  • Mandáková T, Lysák MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570

    PubMed  Google Scholar 

  • Mandáková T, Heenan PB, Lysák MA (2010a) Island species radiation and karyotypic stasis in Pachycladon allopolyploids. BMC Evol Biol 10:367

    PubMed  Google Scholar 

  • Mandáková T, Joly S, Krzywinski M, Mummenhof K, Lysák M (2010b) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290

    PubMed  Google Scholar 

  • Marasek A, Hitoshi M, Keiichi O (2006) The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization. Euphytica 151:279–290

    Google Scholar 

  • Marks GE, Schweizer D (1974) Giemsa banding: karyotype differences in some species of Anemone and in Hepatica nobilis. Chromosoma 44:405–416

    Google Scholar 

  • Mast AR, Kelso S, Richards AJ, Lang DJ, Feller DMS, Conti E (2001) Phylogenetic relationships in Primula L. and related genera (Primulaceae) based on noncoding chloroplast DNA. Int J Plant Sci 162:1381–1400

    CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants—evidence for polyploidy in majority of angiosperms. Science 264:1759–1763

    Google Scholar 

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144

    PubMed  Google Scholar 

  • Menzel G, Dechyeva D, Wenke T, Holtgräwe D, Weisshaar B, Schmidt T (2008) Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). Ann Bot 102:521–530

    PubMed  CAS  Google Scholar 

  • Meyers LA, Levin DA (2006) On the abundance of polyploids in flowering plants. Evolution 60:1198–1206

    PubMed  Google Scholar 

  • Moraes AP, Leitch IJ, Leitch AR (2012) Chromosome studies in Orchidaceae: Karyotype divergence in Neotropical genera in subtribe Maxillariinae. Bot J Linn Soc 170:29–39

    Google Scholar 

  • Moore RJ (1974) Index to plant chromosome numbers: 1972. Regnum Vegetabile 91:1–108

    Google Scholar 

  • Moore RJ (1977) Index to plant chromosome numbers: 1973–1974. Regnum Vegetabile 96:1–256

    Google Scholar 

  • Murata M, Shibata F, Yokota E (2006) The origin, meiotic behavior, and transmission of a novel minichromosome in Arabidopsis thaliana. Chromosoma 115:311–319

    PubMed  Google Scholar 

  • Narayan RKJ (1987) Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae). Plant Syst Evol 157:161–180

    CAS  Google Scholar 

  • Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR (2005) Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102:9842–9847

    PubMed  CAS  Google Scholar 

  • Navajas-Pérez R, Schwarzacher T, de la Herrán R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2006) The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives. Gene 368:61–71

    PubMed  Google Scholar 

  • Navrátilová A, Neumann P, Macas J (2003) Karyotype analysis of four Vicia species using in situ hybridization with repetitive sequences. Ann Bot 91:921–926

    PubMed  Google Scholar 

  • Neumann P, Koblížková A, Navrátilová A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056

    PubMed  CAS  Google Scholar 

  • Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mobile DNA 2:4

    PubMed  CAS  Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378

    PubMed  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    PubMed  CAS  Google Scholar 

  • Ownbey M (1950) Natural hybridization and amphiploidy in the genus Tragopogon. Am J Bot 37:487–499

    Google Scholar 

  • Parker JS (1976) The B-chromosome system of Hypochoeris maculata. I. B-distribution, meiotic behaviour and inheritance. Chromosoma 59:167–177

    Google Scholar 

  • Parker JS, Lozano R, Taylor S, Ruiz Rejón M (1991) Chromosomal structure of populations of Scilla autumnalis in the Iberian Peninsula. Heredity 67:287–297

    Google Scholar 

  • Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48

    Google Scholar 

  • Pazy B, Plitmann U (1995) Chromosome divergence in the genus Cuscuta and its systematic implications. Caryologia 48:173–180

    Google Scholar 

  • Pedrosa-Harand A, de Almeida CC, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933

    PubMed  CAS  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15

    Google Scholar 

  • Peruzzi L, Leitch IJ, Caparelli KF (2009) Chromosome diversity and evolution in Liliaceae. Ann Bot 103:459–475

    PubMed  CAS  Google Scholar 

  • Pich U, Schubert I (1998) Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res 6:315–321

