Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 253))

  • 1322 Accesses

Abstract

We present a brief historical introduction to the field of pulse magnetic resonance (see, e.g., [1]). The first EPR phenomenon was observed by Zavoisky in 1944 [2]. In 1946 Bloch [3] and Purcell et al. [4] reported the first nuclear magnetic resonance (NMR) experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Eaton, G.R., Eaton, S.S., Salikhov, K.M. (eds.): Foundations of Modern EPR. World Scientific, Singapore (1998)

    Google Scholar 

  2. Zavoisky, E.J.: Relaxation of liquid solutions for perpendicular fields. J. Phys. (USSR) 9, 211–216 (1945)

    Google Scholar 

  3. Bloch, F., Hansen, W.W., Packard, M.: The nuclear induction experiment. Phys. Rev. 70, 474–485 (1946)

    Article  ADS  Google Scholar 

  4. Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in solids. Phys. Rev. 69, 37–38 (1946)

    Article  ADS  Google Scholar 

  5. Hahn, E.L.: Spin echoes. Phys. Rev. 80, 580–594 (1950)

    Article  ADS  MATH  Google Scholar 

  6. Blume, R.J.: Electron spin relaxation times in sodium-ammonia solutions. Phys. Rev. 109, 1867–1873 (1958)

    Article  ADS  Google Scholar 

  7. Mims, W.B.: Pulsed ENDOR experiments. Proc. R. Soc. A 283, 452–457 (1965)

    ADS  Google Scholar 

  8. Zhidomirov, G.M., Salikhov, K.M., Tsvetkov, YuD, Yudanov, V.F., Raitsimring, A.M.: A study of the interaction between paramagnetic species and the magnetic nuclei of the surrounding molecules by electron spin echo spectroscopy. J. Struct. Chem. 9, 704–708 (1968)

    Article  Google Scholar 

  9. Salikhov, K.M., Semenov, A.G., Tsvetkov, Yu.D.: Electron Spin Echoes and its Applications. Nauka, Novosibirsk (1976)

    Google Scholar 

  10. Dikanov, S.A., Tsvetkov, Yu.D.: Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. CRC Press, Boca Raton (1992)

    Google Scholar 

  11. Mims, W.B.: Electron spin echoes. In: Geschwind, S. (ed.) Electron Paramagnetic Resonance, pp. 263–351. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  12. Schweiger, A., Jeschke, G.: Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press, London (2001)

    Google Scholar 

  13. Keijzers, C.P., Reijerse, E.L., Schmidt, J.: Pulse EPR: A New Field of Applications, pp. 15–42. North Holland, Amsterdam/Oxford/New York/Tokyo (1989)

    Google Scholar 

  14. Schmidt, J.: Interaction of Two-Level Systems with Coherent Radiation Fields. Leiden University (2000)

    Google Scholar 

  15. Weber, R.T.: Pulsed EPR Primer. Bruker Instruments, Inc., Billerica, MA USA Biospin (2000)

    Google Scholar 

  16. Möbius, K., Savitsky, A.: High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States. Published by the Royal Society of Chemistry (2008)

    Google Scholar 

  17. Carr, H.Y., Purcell, E.M.: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954)

    Article  ADS  Google Scholar 

  18. Mims, W.B.: Envelope modulation in spin-echo experiments. Phys. Rev. B 5, 2409–2419 (1972)

    Article  ADS  Google Scholar 

  19. Solomon, I.: Rotary spin echoes. Phys. Rev. Lett. 2, 301–302 (1959)

    Article  ADS  Google Scholar 

  20. Schmidt, J., van der Waals, J.H.: ESE in triplet states: In: Kevan, L., Schwarz, H. (eds.) Modern Pulsed and CW EPR Techniques. New York (1979)

    Google Scholar 

  21. Poole Jr., C.P.: Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, 2nd edn. Wiley, New York (1983)

    Google Scholar 

  22. Spaeth, J.-M., Niklas, J.R., Bartram, R.H.: Structural analysis of point defects in solids: an introduction to multiple magnetic resonance spectroscopy. In: von Klitzing, K., Merlin, R., Queisser, H.-J., Keimer, B. (eds.) Springer Series in Solid-State Sciences, vol. 43. Springer, Berlin, Heidelberg (1992)

    Google Scholar 

  23. Spaeth, J.-M., Overhof, H.: Point defects in semiconductors and insulators: determination of atomic and electronic structure from paramagnetic hyperfine interactions. In: Hull, R., Jagadish, C., Kawazoe, Y., Osgood, R.M., Parisi, J., Seong, T.-Y., Uchida, S.-I., Wang, Z.M. (eds.) Springer Series in Materials Science, vol. 51. Springer, Berlin, Heidelberg (2003)

    Google Scholar 

  24. Feher, G.: Observation of nuclear magnetic resonances via the electron spin resonance line. Phys. Rev. 103, 834–835 (1956)

