Skip to main content

Conserved Noncoding Sequences in Plant Genomes

  • Chapter
  • First Online:
Plant Genome Diversity Volume 1

Abstract

Plant genomes carry a great diversity of all sorts of sequences and many have functions. Some of these sequences specify functions important to the plant by encoding RNA sequences, some of which (genes or coding domain sequences) encode proteins. Some sequences encode binding functions important to the plant, such as the DNA sites near genes that bind regulatory proteins (motifs), while others may function to block the binding or movement of chromosomal proteins (e.g. insulators). One of the goals of molecular biology studies is to discover the exact functions specified by the genome. However, this is not a simple task. A typical plant has about 30,000 genes, and this does not include genes that function largely selfishly such as most transposons. All of these about 30,000 genes encode one or more messenger RNAs (mRNAs) and many of these genes contain different parts: introns, exons, RNA binding sites, DNA binding sites and similar. Somewhere near the transcriptional units of a gene comprised of its coding regions are the chromosomal regulatory regions that enable the gene to be a part of one or more biological pathways or networks, transcription factor binding sites, enhancer sites, insulator sites and so forth. Added up, there are “millions” of specific DNA sequences that carry specific coding, binding or blocking functions important to gene function sequences with a chromosomal start, stop and strand. We know something functional, however vague, about several thousand of these sequences and almost nothing about the meaning of their combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    Article  PubMed  CAS  Google Scholar 

  • Birchler JA, Veitia RA (2010) The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 186:54–62

    Article  PubMed  CAS  Google Scholar 

  • Buchanan CD, Klein PE, Mullet JE (2004) Phylogenetic analysis of 5′-noncoding regions from the ABA-responsive rab16/17 gene family of soghum, maize and rice provides insight into the composition, organization and function of cis-regulatory modules. Genetics 168:1639–1654

    Article  PubMed  CAS  Google Scholar 

  • Castellana N, Payne S, Shen Z, Stanke M, Bafna V, Briggs S (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105:21034–21038

    Article  PubMed  CAS  Google Scholar 

  • Drake JA, Bird C, Nemesh J, Thomas D, Newton-Cheh C, Raymond A, Excoffler L, Attar H, Antonarakis S, Dermitzakis E et al (2006) Conserved noncoding sequerces are selectively constrained and not mutation cold spots. Nat Genet 38:223–227

    Article  PubMed  CAS  Google Scholar 

  • Edger PP, Pires JC (2009) Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res 17:699–717

    Article  PubMed  CAS  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Subramaniam S (2009) Conserved noncoding sequences (CNSs) in higher plants. Curr Opin Plant Biol 12:126–132

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Rapaka L, Lyons E, Pedersen B, Thomas BC (2007) G-boxes, bigfoot genes and environmental response: characterization of intragenomic conserved noncoding sequences in Arabidopsis. Plant Cell 19:1441–1457

    Article  PubMed  CAS  Google Scholar 

  • Gao L-z, Innan H (2004) Very low gene duplication rate in the yeast genome. Science 306:1367–1370

    Article  PubMed  CAS  Google Scholar 

  • Greene B, Walko R, Hake S (1994) Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics 138:1275–1285

    PubMed  CAS  Google Scholar 

  • Guo H, Moose SP (2003) Conserved noncoding sequences among cultivated cereal genomes identify candidate regulatory sequence elements and patterns of promoter evolution. Plant Cell 15:1143–1158

    Article  PubMed  CAS  Google Scholar 

  • Hardison RC (2000) Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet 16:369–372

    Article  PubMed  CAS  Google Scholar 

  • Inada DC, Bashir A, Lee C, Thomas BC, Ko C, Goff SA, Freeling M (2003) Conserved noncoding sequences in the grasses. Genome Res 13:2030–2041

    Article  PubMed  CAS  Google Scholar 

  • Kaplinsky NJ, Braun DM, Penterman J, Goff SA, Freeling M (2002) Utility and distribution of conserved noncoding sequences in the grasses. Proc Natl Acad Sci U S A 99:6147–6151