    PubMed  CAS  Google Scholar 

  • Pikaard CS (2000) Nucleolar dominance: uniparental gene silencing on multi-megabase scale in genetic hybrids. Plant Mol Biol 43:163–177

    PubMed  CAS  Google Scholar 

  • Pires JC, Lim KY, Kovařík A, Matyásek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91:1022–1035

    PubMed  CAS  Google Scholar 

  • Plohl M, Luchetti A, Mestrović N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82

    PubMed  CAS  Google Scholar 

  • Proost S, Pattyn P, Gerats T, Van de Peer Y (2011) Journey through the past: 150 million years of plant genome evolution. Plant J 66:58–65

    PubMed  CAS  Google Scholar 

  • Raina SN, Rees H (1983) DNA variation between and within chromosome complements in Vicia species. Heredity 51:335–346

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Google Scholar 

  • Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

    PubMed  CAS  Google Scholar 

  • Raven PH (1975) The bases of angiosperm phylogeny: cytology. Ann Miss Bot Garden 62:724–764

    Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Google Scholar 

  • Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727

    PubMed  CAS  Google Scholar 

  • Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136

    PubMed  CAS  Google Scholar 

  • Rieseberg LH, Doyle MF (1989) Tetrasomic segregation in the naturally occurring autotetraploid Allium nevii (Alliaceae). Hereditas 11:3–36

    Google Scholar 

  • Roa F, Guerra M (2010) Trends on the distribution of the 45S rDNA ribosomal DNA in plants. In: Annual meeting of the Society for Experimental Biology, Abstract book. Prague, p 262

    Google Scholar 

  • Robert ML, Lim KY, Hanson L, Sanchez-Teyer F, Bennett MD, Leitch AR, Leitch IJ (2008) Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Bot J Linn Soc 158:215–222

    Google Scholar 

  • Röser M (1994) Pathways of karyological differentiation in palms (Arecaceae). Plant Syst Evol 189:89–118

    Google Scholar 

  • Rothwell NV, Kump JG (1965) Chromosome numbers in populations of Claytonia virginica from the New York metropolitan area. Am J Bot 52:403–407

    Google Scholar 

  • Rowell DM, Rockman MV, Tait NN (2002) Extensive Robertsonian rearrangement: implications for the radiation and biogeography of Planipapillus Reid (Onychophora: Peripatopsidae). J Zool 257:171–179

    Google Scholar 

  • Ruas CF, Weiss-Schneeweiss H, Stuessy TF, Samuel MR, Pedrosa-Harand A, Tremetsberger K, Ruas PM, Schlüter PM, Ortiz Herrera MA, König C, Matzenbacher NI (2008) Characterization, genomic organization and chromosomal distribution of Ty1-copia retrotransposons in species of Hypochaeris (Asteraceae). Gene 412:39–49

    PubMed  CAS  Google Scholar 

  • Ruiz Rejón M, Oliver JL (1981) Genetic variability in Muscari comosum (Liliaceae). I. A comparative analysis of chromosome polymorphisms in Spanish and Aegean populations. Heredity 47:403–407

    Google Scholar 

  • Ruiz Rejón M, Posse F, Oliver JL (1980) The B chromosome system of Scilla autumnalis (Liliaceae): effects at the isozyme level. Chromosoma 79:341–348

    Google Scholar 

  • Samuel R, Stuessy TF, Tremetsberger K, Baeza CM, Siljak-Yakovlev S (2003) Phylogenetic relationships among species of Hypochaeris (Asteraceae, Cichorieae) based on ITS, plastid trnL intron, trnL-F spacer, and matK sequences. Am J Bot 90:496–507

    PubMed  CAS  Google Scholar 

  • Sandery MJ, Forster JW, Blunden R, Jones N (1990) Identification of a family of repeated sequences on the rye B chromosome. Genome 33:908–913

    CAS  Google Scholar 

  • Sapre AB, Deshpande D (1987) Origin of B chromosomes in Coix L. through spontaneous interspecific hybridisation. J Hered 78:191–196

    Google Scholar 

  • Schmidt T, Heslop-Harrison JS (1998) Genomes, genes and junk: the large scale organization of plant chromosomes. Trends Plant Sci 3:195–199

    Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103

    PubMed  Google Scholar 

  • Schranz ME, Mitchell-Olds T (2006) Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. Plant Cell 18:1152–1165

    PubMed  CAS  Google Scholar 

  • Schranz ME, Lysák MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    PubMed  CAS  Google Scholar 

