Skip to main content

Plant Transposable Elements: Biology and Evolution

  • Chapter
  • First Online:
Plant Genome Diversity Volume 1

Abstract

Beginning with the pioneering work in the 30s and 40s of Barbara McClintock, R.A. Brink, Rollins Emerson, Marcus Rhoades, and other prominent maize geneticists, transposable elements (TEs) have come to occupy a central position in the study of plant genomes. Not only did McClintock’s discovery of the Activator/Dissociation (Ac/Ds) system of maize change forever our appreciation of the dynamic nature of chromosomes, her seminal characterization of the regulatory influence of ‘controlling elements’ (such as Ac/Ds and later the Enhancer/Suppressor-Mutator (En/Spm) system) on adjacent gene expression paved the way for decades of exciting research on the control, both genetic and epigenetic, of gene regulation in plants and other eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    PubMed  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078

    PubMed  CAS  Google Scholar 

  • Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro T, Maximova SN, Abrouk M et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–109

    PubMed  CAS  Google Scholar 

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci USA 97:14473–14477

    PubMed  CAS  Google Scholar 

  • Bachtrog D (2003) Accumulation of Spock and Worf, two novel non-LTR retrotransposons, on the neo-Y chromosome of Drosophila miranda. Mol Biol Evol 20:173–181

    PubMed  CAS  Google Scholar 

  • Bachtrog D (2006) A dynamic view of sex chromosome evolution. Curr Opin Genet Dev 16:578–585

    PubMed  CAS  Google Scholar 

  • Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon J, Westerman RP, Sanmiguel PJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5:e1000732

    PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    PubMed  CAS  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans Roy Soc B 274:227–274

    CAS  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    PubMed  CAS  Google Scholar 

  • Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514

    PubMed  CAS  Google Scholar 

  • Berg DE, Howe MM (1989) Mobile DNA. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Bestor TH (1999) Sex brings transposons and genomes into conflict. Genetica 107:289–295

    PubMed  CAS  Google Scholar 

  • Bowen NJ, Jordan IK, Epstein JA, Wood V, Levin HL (2003) Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res 13:1984–1997

    PubMed  CAS  Google Scholar 

  • Brady TL, Fuerst PG, Dick RA, Schmidt C, Voytas DF (2008) Retrotransposon target site selection by imitation of a cellular protein. Mol Cell Biol 28:1230–1239

    PubMed  CAS  Google Scholar 

  • Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294

    PubMed  CAS  Google Scholar 

  • Bureau TE, White SE, Wessler SR (1994) Transduction of a cellular gene by a plant retroelement. Cell 77:479–480

    PubMed  CAS  Google Scholar 

  • Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16:961–976

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans Roy Soc B 355:1563–1572

    CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    PubMed  CAS  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    PubMed  CAS  Google Scholar 

  • Craig NL, Craigie R, Gellert M, Lambowitz AM (2002) Mobile DNA II. ASM Press, Washington, DC

    Google Scholar 

  • Deragon J, Zhang X (2006) Short interspersed elements (SINEs) in plants: origin, classification, and use as phylogenetic markers. Syst Biol 55:949–956

    PubMed  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    PubMed  CAS  Google Scholar 

  • Dietrich CR, Cui F, Packila ML, Li J, Ashlock DA, Nikolau BJ, Schnable PS (2002) Maize Mu transposons are targeted to the 5′ untranslated region of the gl8 gene and sequences flanking Mu target-site duplications exhibit nonrandom nucleotide composition throughout the genome. Genetics 160:697–716

    PubMed  CAS  Google Scholar 

  • Dolgin ES, Charlesworth B (2008) The effects of recombination rate on the distribution and abundance of transposable elements. Genetics 178:2169–2177

    PubMed  Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J. http://www.ncbi.nlm.nih.gov/pubmed/20525006. Accessed 13 Sept 2010

  • Eickbush TH, Malik HS (2002) Origin and evolution of retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA. ASM Press, Washington, DC, pp 1111–1146

    Google Scholar 

  • Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J (1990) High-frequent P element loss in Drosophila is homolog dependent. Cell 10:515–525

    Google Scholar 

  • Erlandsson R, Wilson JF, Pääbo S (2000) Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol 17:804–812