    Article  ADS  Google Scholar 

  25. Mims, W.B.: Pulsed ENDOR experiments. Proc. R. Soc. Lond. A 283, 452 (1965)

    Article  ADS  Google Scholar 

  26. Davies, E.R.: A new pulse ENDOR technique. Phys. Lett. A 47, 1–2 (1974)

    Article  ADS  Google Scholar 

  27. Schweiger, A.: Creation and detection of coherence and polarization in pulsed EPR. J. Chem. Soc. Faraday Trans. 91, 177–190 (1995)

    Article  Google Scholar 

  28. Freed, J.H.: The Bruker lecture. Modern techniques in electron paramagnetic resonance spectroscopy. J. Chem. Soc. Faraday Trans. 86, 3173–3180 (1990)

    Article  Google Scholar 

  29. Gemperle, C., Schweiger, A.: Pulsed electron-nuclear double resonance methodology. Chem. Rev. 91, 1481–1505 (1991)

    Article  Google Scholar 

  30. Jeschke, G., Schweiger, A.: Time-domain chirp electron nuclear double resonance spectroscopy in one and two dimensions. J. Chem. Phys. 103, 8329–8337 (1995)

    Article  ADS  Google Scholar 

  31. Jeschke, G., Schweiger, A.: Hyperfine-correlated electron nuclear double resonance spectroscopy. Chem. Phys. Lett. 246, 431–438 (1995)

    Article  ADS  Google Scholar 

  32. Disselhorst, J.A.J.M., van der Meer, H., Poluektov, O.G., Schmidt, J.: A pulsed EPR and ENDOR spectrometer operating at 95 GHz. J. Magn. Reson. A 115, 183–188 (1995)

    Article  ADS  Google Scholar 

  33. Prisner, T.F., Rohrer, M., Moebius, K.: Pulsed 95 GHz high-field EPR heterodyne spectrometer with high spectral and time resolution. Appl. Magn. Reson. 7, 167–183 (1994)

    Article  Google Scholar 

  34. Weil, J.A., Bolton, J.R.: Electron Paramagnetic Resonance, Chapter 12, 2nd edn. Wiley (2007)

    Google Scholar 

  35. Mehring, M., Hoefer, P., Grupp, A.: Bloch-Siegert shift, Rabi oscillation, and spinor behaviour in pulsed electron-nuclear double-resonance experiments. Phys. Rev. A 33, 3523–3526 (1986)

    Article  ADS  Google Scholar 

  36. Zakharchenya, B.P., Meier, F.: Optical Orientation. Elsevier, Amsterdam (1984)

    Google Scholar 

  37. Geschwind, S., Collins, R.J., Schawlow, A.L.: Optical detection of paramagnetic resonance in an excited state of Cr3+ in Al2O3. Phys. Rev. Lett. 3, 545–548 (1959)

    Article  ADS  Google Scholar 

  38. Brossel, J., Geschwind, S., Schawlow, A.L.: Optical detection of paramagnetic resonance in crystals at low temperatures. Phys. Rev. Lett. 3, 548–549 (1959)

    Article  ADS  Google Scholar 

  39. Geschwind, S.: Optical detection of paramagnetic resonance. In: Geschwind, S. (ed.) Electron Paramagnetic Resonance, Ch. 5. Plenum Press, New York (1972)

    Google Scholar 

  40. Klein, J., Voltz, R.: Time-resolved optical detection of coherent spin motion for organic-radical-ion pairs in solution. Phys. Rev. Lett. 36, 1214–1217 (1976)

    Article  ADS  Google Scholar 

  41. Hoff, A.J., Lous, E.J., Vreeken, R.: In: Keijzers, C.P., Reijerse, E.J., Schmidt, J. (eds.) Pulsed EPR A New Field of Application, Chap. 19, pp. 219–226. North-Holland, Amsterdam (1989)

    Google Scholar 

  42. Weis, V., Möbius, K., Prisner, T.: Optically detected electron spin echo envelope modulation on a photoexcited triplet state in zero magnetic field—A comparison between the zero-field and high-field limits. J. Magn. Reson. 131, 17–24 (1998)

    Article  ADS  Google Scholar 

  43. Purvis, K.L., Wiemelt, S.P., Maras, T., Blue, M., Melkonian, V., Ashby, P.D., Riley, S.A., Fifield, L.S., Martin, K.A., Nishimura, A.M.: Spin-echo in the phosphorescent triplet state of crystalline 2-indanone. J. Lumin. 71, 199–205 (1997)

    Article  Google Scholar 

  44. van Oort, E, Glasbeek, M.: In: Keijzers, C.P., Reijerse, E.J., Schmidt, J. (eds.) Pulsed EPR A New Field of Application, Chap. 19, pp. 227–231. North-Holland, Amsterdam (1989)

    Google Scholar 

  45. Tadjikov, B.M., Astashkin, A.V., Sakaguchi, Y.: Quantum beats of the reaction yield induced by a pulsed microwave field. Chem. Phys. Lett. 283, 179–186 (1998)