  • Schubert I (2001) Alteration of chromosome numbers by generation of minichromosomes: is there a lower limit of chromosome size for stable segregation? Cytogenet Cell Genet 93:175–181

    PubMed  CAS  Google Scholar 

  • Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115

    PubMed  CAS  Google Scholar 

  • Schubert I, Oud JL (1997) There is an upper limit of chromosome size for normal development of an organism. Cell 88:515–520

    PubMed  CAS  Google Scholar 

  • Schubert I, Rieger R (1985) A new mechanism for altering chromosome number during karyotype evolution. Theor Appl Genet 70:213–221

    Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Google Scholar 

  • Schubert I, Anastassova-Kristeva M, Rieger R (1979) Specificity of NOR staining in Vicia faba. Exp Cell Res 120:433–435

    PubMed  CAS  Google Scholar 

  • Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962

    PubMed  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization, 2nd edn. BIOS, Oxford, UK

    Google Scholar 

  • Schwarzacher HG, Wachtler F (1986) Nucleolus organizer regions and nucleoli: cytological findings. Chromosomes Today 9:252–260

    Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  • Schweizer D (1976) Reverse fluorescent banding with chromomycin and DAPI. Chromosoma 58:307–324

    PubMed  CAS  Google Scholar 

  • Schweizer D (1981) Counterstain-enhanced chromosome banding. Hum Genet 57:1–14

    PubMed  CAS  Google Scholar 

  • Shibata F, Hizume M, Kuroki Y (2000) Molecular cytogenetic analysis of supernumerary heterochromatic segments in Rumex acetosa. Genome 43:391–397

    PubMed  CAS  Google Scholar 

  • Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109

    PubMed  CAS  Google Scholar 

  • Skalicka K, Lim KY, Matyášek R, Matzke M, Leitch AR, Kovařík A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303

    PubMed  CAS  Google Scholar 

  • Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535

    PubMed  CAS  Google Scholar 

  • Smyth DR, Kongsuwan K, Wisudharomn S (1989) A survey of C-band patterns in chromosomes of Lilium (Liliaceae). Plant Syst Evol 163:53–69

    Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Evolution of genome size and base chromosome number. In: Soltis DE, Soltis PS, Endress PK, Chase MW (eds) Phylogeny and evolution of angiosperms. Sinauer Associates, Sunderland, pp 287–302

    Google Scholar 

  • Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30

    Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CD, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    PubMed  Google Scholar 

  • Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59:1387–1403

    Google Scholar 

  • Sone T, Fujisawa M, Takenaka M, Nakagawa S, Yamaoka S, Sakaida M, Nishiyama R, Yamato KT, Ohmido N, Fukui K, Fukuzawa H, Ohyama K (1999) Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Mol Biol 41:679–685

    PubMed  CAS  Google Scholar 

  • Souza LGR, Crosa O, Winge H, Guerra M (2009) The karyotype of Nothoscordum arenarium Herter (Gilliesioideae, Alliaceae): a populational and cytomolecular analysis. Genet Mol Biol 32:111–116

    PubMed  Google Scholar 

  • Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477

    Google Scholar 

  • Stebbins GL (1940) The significance of polyploidy in plant evolution. Am Nat 74:54–66

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Stedje B (1989) Chromosome evolution within the Ornithogalum tenuifolium complex (Hyacinthaceae), with special emphasis on the evolution of bimodal karyotypes. Plant Syst Evol 166:79–89

    Google Scholar 

  • Stewart RN (1947) The morphology of somatic chromosomes in Lilium. Am J Bot 34:9–26

    PubMed  CAS  Google Scholar 

  • Stuessy TF (1971) Chromosome numbers and phylogeny in Melampodium (Compositae). Am J Bot 58:732–736

    Google Scholar 

  • Stuessy TF (2009) Plant taxonomy: the systematic evaluation of comparative data. Columbia University Press, New York

    Google Scholar 

  • Stuessy TF, Crawford DJ (1998) Chromosomal stasis during speciation in angiosperms of oceanic islands. In: Stuessy TF, Ono M (eds) Evolution and speciation of island plants. Cambridge University Press, Cambridge, pp 307–324

    Google Scholar 

  • Stuessy TF, Weiss-Schneeweiss H, Keil DJ (2004) Diploid and polyploid cytotype distribution in Melampodium cinereum and M. leucanthum (Asteraceae, Heliantheae). Am J Bot 91:889–898