    PubMed  CAS  Google Scholar 

  • Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    PubMed  CAS  Google Scholar 

  • Feschotte C, Mouchès C (2000) Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 17:730–737

    PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    PubMed  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    PubMed  CAS  Google Scholar 

  • Feschotte C, Swamy L, Wessler SR (2003) Genome-wide analysis of mariner-like transposable elements in rice reveals complex relationships with stowaway miniature inverted repeat transposable elements (MITEs). Genetics 163:747–758

    PubMed  CAS  Google Scholar 

  • Feschotte C, Osterlund MT, Peeler R, Wessler SR (2005) DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs. Nucleic Acids Res 33:2153–2165

    PubMed  CAS  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    PubMed  CAS  Google Scholar 

  • Francki MG (2001) Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266–274

    PubMed  CAS  Google Scholar 

  • French-Italian public consortium for grapevine genome characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Google Scholar 

  • Gao X, Hou Y, Ebina H, Levin HL, Voytas DF (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18:359–369

    PubMed  CAS  Google Scholar 

  • Gao D, Gill N, Kim H, Walling JG, Zhang W, Fan C, Yu Y, Ma J, SanMiguel P, Jiang N et al (2009) A lineage-specific centromere retrotransposon in Oryza brachyantha. Plant J 60:820–831

    PubMed  CAS  Google Scholar 

  • Garcia-Perez JL, Doucet AJ, Bucheton A, Moran JV, Gilbert N (2007) Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res 17:602–611

    PubMed  CAS  Google Scholar 

  • Gent JI, Schneider KL, Topp CN, Rodriguez C, Presting GG, Dawe RK (2011) Distinct influences of tandem repeats and retrotransposons on CENH3 nucleosome positioning. Epigenetics Chromatin 4:3

    PubMed  CAS  Google Scholar 

  • Gorinsek B, Gubensek F, Kordis D (2004) Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21:781–798

    PubMed  CAS  Google Scholar 

  • Green MM (1980) Transposable elements in Drosophila and other Diptera. Annu Rev Genet 14:109–120

    PubMed  Google Scholar 

  • Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    PubMed  CAS  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225

    PubMed  Google Scholar 

  • Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    PubMed  CAS  Google Scholar 

  • Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51:11–18

    PubMed  CAS  Google Scholar 

  • Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci USA 106:17811–17816

    PubMed  CAS  Google Scholar 

  • Hickey DA (1982) Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101:519–531

    PubMed  CAS  Google Scholar 

  • Hirsch C, Jiang J (2012) Centromeres: sequences, structure, and biology. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien, New York

    Google Scholar 

  • Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B (2006) An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115:376–382

    PubMed  CAS  Google Scholar 

  • Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR (2006) The transposable element landscape of the model legume Lotus japonicus. Genetics 174:2215–2228

    PubMed  CAS  Google Scholar 

  • Hollister JD, Gaut BS (2007) Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana. Mol Biol Evol 24:2515–2524

    PubMed  CAS  Google Scholar 

  • Hollister JD, Smith LM, Guo Y-L, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108:2322–2327

    PubMed  CAS  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1283

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Ji H, Moore DP, Blomberg MA, Braiterman LT, Voytas DF, Natsoulis G, Boeke JD (1993) Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73:1007–1018

    PubMed  CAS  Google Scholar 

  • Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2553–2564

    PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    PubMed  CAS  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    PubMed  CAS  Google Scholar 

  • Jiang N, Ferguson AA, Slotkin RK, Lisch D (2011) Pack-Mutator-like transposable elements (Pack-MULEs) induce directional modification of genes through biased insertion and DNA acquisition. Proc Natl Acad Sci USA 108:1537–1542

    PubMed  CAS  Google Scholar 

  • Kalendar R, Vicient CM, Peleg O, Anamthawat-Jonsson K, Bolshoy A, Schulman AH (2004) Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166:1437–1450

    PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2007) Helitrons on a roll: eukaryotic rolling-circle transposons. Trends Genet 23:521–529

    PubMed  CAS  Google Scholar 

  • Kejnovsky E, Vyskot B (2010) Silene latifolia: the classical model to study heteromorphic sex chromosomes. Cytogenet Genome Res 129:250–262