    Article  ADS  Google Scholar 

  46. Babunts, R.A., Badalyan, A.G., Romanov, N.G., Gurin, A.S., Tolmachev, D.O., Baranov, P.G.: A noncavity scheme of optical detection of high-frequency magnetic and cyclotron resonances in semiconductors and nanostructures. Tech. Phys. Lett. 38, 887–890 (2012)

    Article  ADS  Google Scholar 

  47. Cavenett, B.C.: Optically detected magnetic resonance (ODMR) investigations of recombination processes in semiconductors. Adv. Phys. 30, 475–538 (1981)

    Article  ADS  Google Scholar 

  48. Nicholls, J.E., Davies, J.J., Cavenett, B.C., James, J.R., Dunstan, D.J.: Spin-dependent donor-acceptor pair recombination in ZnS crystals showing the self-activated emission. J. Phys. C: Solid State Phys. 12, 361–379 (1979)

    Article  ADS  Google Scholar 

  49. Hiromitsu, I., Kevan, L.: An improved analysis of transient ESR signals of photoexcited triplet states: Application to chlorophyll-a in a glassy matrix. J. Chem. Phys. 88, 691–695 (1988)

    Article  ADS  Google Scholar 

  50. Schmidt, J., van der Waals, J.H.: Transient ESR studies of molecular triplet states in zero-field. In: Kevan, L., Schwartz, R.N. (eds.) Time Domain Electron Spin Resonance, pp. 343–398. Wiley, New York (1979)

    Google Scholar 

  51. Kevan, L., Kispert, L.D.: Electron Spin Double Resonance Spectroscopy. Wiley Interscience, New York (1976)

    Google Scholar 

  52. Westra, J., Sitters, R., Glasbeek, M.: Optical detection of magnetic resonance in the photoexcited triplet state of a deep center in diamond. Phys. Rev. B 45, 5699–5702 (1992)

    Article  ADS  Google Scholar 

  53. Hiromitsu, I., Westra, J., Glasbeek, M.: Cross-relaxation effects in the 2.818 eV zero-phonon emission in brown diamond. Phys. Rev. B 46, 5303–5310 (1992)

    Article  ADS  Google Scholar 

  54. Glasbeek, M.: Cross-relaxation of localized triplet states in diamond. Appl. Magn. Reson. 7, 479–494 (1994)

    Article  Google Scholar 

  55. Shmidt, J., Solomon, I.: Compt. Rend. 263, 169 (1966)

    Google Scholar 

  56. Honig, A.: Neutral-impurity scattering and impurity Zeeman spectroscopy in semiconductors using highly spin-polarized carriers. Phys. Rev. Lett. 17, 186–188 (1966)

    Article  ADS  Google Scholar 

  57. Thorntont, D.D., Honig, A.: Shallow-donor negative ions and spin-polarized electron transport in silicon. Phys. Rev. Lett. 30, 909–912 (1973)

    Article  ADS  Google Scholar 

  58. Lepine, D.J.: Spin-dependent recombination on silicon surface. Phys. Rev. B 6, 436–441 (1972)

    Article  ADS  Google Scholar 

  59. Kaplan, D., Solomon, I., Mott, N.F.: Explanation of the large spin-dependent recombination effect in semiconductors. J. Phys. Lett. 39, L51–L54 (1978)

    Article  Google Scholar 

  60. Cox, R.T., Block, D., Herve, A., Picard, R., Santier, C., Helbig, R.: Exchange broadened, optically detected ESR spectra for luminescent donor-acceptor pairs in Li doped ZnO. Solid State Commun. 25, 77–80 (1978)

    Article  ADS  Google Scholar 

  61. Vlasenko, L.S., Khramtsov, V.A.: Sov. Phys. Semicond. 20, 688 (1986)

    Google Scholar 

  62. Stich, B., Greulich-Weber, S., Spaeth, J.-M.: Electrical detection of electron paramagnetic resonance: new possibilities for the study of point defects. J. Appl. Phys. 77, 1546–1553 (1994)

    Article  ADS  Google Scholar 

  63. Hoehne, F., Huebl, H., Galler, B., Stutzmann, M., Brandt, M.S.: Spin-dependent recombination between phosphorus donors in silicon and Si/SiO2 interface states investigated with pulsed electrically detected electron double resonance. Phys. Rev. Lett. 104, 046402 (2010)

    Article  ADS  Google Scholar 

  64. Mortemouque, P.A., Sekiguchi, T., Culan, C., Vlasenko, M.P., Elliman, R.G., Vlasenko, L.S., Itoh, K.M.: Spin dependent recombination based magnetic resonance spectroscopy of bismuth donor spins in silicon at low magnetic fields. Appl. Phys. Lett. 101, 082409 (2012)

    Article  ADS  Google Scholar 

  65. Akhtar, W., Morishita, H., Vlasenko, L.S., Poloskin, D.S., Itoh, K.M.: Electrically detected magnetic resonance of phosphorous due to spin dependent recombination with triplet centers in γ-irradiated silicon. Phys. B: Condens. Matter 404, 4583–4585 (2009)