    PubMed  Google Scholar 

  • Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávnícek P, Schönswetter P (2007) Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401

    PubMed  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstration of centromeric heterochromatin. Exp Cell Res 75:304–306

    PubMed  CAS  Google Scholar 

  • Sumner AT (1990) Chromosome banding. Unwin and Hyman, London

    Google Scholar 

  • Swaminathan K, Varala K, Hudson ME (2007) Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genomics 8:132

    PubMed  Google Scholar 

  • Sýkorová E, Fajkus J, Meznikova M, Lim KY, Neplechova K, Blattner FR, Chase MW, Leitch AR (2006) Minisatellite telomeres occur in the family Alliaceae but are lost in Allium. Am J Bot 93:814–823

    PubMed  Google Scholar 

  • Symonds VV, Soltis PS, Soltis DE (2010) Dynamics of polyploid formation in Tragopogon (Asteraceae): recurrent formation, gene flow, and population structure. Evolution 64:1984–2003

    PubMed  Google Scholar 

  • Szinay D, Bai Y, Visser R, de Jong H (2010) FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops. Cytogenet Genome Res 129:199–210

    PubMed  CAS  Google Scholar 

  • Tang X, Szinay D, Lang C, Ramanna MS, van der Vossen EAG, Datema E, Lankhorst RK, de Boer J, Peters SA, Bachem C, Stiekema W, Visser RGF, de Jong H, Bai Y (2008) Cross-species bacterial artificial chromosome–fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180:1319–1328

    PubMed  CAS  Google Scholar 

  • Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3:219–229

    PubMed  CAS  Google Scholar 

  • Topp CN, Okagaki RJ, Melo JR, Kynast RG, Phillips RL, Dawe RK (2009) Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res 124:228–238

    PubMed  CAS  Google Scholar 

  • Torrell M, Garcia-Jacas N, Susanna A, Valles J (1999) Infrageneric phylogeny of the genus Artemisia L. (Asteraceae, Anthemidae) based on nucleotide sequences of nuclear ribosomal DNA internal transcribed spacers (ITS). Taxon 48:721–736

    Google Scholar 

  • Trávníček P, Kubátová B, Čurn V, Rauchová J, Krajníková E, Jersáková J, Suda J (2011) Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Ann Bot 107:77–87

    PubMed  Google Scholar 

  • Tsujimoto H, Usami N, Hasegawa K, Yamada T, Nagaki K, Sasakuma T (1999) De novo synthesis of telomere sequences at the healed breakpoints of wheat deletion chromosomes. Mol Gen Genet 262:851–856

    PubMed  CAS  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Uchida W, Matsunaga S, Sugiyama R, Kawano S (2002) Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet Syst 77:63–67

    PubMed  CAS  Google Scholar 

  • Ugarković D, Plohl M (2002) Variation in satellite DNA profiles: causes and effects. EMBO J 21:5955–5959

    PubMed  Google Scholar 

  • Uhl CH (1978) Chromosomes of Mexican Sedum II. Section Pachysedum. Rhodora 80:491–512

    Google Scholar 

  • Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873

    PubMed  CAS  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725–732

    PubMed  Google Scholar 

  • Vanzela ALL, Guerra M, Luceno M (1996) Rhynchospora tenuis Link (Cyperaceae), a species with the lowest number of holocentric chromosomes. Cytobios 88:219–228

    Google Scholar 

  • Vanzela ALL, Luceño M, Guerra M (2000) Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). Bot J Linn Soc 134:557–566

    Google Scholar 

  • Vanzela ALL, Cuadrado A, Guerra M (2003) Localization of 45S rDNA and telomeric sites on holocentric chromosomes of Rhynchospora tenuis Link (Cyperaceae). Genet Mol Biol 26:199–201

    CAS  Google Scholar 

  • Vaughan HE, Taylor S, Parker JS (1997) The ten cytological races of the Scilla autumnalis species complex. Heredity 79:371–379

    Google Scholar 

  • Vogel J et al, The International Brachypodium Initiative (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    CAS  Google Scholar 

  • Volkov RA, Medina FJ, Zentgraf U, Hemleben V (2004) Organization and molecular evolution of rDNA, nucleolar dominance, and nucleolus structure. Prog Bot 65:106–146

