Skip to main content

Co-infection with HIV

  • Chapter
  • First Online:
Drug Resistance in Leishmania Parasites

Summary

This chapter describes the epidemiology, current spread and clinical aspects of HIV/Leishmania co-infection and highlights the recently released guidelines of WHO on their management. It discusses the development of resistant Leishmania strains for existing anti-Leishmania drugs and the complexity of chemotherapy for Leishmania/HIV co-infection, which relies on the same drugs that are used in uncomplicated Leishmania. Additionally, prospects for future chemotherapeutic alternatives that target Leishmania and HIV and tackle both infections simultaneously are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagaard-Hansen J, Nombela N, Alvar J (2010) Population movement: a key factor in the epidemiology of neglected tropical diseases. Trop Med Int Health 15:1281–1288

    Article  PubMed  Google Scholar 

  • Al-Mohammed HI, Chance ML, Bates PA (2005) Production and characterization of stable amphotericin-resistant amastigotes and promastigotes of Leishmania mexicana. Antimicrob Agents Chemother 49:3274–3280. doi:49/8/3274[pii]10.1128/AAC.49.8.3274-3280.2005

    Article  PubMed  CAS  Google Scholar 

  • Alvar J et al (1997) Leishmania and human immunodeficiency virus co-infection: the first 10 years. Clin Microbiol Rev 10:298–319

    PubMed  CAS  Google Scholar 

  • Alvar J et al (2007) Kala-azar outbreak in Libo Kemkem, Ethiopia: epidemiologic and parasitologic assessment. Am J Trop Med Hyg 77:275–282

    PubMed  Google Scholar 

  • Alvar J et al (2008) The relationship between Leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–359

    Article  PubMed  CAS  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  PubMed  CAS  Google Scholar 

  • Bart Ostyn PM et al (2010) Challenges for the implementation of new tools to monitor treatment outcome in Miltefosine-treated Kala-azar patients in India and Nepal. Kaladrug meeting, Antwerp, 2010

    Google Scholar 

  • Bashaye S et al (2009) Risk factors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia. Am J Trop Med Hyg 81:34–39

    PubMed  Google Scholar 

  • Bentwich Z (2003) Concurrent infections that rise the HIV viral load. J HIV Ther 8(3):72–75

    PubMed  Google Scholar 

  • Bernier R et al (1995) Activation of human immunodeficiency virus type 1 in monocytoid cells by the protozoan parasite Leishmania donovani. J Virol 69:7282–7285

    PubMed  CAS  Google Scholar 

  • Carter KC et al (2003) The in vivo susceptibility of Leishmania donovani to sodium stibogluconate is drug specific and can be reversed by inhibiting glutathione biosynthesis. Antimicrob Agents Chemother 47:1529–1535

    Article  PubMed  CAS  Google Scholar 

  • Cipolla L, La Ferla B, Gregori M (2006) Combinatorial approaches to iminosugars as glycosidase and glycosyltransferase inhibitors. Comb Chem High Throughput Screen 9:571–582

    Article  PubMed  CAS  Google Scholar 

  • Cruz I et al (2002) Leishmania in discarded syringes from intravenous drug users. Lancet 359:1124–1125

    Article  PubMed  CAS  Google Scholar 

  • de La Rosa R et al (2002) Incidence of and risk factors for symptomatic visceral leishmaniasis among human immunodeficiency virus type 1-infected patients from Spain in the era of highly active antiretroviral therapy. J Clin Microbiol 40:762–767

    Article  Google Scholar 

  • Decuypere S et al (2005) Gene expression analysis of the mechanism of natural SbV resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother 49:4616–4621. doi:49/11/4616[pii]10.1128/AAC.49.11.4616-4621.2005

    Article  PubMed  CAS  Google Scholar 

  • del Giudice P et al (2002) Impact of highly active antiretroviral therapy on the incidence of visceral leishmaniasis in a French cohort of patients infected with human immunodeficiency virus. J Infect Dis 186:1366–1370