    Article  ADS  Google Scholar 

  66. Eremin, V., Poloskin, D.S., Verbitskaya, E., Vlasenko, M.P., Vlasenko, L.S., Laiho, R., Niinikoski, T.O.: Spin-dependent recombination electron paramagnetic resonance spectroscopy of defects in irradiated silicon detectors. J. Appl. Phys. 93, 9659–9664 (2003)

    Article  ADS  Google Scholar 

  67. Vlasenko, L.S.: Effects of spin dependent recombination and EPR spectroscopy of the excited triplet states of point defects in silicon. Appl. Magn. Reson. 47, 813–822 (2016)

    Article  Google Scholar 

  68. Franke, D.P., Otsuka, M., Matsuoka, T., Vlasenko, L.S., Vlasenko, M.P., Brandt, M.S., Itoh, K.M.: Spin-dependent recombination at arsenic donors in ion-implanted silicon. Appl. Phys. Lett. 105, 112111 (2014)

    Article  ADS  Google Scholar 

  69. Akhtar, W., Morishita, H., Sawano, K., Shiraki, Y., Vlasenko, L.S., Itoh, K.M.: Electrical detection of cross relaxation between electron spins of phosphorus and oxygen-vacancy centers in silicon. Phys. Rev. B 84, 045204 (2011)

    Article  ADS  Google Scholar 

  70. McCamey, D.R., Huebl, H., Brandt, M.S., Hutchison, W.D., McCallum, J.C., Clark, R.G., Hamilton, A.R.: Electrically detected magnetic resonance in ion-implanted Si: P nanostructures. Appl. Phys. Lett. 89, 182115 (2006)

    Article  ADS  Google Scholar 

  71. Morishita, H., Abe, E., Akhtar, W., Vlasenko, L.S., Fujimoto, A., Sawano, K., Shiraki, Ya., Dreher, L., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.-J., Thewalt, M.L.W., Brandt, M.S., Itoh, K.M.: Linewidth of low-field electrically detected magnetic resonance of phosphorus in isotopically controlled silicon. Appl. Phys. Express 4, 021302 (2011)

    Google Scholar 

  72. Hrubesch, F., Braunbeck, G., Voss, A., Stutzmann, M., Brandt, M.S.: Broadband electrically detected magnetic resonance using adiabatic pulses. J. Magn. Reson. 254, 62 (2015)

    Article  ADS  Google Scholar 

  73. Boehme, C., Lips, K.: Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance. Phys. Rev. B 68, 245105 (2003)

    Article  ADS  Google Scholar 

  74. Elzerman, J.M., Hanson, R., Willems van Beveren, L.H., Witkamp, B., Vandersypen, L.M.K., Kouwenhoven, L.P.: Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)

    Google Scholar 

  75. Xiao, M., Martin, I., Yablonovitch, E., Jiang, H.W.: Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004)

    Article  ADS  Google Scholar 

  76. Morishita, H., Vlasenko, L.S., Tanaka, H., Semba, K., Sawano, K., Shiraki, Y., Eto, M., Itoh, K.M.: Electrical detection and magnetic-field control of spin states in phosphorus-doped silicon. Phys. Rev. B 80, 205206 (2009)

    Article  ADS  Google Scholar 

  77. Akhtar, W., Filidou, V., Sekiguchi, T., Kawakami, E., Itahashi, T., Vlasenko, L.S., Morton, J.J.L., Itoh, K.M.: Coherent storage of photoexcited triplet states using 29Si nuclear spins in silicon. Phys. Rev. Lett. 108, 097601 (2012)

    Article  ADS  Google Scholar 

  78. Matsuoka, T., Vlasenko, L.S., Vlasenko, M.P., Sekiguchi, T., Itoh, K.M.: Identification of a paramagnetic recombination center in silicon/silicondioxide interface. Appl. Phys. Lett. 100, 152107 (2012)

    Article  ADS  Google Scholar 

  79. Mortemouque, P.A., Sekiguchi, T., Culan, C., Vlasenko, M.P., Elliman, R.G., Vlasenko, L.S., Itoh, K.M.: Spin dependent recombination based magnetic resonance spectroscopy of bismuth donor spins in silicon at low magnetic fields. Appl. Phys. Lett. 101, 082409 (2012)

    Article  ADS  Google Scholar 

  80. Aichinger, T., Lenahan, P.M., Tuttle, B.R., Peters, D.: A nitrogen-related deep level defect in ion implanted 4H-SiC pn junctions—A spin dependent recombination study. Appl. Phys. Lett. 100, 112113 (2012)

    Article  ADS  Google Scholar 

  81. Cottom, J., Gruber, G., Hadley, P., Koch, M., Pobegen, G., Aichinger, T., Shluger, A.: Recombination centers in 4H-SiC investigated by electrically detected magnetic resonance and ab initio modeling. J. Appl. Phys. 119, 181507 (2016)