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Pritchard J (2007) Adaptive evolution of conserved noncoding elements in mammals. PLoS Genet 3:e147

    Article  Google Scholar 

  • Lee T-F, Li P, Meyers B (2012) The biology and dynamics of plant small RNAs. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York

    Google Scholar 

  • Levine M (2010) Transcriptional enhancers in animal development and evolution. Curr Biol 20:R754–R763

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Ouyang S, Egan A, Nobuta K, Haas BJ, Zhu W, Gu X, Silva JC, Meyers BC, Buell CR (2008) Characterization of paralogous protein families in rice. BMC Plant Biol 2008:18

    Article  Google Scholar 

  • Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:661–673

    Article  PubMed  CAS  Google Scholar 

  • Moses AM, Pollard DA, Nix DA, Iyer VN, Li XY, Biggin MD, Eisen MB (2006) Large-scale turnover of functional transcription factor binding sites in Drosophila. PLoS Comput Biol 2:e130

    Article  PubMed  Google Scholar 

  • Sakuraba Y, Kimura T, Masuya H, Noguchi H, Sezutsu H, Takahasi KR, Toyoda A, Fukumura R, Murata T, Sakaki Y, Yamamura M, Wakana S, Noda T, Shiroishi T, Gondo Y (2008) Identification and characterization of new long conserved noncoding sequences in vertebrates. Mamm Genome 19:703–712

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schnable JC, Pedersen BS, Subramaniam S, Freeling M (2011) Dose-sensitivity, conserved noncoding sequences and duplicate gene retention through multiple tetraploidies in the grasses. Frontiers in Plant Genetics and Genomics 2:1–7

    Google Scholar 

  • Semon M, Wolfe KH (2007) Consequences of genome duplication. Curr Opin Genet Dev 17:505–512

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Lyons E, Pedersen, B, Schnable JC, Paterso AH, Freeling M (2011) Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinformatics 12:102

    Google Scholar 

  • Tatusova TA, Madden TL (1999) BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Thomas BC, Rapaka L, Lyons E, Pedersen B, Freeling M (2007) Intragenomic conserved noncoding sequences in Arabidopsis. Proc Natl Acad Sci U S A 104:3348–3353

    Article  PubMed  CAS  Google Scholar 

  • Tran M, Schultz C, Baumann U (2008) Conserved upstream open reading frames in higher plants. BMC Genomics 9:361

    Article  PubMed  Google Scholar 

  • Uchida N, Townsley B, Chung KH, Sinha N (2007) Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci U S A 104:15953–15958

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, Casneuf T, Van de Peer Y (2006) Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics. Genome Biol 7:R103

    Article  PubMed  Google Scholar 

  • Veitia RA (2002) Exploring the etiology of haploinsufficiency. Bioessays 24(2):175–184

    Google Scholar 

  • Wang X, Tang H, Bowers JE, Feltus FA, Paterson AH (2007) Extensive concerted evolution of rice paralogs and the road to regaining independence. Genetics 177:1753–1763

    Article  PubMed  CAS  Google Scholar 

  • Weeks KE, Chuzhanova NA, Donnison IS, Scott IM (2007) Evolutionary hierarchies of conserved blocks in 5′-noncoding sequences of dicot rbcS genes. BMC Evol Biol 7:51

    Article  PubMed  Google Scholar 

  • Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M (2010) Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol 8:e1000409

    Article  PubMed  Google Scholar 

  • Xu S, Clark T, Zheng H, Vang S, Li R, Wong GK-S, Wang J, Zheng X (2008) Gene conversion in the rice genome. BMC Genomics 9:93

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabarinath Subramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag Wien

About this chapter

Cite this chapter

Subramaniam, S., Freeling, M. (2012). Conserved Noncoding Sequences in Plant Genomes. In: Wendel, J., Greilhuber, J., Dolezel, J., Leitch, I. (eds) Plant Genome Diversity Volume 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1130-7_8

Download citation

Publish with us

Policies and ethics