    Article  PubMed  Google Scholar 

  • Delmas F et al (2004) Synthesis and antileishmanial activity of (1,3-benzothiazol-2-yl) amino-9-(10H)-acridinone derivatives. Eur J Med Chem 39:685–690

    Article  PubMed  CAS  Google Scholar 

  • Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3:338–348

    Article  PubMed  CAS  Google Scholar 

  • Donia MS et al (2008) Mollamides B and C, Cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J Nat Prod 71:941–945

    Article  PubMed  CAS  Google Scholar 

  • Durand R et al (1998) Leishmania infantum: lack of parasite resistance to Amphotericin-B in a clinically resistant visceral leishmaniasis. Antimicrob Agents Chemother 42:2141–2143

    PubMed  CAS  Google Scholar 

  • Elkhoury A et al (2007) Co-infeccao leishmaniose visceral e AIDS no Brasil. Rev Soc Bras Med Trop 40:124

    Google Scholar 

  • Fakhfakh MA et al (2003) Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg Med Chem 11:5013–5023

    Article  PubMed  CAS  Google Scholar 

  • Gorski S et al (2010) Visceral leishmaniasis relapse in Southern Sudan (1999–2007): a retrospective study of risk factors and trends. PLoS Negl Trop Dis 4:e705. doi:10.1371/journal.pntd.0000705

    Article  PubMed  Google Scholar 

  • Goyeneche-Patino DA et al (2008) Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob Agents Chemother 52(12):4503–4506. doi: AAC.01075-08[pii]10.1128/AAC.01075-08

    Article  PubMed  CAS  Google Scholar 

  • Gramiccia M, Gradoni L, Orsini S (1992) Decreased sensitivity to meglumine antimoniate (Glucantime) of Leishmania infantum isolated from dogs after several courses of drug treatment. Ann Trop Med Parasitol 86:613–620

    PubMed  CAS  Google Scholar 

  • Grassi F et al (2008) Quinoline compounds decrease in vitro spontaneous proliferation of peripheral blood mononuclear cells (PBMC) from human T-cell lymphotropic virus (HTLV) type-1-infected patients. Biomed Pharmacother 62:430–435

    Article  PubMed  CAS  Google Scholar 

  • Guiguemde RT et al (2003) Leishmania major and HIV co-infection in Burkina Faso. Trans R Soc Trop Med Hyg 97:168–169

    Article  PubMed  Google Scholar 

  • Gul W et al (2006) Modification at the C9 position of the marine natural product isoaaptamine and the impact on HIV-1, mycobacterial, and tumor cell activity. Bioorg Med Chem 14:8495–8505

    Article  PubMed  CAS  Google Scholar 

  • Gul W et al (2007) Chemical transformation and biological studies of marine sesquiterpene (S)-(+)-curcuphenol and its analogs. Biochim Biophys Acta 1770:1513–1519

    Article  PubMed  CAS  Google Scholar 

  • Gurubacharya RL et al (2006) Prevalence of visceral Leishmania & HIV co-infection in Nepal. Indian J Med Res 123:473–475

    PubMed  CAS  Google Scholar 

  • Kumar P et al (2010) Nelfinavir, an HIV-1 protease inhibitor, induces oxidative stress-mediated, caspase-independent apoptosis in Leishmania amastigotes. PLoS Negl Trop Dis 4:e642. doi:10.1371/journal.pntd.0000642

    Article  PubMed  Google Scholar 

  • Lachaud L et al (2009) Parasite susceptibility to Amphotericin-B in failures of treatment for visceral leishmaniasis in patients co-infected with HIV type 1 and Leishmania infantum. Clin Infect Dis 48:e16–e22. doi:10.1086/595710

    Article  PubMed  CAS  Google Scholar 

  • Laport MS, Santos OC, Muricy G (2009) Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol 10:86–105