    Article  ADS  Google Scholar 

  82. Bagraev, N.T., Gets, D.S., Kalabukhova, E.N., Klyachkin, L.E., Malyarenko, A.M., Mashkov, V.A., Savchenko, D.V., Shanina, B.D.: Electrically detected electron paramagnetic resonance of point centers in 6H-SiC nanostructures. Semiconductors 48, 1467–1480 (2014)

    Article  ADS  Google Scholar 

  83. Dresselhaus, G., Kip, A.F., Kittel, C.: Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys. Rev. 98, 368–384 (1955)

    Article  ADS  Google Scholar 

  84. Drachenko, O., Helm, M.: Cyclotron resonance spectroscopy. In: Patane, A., Balkan, N. (eds.) Semiconductor Research, vol. 150, pp. 283–307. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  85. Baranov, P.G., Veshchunov, YuP, Zitnikov, R.A., Romanov, N.G., Schreter, Yu.G.: Optical detection of microwave resonance in germanium by means of luminescence of electron hole drops. JETP Lett. 26, 249–252 (1977)

    ADS  Google Scholar 

  86. Romestain, R., Weisbuch, C.: Optical detection of cyclotron resonance in semiconductors. Phys. Rev. Lett. 45, 2067–2070 (1980)

    Article  ADS  Google Scholar 

  87. Johnson, G.R., Cavenett, B.C., Kerr, T.M., Kirby, P.B., Wood, C.E.C.: Optical, Hall and cyclotron resonance measurements of GaSb grown by molecular beam epitaxy. Semicond. Sci. Technol. 3, 1157–1165 (1988)

    Article  ADS  Google Scholar 

  88. Godlewski, M., Chen, W., Monemar, B.: Optical detection of cyclotron resonance for characterization of recombination processes in semiconductors. Crit. Rev. Solid State Mater. Sci. 19, 241–301 (1994)

    Google Scholar 

  89. Booth, I.J., Schwerdtfeger, C.F.: Optical detection of cyclotron resonance in GaP and ZnTe. Solid State Commun. 55, 817–822 (1985)

    Article  ADS  Google Scholar 

  90. Pakulis, E.J., Northrop, G.A.: Optically detected electron cyclotron resonance in silicon. Appl. Phys. Lett. 50, 1672–1674 (1987)

    Article  ADS  Google Scholar 

  91. Cavenett, B.C.: Optically detected magnetic resonance (ODMR) investigations of recombination processes in semiconductors. Adv. Phys. 30, 475–538 (1981)

    Article  ADS  Google Scholar 

  92. Cavenett, B.C., Pakulis, E.J.: Optically detected cyclotron resonance in a GaAs/Ga0.67A10.33As superlattice. Phys. Rev. B 32, 8449–8451 (1985)

    Article  ADS  Google Scholar 

  93. Moll, A., Wetzel, C., Meyer, B.K., Omling, P., Scholz, F.: Microwave and far-infrared induced optically detected cyclotron resonance in epitaxial InP and GaAs. Phys. Rev. B 45, 1504–1506 (1992)

    Article  ADS  Google Scholar 

  94. Michels, J.G., Warburton, R.J., Nicholas, R.J., Stanley, C.R.: An optically detected cyclotron resonance study of bulk GaAs. Semicond. Sci. Technol. 9, 198–206 (1994)

    Article  ADS  Google Scholar 

  95. Son, N.T., Kordina, O., Konstantinov, A.O., Chen, W.M., Sörman, E., Monemar, B., Janzén, E.: Electron effective masses and mobilities in high-purity 6H-SiC chemical vapor deposition layers. Appl. Phys. Lett. 65, 3209–3211 (1994)

    Article  ADS  Google Scholar 

  96. Son, N.T., Chen, W.M., Kordina, O., Konstantinov, A.O., Monemar, B., Janzén, E., Hofman, D.M., Volm, D., Drechsler, M., Meyer, B.K.: Electron effective masses in 4H SiC. Appl. Phys. Lett. 66, 1074–1076 (1995)

    Article  ADS  Google Scholar 

  97. Volm, D., Meyer, B.K., Hofmann, D.M., Chen, W.M., Son, N.T., Persson, C., Lindefelt, U., Kordina, O., Sörman, E., Konstantinov, A.O., Monemar, B., Janzén, E.: Determination of the electron effective-mass tensor in 4H SiC. Phys. Rev. B 53, 15409–15412 (1996)

    Article  ADS  Google Scholar 

  98. Chen, W.M., Son, N.T., Janzén, E., Hofmann, D.M., Meyer, B.K.: Effective masses in SiC determined by cyclotron resonance experiments. Phys. Status Solidi A 162, 79–93 (1997)

    Article  ADS  Google Scholar 

  99. Son, N.T., Sörman, E., Chen, W.M., Bergman, J.P., Hallin, C., Kordina, O., Konstantinov, A.O., Monemar, B., Janzén, E., Hofmann, D.M., Volm, D., Meyer, B.K.: Effects of microwave fields on recombination processes in 4H and 6H SiC. J. Appl. Phys. 81, 1929–1932 (1997)