    PubMed  CAS  Google Scholar 

  • Kejnovsky E, Kubat Z, Hobza R, Lengerova M, Sato S, Tabata S, Fukui K, Matsunaga S, Vyskot B (2006a) Accumulation of chloroplast DNA sequences on the Y chromosome of Silene latifolia. Genetica 128:167–175

    PubMed  CAS  Google Scholar 

  • Kejnovsky E, Kubat Z, Macas J, Hobza R, Mracek J, Vyskot B (2006b) Retand: a novel family of gypsy-like retrotransposons harboring an amplified tandem repeat. Mol Genet Genomics 276:254–263

    PubMed  CAS  Google Scholar 

  • Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B (2009a) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541

    PubMed  CAS  Google Scholar 

  • Kejnovsky E, Leitch IJ, Leitch AR (2009b) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582

    PubMed  Google Scholar 

  • Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55:24

    Google Scholar 

  • Kordis D (2005) A genomic perspective on the chromodomain-containing retrotransposons: chromoviruses. Gene 347:161–173

    PubMed  CAS  Google Scholar 

  • Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, Hartigan J, Yandell M, Langley CH, Korf I et al (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11:420

    PubMed  Google Scholar 

  • Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51:35356

    Google Scholar 

  • Kumekawa N, Ohmido N, Fukui K, Ohtsubo E, Ohtsubo H (2001) A new gypsy-type retrotransposon, RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes. Mol Genet Genomics 265:48488

    Google Scholar 

  • Kunze R, Starlinger P (1989) The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J 8:3173–3185

    Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    PubMed  CAS  Google Scholar 

  • Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B (1988) On the role of unequal exchange in the containment of transposable element copy number. Genet Res 52:223–235

    PubMed  CAS  Google Scholar 

  • Le Rouzic A, Boutin TS, Capy P (2007) Long-term evolution of transposable elements. Proc Natl Acad Sci USA 104:19371–19380

    Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (embryophyta). Ann Bot 95:207–217

    PubMed  CAS  Google Scholar 

  • Levis R, O’Hare K, Rubin GM (1984) Effect of transposable element insertions on RNA encoded by the white gene of Drosophila. Cell 38:471–481

    PubMed  CAS  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD et al (2004) Role of transposble elements in heterochromatin and epigenetic control. Nature 430:471–476

    PubMed  CAS  Google Scholar 

  • Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    PubMed  CAS  Google Scholar 

  • Liu Z, Yue W, Li D, Wang RR, Kong X, Lu K, Wang G, Dong Y, Jin W, Zhang X (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 117:445–456

    PubMed  CAS  Google Scholar 

  • Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733

    PubMed  Google Scholar 

  • Lockton S, Gaut BS (2010) The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol Biol 10:10

    PubMed  Google Scholar 

  • Lockton S, Ross-Ibarra J, Gaut BS (2008) Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc Natl Acad Sci USA 105:13965–13970

    PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    PubMed  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    PubMed  CAS  Google Scholar 

  • Marais GAB, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, Monéger F, Hobza R, Widmer A, Charlesworth D (2008) Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr Biol 18:545–549

    PubMed  CAS  Google Scholar 

  • May BP, Lippman ZB, Fang Y, Spector DL, Martienssen RA (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet 1:e79

    PubMed  Google Scholar 

  • Miller JT, Dong F, Jackson SA, Song J, Jiang J (1998) Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 150:1615–1623

    PubMed  CAS  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    PubMed  CAS  Google Scholar 

  • Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10:149–155

    PubMed  CAS  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203

    PubMed  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK et al (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855

    PubMed  CAS  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134

    PubMed  CAS  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    PubMed  CAS  Google Scholar 

  • Neumann P, Koblízková A, Navrátilová A, Macas J (2006) Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173:1047–1056

    PubMed  CAS  Google Scholar 

  • Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761

    PubMed  CAS  Google Scholar 

  • Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas J (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4

    PubMed  CAS  Google Scholar 

  • Novikova O (2009) Chromodomains and LTR retrotransposons in plants. Commun Integr Biol 2:158–162