    CAS  Google Scholar 

  • Vosa CG (1985) Chromosome banding in plants. In: Sharma AK, Sharma A (eds) Advances in chromosome and cell genetics. Oxford/IBH Publishing, New Delhi, pp 79–104

    Google Scholar 

  • Vosa CG (2005) On chromosome uniformity, bimodality and evolution in the tribe Aloineae (Asphodelaceae). Caryologia 581:83–85

    Google Scholar 

  • Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438

    PubMed  CAS  Google Scholar 

  • Wang X, Tang H, Bowers JE, Feltus FA, Paterson AH (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 77:1753–1763

    Google Scholar 

  • Watanabe K, Yahara T, Denda T, Kosuge K (1999) Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res 112:145–161

    Google Scholar 

  • Weiss H, Małuszyńska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261

    PubMed  CAS  Google Scholar 

  • Weiss H, Scherthan H (2002) Aloe spp. – plants with vertebrate-like telomeric sequences. Chromosome Res 10:155–164

    PubMed  CAS  Google Scholar 

  • Weiss-Schneeweiss H, Stuessy TF, Siljak-Yakovlev S, Baeza CM, Parker J (2003) Karyotype evolution in South American species of Hypochaeris (Asteraceae, Lactuceae). Plant Syst Evol 241:171–184

    Google Scholar 

  • Weiss-Schneeweiss H, Riha K, Jang CG, Puizina J, Scherthan H, Schweizer D (2004) Chromosome termini of the monocot plant Othocallis siberica are maintained by telomerase, which specifically synthesizes vertebrate-type telomere sequences. Plant J 37:484–493

    PubMed  CAS  Google Scholar 

  • Weiss-Schneeweiss H, Stuessy TF, Tremetsberger K, Urtubey E, Valdebenito HA, Beck SG, Baeza CM (2007a) Chromosome numbers and karyotypes of South American species and populations of Hypochaeris (Asteraceae). Bot J Linn Soc 153:49–60

    Google Scholar 

  • Weiss-Schneeweiss H, Schneeweiss GM, Stuessy TF, Mabuchi T, Park J-M, Jang C-G, Sun B-Y (2007b) Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytol 174:669–682

    PubMed  CAS  Google Scholar 

  • Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM, Parker JS, Stuessy TF (2008) Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot 101:909–918

    PubMed  CAS  Google Scholar 

  • Weiss-Schneeweiss H, Stuessy TF, Villaseñor JL (2009) Chromosome numbers, karyotypes, and evolution in Melampodium (Asteraceae). Int J Plant Sci 170:1168–1182

    Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    PubMed  CAS  Google Scholar 

  • White TA, Bordewich M, Searle JB (2010) A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst Biol 59:262–276

    PubMed  CAS  Google Scholar 

  • Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A wholegenome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722

    PubMed  CAS  Google Scholar 

  • Wilby AS, Parker JS (1988) Mendelian and non-Mendelian inheritance of newly-arisen chromosome rearrangements. Heredity 60:263–268

    PubMed  Google Scholar 

  • Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879

    PubMed  CAS  Google Scholar 

  • Wu F, Tanksley SD (2010) Chromosomal evolution in the plant family Solanaceae. BMC Genomics 11:182

    PubMed  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215:1525–1530

    PubMed  CAS  Google Scholar 

  • Zedek F, Šmerda J, Šmarda P, Bureš P (2010) Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. BMC Plant Biol 10:265

    PubMed  CAS  Google Scholar 

  • Zellinger B, Riha K (2007) Composition of plant telomeres. Biochim Biophys Acta 1769:399–409

    PubMed  CAS  Google Scholar 

  • Zhang D, Sang T (1998) Chromosomal structural rearrangement of Paeonia brownii and P. californica revealed by fluorescence in situ hybridization. Genome 41:848–853

    PubMed  CAS  Google Scholar 

  • Żuk J (1969) The additional heterochromatic chromosome and its influence on sex chromosome pairing in Rumex. Heredity 24:69–74

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Austrian Science Fund (FWF), especially projects T218 (Hertha-Firnberg Fellowship) and P21440 to HWS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Weiss-Schneeweiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Weiss-Schneeweiss, H., Schneeweiss, G.M. (2013). Karyotype Diversity and Evolutionary Trends in Angiosperms. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_13

Download citation

Publish with us

Policies and ethics