    Article  ADS  Google Scholar 

  100. Meyer, B.K., Hofmann, D.M., Volm, D., Chen, W.M., Son, N.T., Janzén, E.: Optically detected cyclotron resonance investigations on 4H and 6H SiC: Band-structure and transport properties. Phys. Rev. B 61, 4844–4849 (2000)

    Article  ADS  Google Scholar 

  101. Son, N.T., Hai, P.N., Chen, W.M., Hallin, C., Monemar, B., Janzén, E.: Hole effective masses in 4H SiC. Phys. Rev. B 61, R10544–R10546 (2000)

    Article  ADS  Google Scholar 

  102. Wright, M.G., Kanáah, A., Cavenett, B.C., Johnson, G.R., Davey, S.T.: Optically detected cyclotron resonance measurements in Al0.48In0.52As MBE layers. Semicond. Sci. Technol. 4, 590–592 (1989)

    Article  ADS  Google Scholar 

  103. Hofmann, D.M., Drechsler, M., Wetzel, C., Meyer, B.K., Hirler, F., Strenz, R., Abstreiter, G., Böhm, G., Weimann, G.: Optically detected cyclotron resonance on GaAs/AlxGa1−xAs quantum wells and quantum wires. Phys. Rev. B 52, 11313–11318 (1995)

    Article  ADS  Google Scholar 

  104. Ashkinadze, B.M., Belkov, V.V., Krasinskaya, A.G.: Effects of hot-electrons on the luminescence of GaAs. Sov. Phys. Semicond. 24, 555 (1990)

    Google Scholar 

  105. Godlewski, M., Prone, K., Gajewska, M., Chen, W.M., Monemar, B.: Optically detected impact ionization related chaotic oscillations in GaInAs. Phys. Rev. B 44, 8357–8360 (1991)

    Article  ADS  Google Scholar 

  106. Ashkinadze, B.M., Cohen, E., Ron, A., Pfeiffer, L.: Microwave modulation of exciton luminescence in GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 47, 10613–10618 (1993)

    Article  ADS  Google Scholar 

  107. Wang, F.P., Monemar, B., Ahlstroem, M.: Mechanisms for the optically detected magnetic resonance background signal in epitaxial GaAs. Phys. Rev. B 39, 11195–11198 (1989)

    Article  ADS  Google Scholar 

  108. Weman, H., Godlewski, M., Monemar, B.: Optical detection of microwave-induced impact ionization of bound excitons in silicon. Phys. Rev. B 38, 12525–12530 (1988)

    Article  ADS  Google Scholar 

  109. Dedulewicz, D., Godlewski, M.: Carrier heating efficiency in optically detected cyclotron resonance experiment. Acta Phys. Pol. A 84, 535–537 (1993)

    Article  Google Scholar 

  110. Delong, M.C., Viohl, I., Ohlsen, W.D., Taylor, P.C., Olson, J.M.: Microwave thermal modulation of photoluminescence in III-V semiconductors. Phys. Rev. B 43, 1510–1519 (1991)

    Article  ADS  Google Scholar 

  111. Gubarev, S.I., Dremin, A.A., Kukushkin, I.V., Malyavkin, A.V., Tyazhlov, M.G., von Klitzing, K.: Optical detection of cyclotron resonance at a GaAs-GaAlAs heterojunction. JETP Lett. 54, 355–359 (1991)

    ADS  Google Scholar 

  112. Ahmed, N., Agool, I.R., Wright, M.G., Mitchell, K., Koohian, A., Adams, S.J.A., Pidgeon, C.R., Cavenett, P.C., Stanley, C.R., Kean, A.H.: Far-infrared optically detected cyclotron resonance in GaAs layers and low-dimensional structures. Semicond. Sci. Technol. 7, 357–363 (1992)

    Article  ADS  Google Scholar 

  113. Warburton, R.J., Michels, J.G., Nicholas, R.J., Harris, J.J., Foxon, C.T.: Optically detected cyclotron resonance of GaAs quantum wells: effective-mass measurements and offset effects. Phys. Rev. B 46, 13394–13399 (1992)

    Article  ADS  Google Scholar 

  114. Nickel, H.A., Kioseoglou, G., Yeo, T., Cheong, H.D., Petrou, A., McCombe, B.D., Broido, D., Bajaj, K.K., Lewis, R.A.: Internal transitions of confined neutral magnetoexcitons in GaAs/AlxGa1−xAs quantum wells. Phys. Rev. B 62, 2773–2779 (2000)

    Article  ADS  Google Scholar 

  115. Nickel, H.A., Yeo, T.M., Dzyubenko, A.B., McCombe, B.D., Petrou, A., Sivachenko, AYu., Schaff, W., Umansky, V.: Internal transitions of negatively charged magnetoexcitons and many body effects in a two-dimensional electron gas. Phys. Rev. Lett. 88, 056801 (2002)