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Velez R (2003) The impact of highly active antiretroviral therapy (HAART) on visceral leishmaniasis in Spanish patients who are co-infected with HIV. Ann Trop Med Parasitol 97(Suppl 1):143–147

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Velez R et al (1998) Clinicoepidemiologic characteristics, prognostic factors, and survival analysis of patients co-infected with human immunodeficiency virus and Leishmania in an area of Madrid, Spain. Am J Trop Med Hyg 58:436–443

    PubMed  CAS  Google Scholar 

  • Lyons S, Veeken H, Long J (2003) Visceral leishmaniasis and HIV in Tigray, Ethiopia. Trop Med Int Health 8:733–739

    Article  PubMed  Google Scholar 

  • Maarouf M et al (1998) Development and characterization of paromomycin-resistant Leishmania donovani promastigotes. Parasite 5:167–173

    PubMed  CAS  Google Scholar 

  • Mathur P et al (2006) Visceral leishmaniasis/human immunodeficiency virus co-infection in India: the focus of two epidemics. J Med Microbiol 55:919–922

    Article  PubMed  Google Scholar 

  • Matlashewski G et al (2011) Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis 11:322–325

    Article  PubMed  Google Scholar 

  • Mengesha B, Abuhoy M (1978) Kala-azar among labour migrants in Metema-Humera region of Ethiopia. Trop Geogr Med 30:199–206

    PubMed  CAS  Google Scholar 

  • Molina R et al (1999) Infection of sand flies by humans co-infected with Leishmania infantum and human immunodeficiency virus. Am J Trop Med Hyg 60:51–53

    PubMed  CAS  Google Scholar 

  • Moszynski P (2010) Kala-azar outbreak is symptomatic of humanitarian crisis facing southern Sudan. Br Med J 341:c7276. doi: 10.1136/bmj.c7276bmj.c7276[pii]

    Article  Google Scholar 

  • Nakayama H et al (2005) Efficacy of orally administered 2-substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother 49:4950–4956

    Article  PubMed  CAS  Google Scholar 

  • Pettersson S et al (2006) Recent advances in combinatorial chemistry applied to development of anti-HIV drugs. Mini Rev Med Chem 6:91–108

    Article  PubMed  CAS  Google Scholar 

  • Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163. doi: 20/1/133[pii]10.1128/CMR.00029-06

    Article  PubMed  CAS  Google Scholar 

  • Pintado V et al (2001) Visceral leishmaniasis in human immunodeficiency virus (HIV)-infected and non-HIV-infected patients. A comparative study. Medicine (Baltimore) 80:54–73

    Article  CAS  Google Scholar 

  • Rao KV et al (2003) New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J Nat Prod 66:823–828

    Article  PubMed  CAS  Google Scholar 

  • Rao KV et al (2004) Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod 67:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Rao KV et al (2006) Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J Nat Prod 69:1034–1040

    Article  PubMed  CAS  Google Scholar 

  • Redhu NS et al (2006) Leishmania-HIV co-infection: an emerging problem in India. AIDS 20:1213–1215

    Article  PubMed  Google Scholar 

  • Rijal S et al (2007) Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes Infect 9:529–535. doi: S1286-4579(07)00041-X[pii]10.1016/j.micinf.2007.01.009

    Article  PubMed  CAS  Google Scholar 

  • Ritmeijer K et al (2006) A comparison of Miltefosine and sodium stibogluconate for treatment of visceral leishmaniasis in an Ethiopian population with high prevalence of HIV infection. Clin Infect Dis 43:357–364

    Article  PubMed  CAS  Google Scholar 

  • Rosatelli JB et al (1998) Generalized cutaneous leishmaniasis in acquired immunodeficiency syndrome. J Eur Acad Dermatol Venereol 10:229–232. doi: S0926995998000142[pii]

    Article  PubMed  CAS  Google Scholar 

  • Russo R et al (2003) Visceral leishmaniasis in those infected with HIV: clinical aspects and other opportunistic infections. Ann Trop Med Parasitol 97(Suppl 1):99–105