    PubMed  CAS  Google Scholar 

  • Okada S, Sone T, Fujisawa M, Nakayama S, Takenaka M, Ishizaki K, Kono K, Shimizu-Ueda Y, Hanajiri T, Yamato KT et al (2001) The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proc Natl Acad Sci USA 98:9454–9459

    PubMed  CAS  Google Scholar 

  • Orel N, Puchta H (2003) Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol Biol 51:523–531

    PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    PubMed  CAS  Google Scholar 

  • Pathak VK, Hu W-S (1997) “Might as well jump!” Template switching by retroviral reverse transcriptase, defective genome formation, and recombination. Semin Virol 8:141–150

    CAS  Google Scholar 

  • Pereira V (2004) Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol 5:R79

    PubMed  Google Scholar 

  • Petersen G, Seberg O (2000) Phylogenetic evidence for excision of Stowaway miniature inverted-repeat transposable elements in triticeae (Poaceae). Mol Biol Evol 17:1589–1596

    PubMed  CAS  Google Scholar 

  • Peterson-Burch BD, Nettleton D, Voytas DF (2004) Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol 5:R78

    PubMed  Google Scholar 

  • Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE (2003) Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20:880–892

    PubMed  CAS  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    PubMed  CAS  Google Scholar 

  • Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808

    PubMed  CAS  Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert I (1998) A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16:721–728

    PubMed  CAS  Google Scholar 

  • Pritham EJ (2009) Transposable elements and factors influencing their success in eukaryotes. J Hered 100:648–655

    PubMed  CAS  Google Scholar 

  • Qiu D, Gao M, Li G, Quiros C (2009) Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana. Plant Cell Rep 28:649–661

    PubMed  CAS  Google Scholar 

  • Ros F, Kunze R (2001) Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics 157:1723–1733

    PubMed  CAS  Google Scholar 

  • Saedler H, Bonas U, Gierl A, Harrison BJ, Klösgen RB, Krebbers E, Nevers P, Peterson PA, Schwarz-Sommer Z, Sommer H (1984) Transposable elements in Antirrhinum majus and Zea mays. Cold Spring Harb Symp Quant Biol 49:355–361

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    PubMed  CAS  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    PubMed  CAS  Google Scholar 

  • Schaack S, Choi E, Lynch M, Pritham EJ (2010a) DNA transposons and the role of recombination in mutation accumulation in Daphnia pulex. Genome Biol 11:R46

    PubMed  Google Scholar 

  • Schaack S, Pritham EJ, Wolf A, Lynch M (2010b) DNA transposon dynamics in populations of Daphnia pulex with and without sex. Proc Biol Sci 7:2381–2387

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    PubMed  CAS  Google Scholar 

  • Schön I, Martens K (2000) Transposable elements and asexual reproduction. Trends Ecol Evol 15:287–288

    PubMed  Google Scholar 

  • Sharma A, Schneider KL, Presting GG (2008) Sustained retrotransposition is mediated by nucleotide deletions and interelement recombinations. Proc Natl Acad Sci USA 105:15470–15474

    PubMed  CAS  Google Scholar 

  • Shibata F, Hizume M, Kuroki Y (1999) Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108:266–270

    PubMed  CAS  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–118

    PubMed  CAS  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    PubMed  CAS  Google Scholar 

  • Slotkin R, Nuthikattu S, Jiang N (2012) The impact of transposable elements on gene and genome evolution. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien, New York

    Google Scholar 

  • Steinemann M, Steinemann S (1992) Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proc Natl Acad Sci USA 89:7591–7595

    PubMed  CAS  Google Scholar 

  • Steinemann S, Steinemann M (2005) Y chromosomes: born to be destroyed. Bioessays 27:1076–1083

    PubMed  CAS  Google Scholar 

  • Sweredoski M, DeRose-Wilson L, Gaut BS (2008) A comparative computational analysis of nonautonomous helitron elements between maize and rice. BMC Genomics 9:467

    PubMed  Google Scholar 

  • Swigonová Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169:891–906

    PubMed  Google Scholar 

  • Tenaillon MI, Hollister JD, Gaut BS (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Tian Z, Rizzon C, Du J, Zhu L, Bennetzen JL, Jackson SA, Gaut BS, Ma J (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res 19:2221–2230

    PubMed  CAS  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101:15986–15991

    PubMed  CAS  Google Scholar 

  • Tsubota SI, Huong DV (1991) Capture of flanking DNA by a P element in Drosophila melanogaster: creation of a transposable element. Proc Natl Acad Sci USA 88:693–697

    PubMed  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus hordeum. Plant Cell 11:1769–1784

    PubMed  CAS  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2003) Formation of solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in rice Oryza sativa L. Mol Biol Evol 20:528–540

    PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91–107

    PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    PubMed  CAS  Google Scholar 

  • Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438

    PubMed  CAS  Google Scholar 

  • Wagner A (2006) Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol Biol Evol 23:723–733

    PubMed  CAS  Google Scholar 

  • Walbot V, Petrov DA (2001) Gene galaxies in the maize genome. Proc Natl Acad Sci USA 98:8163–8164

    PubMed  CAS  Google Scholar 

  • Wang H, Liu J-S (2008) LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics 9:382

    PubMed  Google Scholar 

  • Weil C, Martienssen R (2008) Epigenetic interactions between transposons and genes: lessons from plants. Curr Opin Genet Dev 18:188–192

    PubMed  CAS  Google Scholar 

  • Whitney KD, Baack EJ, Hamrick JL, Godt MJW, Barringer BC, Bennett MD, Eckert CG, Goodwillie C, Kalisz S, Leitch IJ et al (2010) A role for nonadaptive processes in plant genome size evolution? Evolution 64:2097–2109

    PubMed  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    PubMed  CAS  Google Scholar 

  • Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722

    PubMed  CAS  Google Scholar 

  • Witte CP, Le QH, Bureau T, Kumar A (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci USA 98:13778–13783

    PubMed  CAS  Google Scholar 

  • Wright SI, Le QH, Schoen DJ, Bureau TE (2001) Population dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis. Genetics 158:1279–1288

    PubMed  CAS  Google Scholar 

  • Wright SI, Agrawal N, Bureau TE (2003) Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res 13:1897–1903

    PubMed  CAS  Google Scholar 

  • Yan X, Martínez-Férez IM, Kavchok S, Dooner HK (1999) Origination of Ds elements from Ac elements in maize: evidence for rare repair synthesis at the site of Ac excision. Genetics 152:1733–1740

    PubMed  CAS  Google Scholar 

  • Yang L, Bennetzen JL (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA 106:19922–19927

    PubMed  CAS  Google Scholar 

  • Yang G, Weil CF, Wessler SR (2006) A rice Tc1/mariner-like element transposes in yeast. Plant Cell 18:2469–2478

    PubMed  CAS  Google Scholar 

  • Yang G, Zhang F, Hancock CN, Wessler SR (2007) Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10962–10967

    PubMed  CAS  Google Scholar 

  • Yang G, Nagel DH, Feschotte C, Hancock CN, Wessler SR (2009) Tuned for transposition: molecular determinants underlying the hyperactivity of a stowaway MITE. Science 325:1391–1394

    PubMed  CAS  Google Scholar 

  • Zeyl C, Bell G, Green DM (1996) Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae. Genetics 143:1567–1577

    PubMed  CAS  Google Scholar 

  • Zhang X, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci USA 101:5589–5594

    PubMed  CAS  Google Scholar 

  • Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR (2001) P instability factor: an active maize transposon system associated with the amplification of tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci USA 98:12572–12577

    PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    PubMed  CAS  Google Scholar 

  • Zou S, Ke N, Kim JM, Voytas DF (1996) The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev 10:634–645

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research on transposable elements in the authors’ laboratories has been supported by the Grant Agency of the Czech Republic (grant P305/10/0930), grants No AV0Z50040507 and AV0Z50040702 from the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Kejnovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag Wien

About this chapter

Cite this chapter

Kejnovsky, E., Hawkins, J.S., Feschotte, C. (2012). Plant Transposable Elements: Biology and Evolution. In: Wendel, J., Greilhuber, J., Dolezel, J., Leitch, I. (eds) Plant Genome Diversity Volume 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1130-7_2

Download citation

Publish with us

Policies and ethics