    Article  ADS  Google Scholar 

  116. Meining, C.J., Nickel, H.A., Dzyubenko, A.B., Petrou, A., Furis, M., Yakovlev, D.R., McCombe, B.D.: Many body effects and internal transitions of confined excitons in GaAs and CdTe quantum wells. Solid State Commun. 127, 821–827 (2003)

    Article  ADS  Google Scholar 

  117. Michels, J., Warburton, R., Nicholas, R., Harris, J., Foxon, C.: Optically detected cyclotron resonance of GaAs quantum wells: effective mass measurements and offset effects. Phys. B: Condens. Matter 184, 159–163 (1993)

    Article  ADS  Google Scholar 

  118. Wetzel, C., Meyer, B.K., Omling, P.: Electron effective mass in direct-band-gap GaAs1-xPx alloys. Phys. Rev. B 47, 15588–15592 (1993)

    Article  ADS  Google Scholar 

  119. Hopkins, M.A., Nicholas, R.J., Brummell, M.A., Harris, J.J., Foxon, C.T.: Cyclotron-resonance study of nonparabolicity and screening in GaAs-Ga1−xAlxAs heterojunctions. Phys. Rev. B 36, 4789–4795 (1987)

    Article  ADS  Google Scholar 

  120. Chou, M.J., Tsui, D.C., Weimann, G.: Cyclotron resonance of high mobility two-dimensional electrons at extremely low densities. Phys. Rev. B 37, 848–854 (1988)

    Article  ADS  Google Scholar 

  121. Herold, G.S., Nickel, H.A., Tischler, J.G., Weinstein, B.A., Mc-Combe, B.D.: Full-spectrum optically detected resonance (ODR) spectroscopy of GaAs/AlGaAs quantum wells. Phys. E: Low Dimens. Syst. Nanostruct. 2, 39–43 (1998)

    Article  ADS  Google Scholar 

  122. Nickel, H., Herold, G., Salib, M., Kioseoglou, G., Petrou, A., McCombe, B., Broido, D.: Internal transitions of excitons and hole cyclotron resonance in undoped GaAs/AlGaAs quantum wells by optically detected resonance spectroscopy. Physica B: Condens. Matter 249–251, 598–602 (1998)

    Article  ADS  Google Scholar 

  123. Nickel, H.A., Yeo, T., Meining, C.J., Yakovlev, D.R., Furis, M., Dzyubenko, A.B., McCombe, B.D., Petrou, A.: Interaction of an electron gas with photoexcited electron-hole pairs in modulation-doped GaAs and CdTe quantum wells. Phys. E: Low Dimens. Syst. Nanostruct. 12, 499–502 (2002)

    Article  ADS  Google Scholar 

  124. Hopkins, M.A., Nicholas, R.J., Barnes, D.J., Brummell, M.A., Harris, J.J., Foxon, C.T.: Temperature dependence of the cyclotron-resonance linewidth in GaAs-Ga1−xAlxAs heterojunctions. Phys. Rev. B 39, 13302–13309 (1989)

    Article  ADS  Google Scholar 

  125. Dai, Y.T., Chang, Y.H., Lee, T.F., Chen, Y.F., Fang, F.F., Wang, W.I.: Optically detected cyclotron resonance studies of multisubband In0.52Al0.48As/In0.53Ga0.47As quantum wells. J. Phys. D Appl. Phys. 29, 3089–3095 (1996)

    Article  ADS  Google Scholar 

  126. Chen, Y.F., Shen, J.L., Dai, Y.D., Fang, F.F.: Observation of spin-splitting crossing between subbands in the optically detected cyclotron-resonance spectra of In0.53Ga0.47As/In0.52Al0.48As heterojunctions. Phys. Rev. B 52, 4692–4695 (1995)

    Article  ADS  Google Scholar 

  127. Chen, Y.F., Shen, J.L., Dai, Y.D., Jan, G.J., Lin, H.H.: Study of InAlAs/InGaAs heterojunction bipolar transistor layers by optically detected cyclotron resonance. Phys. Lett. 66, 2543–2545 (1995)

    Google Scholar 

  128. Kono, J., Lee, S.T., Salib, M.S., Herold, G.S., Petrou, A., McCombe, B.D.: Optically detected far-infrared resonances in doped GaAs quantum wells. Phys. Rev. B 52, R8654–R8657 (1995)

    Article  ADS  Google Scholar 

  129. Meyer, B.K., Drechsler, M., Wetzel, C., Linke, H., Omling, P., Sobkowicz, P.: Composition dependence of the in-plane effective mass in lattice-mismatched, strained Ga1-xInxAs/InP single quantum wells. Appl. Phys. Lett. 63, 657–659 (1993)

    Article  ADS  Google Scholar 

  130. Wetzel, C., Efros, A.L., Moll, A., Meyer, B.K., Omling, P., Sobkowicz, P.: Dependence on quantum confinement of the in-plane effective mass in Ga0.47In0.53As/InP quantum wells. Phys. Rev. B 45, 14052–14056 (1992)

    Article  ADS  Google Scholar 

  131. Murdin, B.N., Hollingworth, A.R., Barker, J.A., Clarke, D.G., Findlay, P.C., Pidgeon, C.R., Wells, J.-P.R., Bradley, I.V., Malik, S., Murray, R.: Double-resonance spectroscopy of InAs/GaAs self-assembled quantum dots. Phys. Rev. B 62, R7755–R7758 (2000)

    Article  ADS  Google Scholar 

  132. Child, R.A., Nicholas, R.J., Mason, N.J., Shields, P.A., Wells, J.-P.R., Bradley, I.V., Phillips, J., Murdin, B.N.: Far-infrared modulated photoluminescence spectroscopy of InSb/GaSb quantum dot structures. Phys. Rev. B 68, 165307 (2003)

    Article  ADS  Google Scholar 

  133. Booth, I.J., Schwerdtfeger, C.F.: Optically detected cyclotron resonance in AgBr. Phys. Status Solidi B 130(749–756), 749–756 (1985)

    Article  ADS  Google Scholar 

  134. Dremin, A.A., Yakovlev, D.R., Sirenko, A.A., Gubarev, S.I., Shabelsky, O.P., Waag, A., Bayer, M.: Electron cyclotron mass in undoped CdTe/CdMnTe quantum wells. Phys. Rev. B 72, 195337 (2005)

    Article  ADS  Google Scholar 

  135. Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures. Wiley, Chichester (1998)

    Google Scholar 

  136. Ledentsov, N.N., Ustinov, V.M., Shchukin, V.A., Kop’ev, P.S., Alferov, Zh.I., Bimberg, D.: Quantum dot heterostructures: fabrication, properties, lasers (Review). Semiconductors 32, 343–365 (1998)

    Article  ADS  Google Scholar 

  137. Ledentsov, N.N., Shchukin, V.A., Grundmann, M., Kirstaedter, N., Bohrer, J., Schmidt, O., Bimberg, D., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop’ev, P.S., Zaitsev, S.V., Gordeev, N.Yu., Alferov, Zh.I., Borovkov, A.I., Kosogov, A.O., Ruvimov, S.S., Werner, P., Gosele, U., Heydenrech, J.: Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. Phys. Rev. B 54, 8743–8750 (1996)

    Article  ADS  Google Scholar 

  138. Egorov, A.Yu., Bernklau, D., Livshits, D., Ustinov, V., Alferov, Zh.I., Riechert, H.: High power CW operation of InGaAsN lasers at 1.3 µm. Electron. Lett. 35, 1643–1644 (1999)

    Article  Google Scholar 

  139. Baranov, P.G., Romanov, N.G., Preobrazhenski, V.L., Egorov, A.Yu., Ustinov, V.M., Sobolev, M.M.: Optically-detected microwave resonance in InGaAsN/GaAs quantum wells and InAs/GaAs quantum dots emitting around 1.3 μm. Int. J. Nanosci. 2, 469–478 (2003)

    Article  Google Scholar 

  140. Zurauskiene, N., Janssen, G., Goovaerts, E., Bouwen, A., Schoemaker, D., Koenraad, P.M., Wolter, J.H.: Optically detected microwave resonance at 95 GHz of exciton states in InAs/GaAs quantum dots. Phys. Status Solidi B 224, 551–554 (2001)

    Article  ADS  Google Scholar 

  141. Janssen, G., Goovaerts, E., Bouwen, A., Partoens, B., Van Daele, B., Zurauskiene, N., Koenraad, P.M., Wolter, J.H.: Observation of cyclotron resonance in an InAs/GaAs wetting layer with shallowly formed quantum dots. Phys. Rev. B 68, 045329 (2003)

    Article  ADS  Google Scholar 

  142. Bagraev, N.T., Gets, D.S., Danilovsky, E.Y., Klyachkin, L.E., Malyarenko, A.M.: On the electrically detected cyclotron resonance of holes in silicon nanostructures. Semiconductors 47, 525–531 (2013)

    Article  ADS  Google Scholar 

  143. Bagraev, N.T., Mashkov, V.A., Danilovsky, E.Yu., Gehlhoff, W., Gets, D.S., Klyachkin, L.E., Kudryavtsev, A.A., Kuzmin, R.V., Malyarenko, A.M., Romanov, V.V.: EDESR and ODMR of impurity centers in nanostructures inserted in silicon microcavities. Appl. Magn. Reson. 39, 113–135 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel G. Baranov .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Austria

About this chapter

Cite this chapter

Baranov, P.G., von Bardeleben, H.J., Jelezko, F., Wrachtrup, J. (2017). Fundamentals of EPR Related Methods. In: Magnetic Resonance of Semiconductors and Their Nanostructures. Springer Series in Materials Science, vol 253. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1157-4_2

Download citation

Publish with us

Policies and ethics