    Article  PubMed  Google Scholar 

  • Sagar S, Kaur M, Minneman KP (2010) Antiviral lead compounds from marine sponges. Mar Drugs 8:2619–2638

    Article  PubMed  CAS  Google Scholar 

  • Saint-Pierre-Chazalet M et al (2009) Membrane sterol depletion impairs Miltefosine action in wild-type and Miltefosine-resistant Leishmania donovani promastigotes. J Antimicrob Chemother 64:993–1001. doi: dkp321[pii]10.1093/jac/dkp321

    Article  PubMed  CAS  Google Scholar 

  • Santos LO et al (2009) HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS One 4:e4918. doi:10.1371/journal.pone.0004918

    Article  PubMed  Google Scholar 

  • Savoia D, Allice T, Tovo PA (2005) Antileishmanial activity of HIV protease inhibitors. Int J Antimicrob Agents 26:92–94

    Article  PubMed  CAS  Google Scholar 

  • Seaman J et al (1996) Epidemic visceral leishmaniasis in southern Sudan: treatment of severely debilitated patients under wartime conditions and with limited resources [see comments]. Ann Intern Med 124:664–672

    PubMed  CAS  Google Scholar 

  • Sundar S (2001) Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 6:849–854. doi:778[pii]

    Article  PubMed  CAS  Google Scholar 

  • Sundar S et al (2011) Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 377:477–486. doi: S0140-6736(10)62050-8[pii]10.1016/S0140-6736(10)62050-8

    Article  PubMed  CAS  Google Scholar 

  • Trudel N et al (2008) Intracellular survival of Leishmania species that cause visceral leishmaniasis is significantly reduced by HIV-1 protease inhibitors. J Infect Dis 198(9):1292–1299. doi:10.1086/592280

    Article  PubMed  CAS  Google Scholar 

  • Tziveleka LA, Vagias C, Roussis V (2003) Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem 3:1512–1535

    Article  PubMed  CAS  Google Scholar 

  • Valdivieso E, Dagger F, Rascon A (2007) Leishmania mexicana: identification and characterization of an aspartyl proteinase activity. Exp Parasitol 116:77–82. doi: S0014-4894(06)00248-7[pii]

    Article  PubMed  CAS  Google Scholar 

  • Valdivieso E et al (2010) Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp. Exp Parasitol 126:557–563. doi: S0014-4894(10)00197-9[pii]10.1016/j.exppara.2010.06.002

    Article  PubMed  CAS  Google Scholar 

  • Vieira NC et al (2008) Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical trials. Biomed Pharmacother 62:684–689

    Article  PubMed  CAS  Google Scholar 

  • Watts KR, Tenney K, Crews P (2010) The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opin Biotechnol 21:808–818

    Article  PubMed  CAS  Google Scholar 

  • WHO (2010) WHO Technical Report Series 949

    Google Scholar 

  • World Health Organization Report of the 5th Consultative Meeting on Leishmania/HIV Coinfection (2007) WHO Technical Report Series WHO/CDS/NTD/IDM/2007.5. In, Addis Ababa, Ethiopia, 20–22 Mar 2007. 10.1016/j.exppara.2006.10.006

  • Yu D, Morris-Natschke SL, Lee KH (2007) New developments in natural products-based anti-AIDS research. Med Res Rev 27:108–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Spanish Agency for International Cooperation for Development is supporting the WHO Leishmaniasis program and is focused among other activities on the treatment of HIV-Leishmania co-infected patients in Ethiopia. LR is supported by grants from EU HEALTH-2007-223414 and Fondo de Investigación Sanitaria RETICS RD06-0021-06 and PS09/01928.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Alvar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

den Boer, M., Rivas, L., Alvar, J. (2013). Co-infection with HIV. In: Ponte-Sucre, A., Diaz, E., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1125-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1125-3_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0238-1

  • Online ISBN: 978-3-7091-1125-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics