Skip to main content

Vaccination as a Control Measure

  • Chapter
  • First Online:
  • 1023 Accesses

Summary

This chapter is introduced by a section describing the development of protective immunity and immunologic memory to Leishmania parasites and the most relevant immune mechanisms for designing vaccines. The following section deals with the first-generation vaccines against cutaneous and visceral leishmaniasis and the candidates for second-generation vaccines, including live vaccines and vaccines based on purified and recombinant Leishmania antigens. Thereafter, the studies dealing with DNA vaccines and vaccines based on sand fly saliva antigens are summarized. Moreover, the role of adjuvants and antigen delivery systems is being discussed. The final section highlights novel vaccination strategies based on the unique immunostimulatory and immunoregulatory functions of dendritic cells and considers future prospects of in situ targeting of dendritic cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ada G (1991) The ideal vaccine. World J Microbiol Biotechnol 7:105–109

    Google Scholar 

  • Aebischer T (1994) Recurrent cutaneous leishmaniasis: a role for persistent parasites? Parasitol Today 10:25–28

    PubMed  CAS  Google Scholar 

  • Aebischer T, Moody SF, Handman E (1993) Persistence of virulent Leishmania major in murine cutaneous leishmaniasis: a possible hazard for the host. Infect Immun 61:220–226

    PubMed  CAS  Google Scholar 

  • Aebischer T et al (2000) Subunit vaccination of mice against new world cutaneous leishmaniasis: comparison of three proteins expressed in amastigotes and six adjuvants. Infect Immun 68:1328–1336

    PubMed  CAS  Google Scholar 

  • Afonso LC et al (1994) The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263:235–237

    PubMed  CAS  Google Scholar 

  • Afrin F, Ali N (1997) Adjuvanticity and protective immunity elicited by Leishmania donovani antigens encapsulated in positively charged liposomes. Infect Immun 65:2371–2377

    PubMed  CAS  Google Scholar 

  • Afrin F, Anam K, Ali N (2000) Induction of partial protection against Leishmania donovani by promastigote antigens in negatively charged liposomes. J Parasitol 86:730–735

    PubMed  CAS  Google Scholar 

  • Aguilar-Be I et al (2005) Cross-protective efficacy of a prophylactic Leishmania donovani DNA vaccine against visceral and cutaneous murine leishmaniasis. Infect Immun 73:812–819

    PubMed  CAS  Google Scholar 

  • Ahmed SB et al (2004) A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major. Vaccine 22:1631–1639

    PubMed  CAS  Google Scholar 

  • Ahuja SS et al (1999) Dendritic cell (DC)-based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection. J Immunol 163:3890–3897

    PubMed  CAS  Google Scholar 

  • Alexander J, Coombs GH, Mottram JC (1998) Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J Immunol 161:6794–6801

    PubMed  CAS  Google Scholar 

  • Ali N, Afrin F (1997) Protection of mice against visceral leishmaniasis by immunization with promastigote antigen incorporated in liposomes. J Parasitol 83:792

    Google Scholar 

  • Alimohammadian MH et al (2002) The role of BCG in human immune responses induced by multiple injections of autoclaved Leishmania major as a candidate vaccine against leishmaniasis. Vaccine 21:174–180

    PubMed  CAS  Google Scholar 

  • Allison AC, Gregoria G (1974) Liposomes as immunological adjuvants. Nature 252:252

    PubMed  CAS  Google Scholar 

  • Amaral VF et al (2002) Study of the safety, immunogenicity and efficacy of attenuated and killed Leishmania (Leishmania) major vaccines in a rhesus monkey (Macaca mulatta) model of the human disease. Mem Inst Oswaldo Cruz 97:1041–1048

    PubMed  CAS  Google Scholar 

  • Anjili CO et al (1995) The chemotactic effect of Phlebotomus duboscqi (Diptera: Psychodidae) salivary gland lysates to murine monocytes. Acta Trop 60:97–100

    PubMed  CAS  Google Scholar 

  • Antunes CM et al (1986) Controlled field trials of a vaccine against New World cutaneous leishmaniasis. Int J Epidemiol 15:572–580

    PubMed  CAS  Google Scholar 

  • Armijos RX et al (2004) Safety, immunogenicity, and efficacy of an autoclaved Leishmania amazonensis vaccine plus BCG adjuvant against New World cutaneous leishmaniasis. Vaccine 22:1320–1326

    PubMed  CAS  Google Scholar 

  • Badaro R et al (2001) Successful use of a defined antigen/GM-CSF adjuvant vaccine to treat mucosal leishmaniasis refractory to antimony: a case report. Braz J Infect Dis 5:223–232

    PubMed  CAS  Google Scholar 

  • Bahar K et al (1996) Comparative safety and immunogenicity trial of two killed Leishmania major vaccines with or without BCG in human volunteers. Clin Dermatol 14:489–495

    PubMed  CAS  Google Scholar 

  • Bart G et al (1997) Cathepsin B-like cysteine proteinase-deficient mutants of Leishmania mexicana. Mol Biochem Parasitol 88:53–61

    PubMed  CAS  Google Scholar 

  • Basu R et al (2005) Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1-and Th2-like responses in visceral leishmaniasis. J Immunol 174:7160–7171

    PubMed  CAS  Google Scholar 

  • Bauer S et al (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 98:9237–9242

    PubMed  CAS  Google Scholar 

  • Belkaid Y et al (1998) Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188:1941–1953

    PubMed  CAS  Google Scholar 

  • Belkaid Y et al (2002) CD4(+) CD25(+) regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507

    PubMed  CAS  Google Scholar 

  • Berberich C et al (2003) Dendritic cell (DC)-based protection against an intracellular pathogen is dependent upon DC-derived IL-12 and can be induced by molecularly defined antigens. J Immunol 170:3171–3179

    PubMed  CAS  Google Scholar 

  • Bhaumik SK et al (2009) UDP-Gal: N-acetylglucosamine beta 1-4 galactosyltransferase expressing live attenuated parasites as vaccine for visceral leishmaniasis. Glycoconj J 26:663–673

    PubMed  CAS  Google Scholar 

  • Bhowmick S, Ali N (2008) Recent developments in leishmaniasis vaccine delivery systems. Expert Opin Drug Deliv 5:789–803

    PubMed  CAS  Google Scholar 

  • Bhowmick S, Ravindran R, Ali N (2007) Leishmanial antigens in liposomes promote protective immunity and provide immunotherapy against visceral leishmaniasis via polarized Th1 response. Vaccine 25:6544–6556

    PubMed  CAS  Google Scholar 

  • Bhowmick S, Ravindran R, Ali N (2008) Gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/C mice infected with Leishmania donovani. Infect Immun 76:1003–1015

    PubMed  CAS  Google Scholar 

  • Bonifaz L et al (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8(+) T cell tolerance. J Exp Med 196:1627–1638

    PubMed  CAS  Google Scholar 

  • Borja-Cabrera GP et al (2002) Long lasting protection against canine kala-azar using the FML-QuilA saponin vaccine in an endemic area of Brazil (São Gonçalo do Amarante, RN). Vaccine 20:3277–3284

    PubMed  CAS  Google Scholar 

  • Borja-Cabrera GP et al (2004) Effective immunotherapy against canine visceral leishmaniasis with the FML-vaccine. Vaccine 22:2234–2243

    PubMed  CAS  Google Scholar 

  • Bowman AS et al (1997) Tick saliva: recent advances and implications for vector competence. Med Vet Entomol 11:277–285

    PubMed  CAS  Google Scholar 

  • Bray RS, Modabber F (2000) The history of leishmaniasis. In: Gilles HM (ed) Protozoal diseases. Hodder Arnold Publisher, New York/London, pp 414–419

    Google Scholar 

  • Breton M et al (2005) Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun 73:6372–6382

    PubMed  CAS  Google Scholar 

  • Brossard M, Wikel SK (1997) Immunology of interactions between ticks and hosts. Med Vet Entomol 11:270–276

    PubMed  CAS  Google Scholar 

  • Burchmore RJS et al (2003) Genetic characterization of glucose transporter function in Leishmania mexicana. Proc Natl Acad Sci USA 100:3901–3906

    PubMed  CAS  Google Scholar 

  • Campbell M et al (2003) DNA immunization with the gene encoding P4 nuclease of Leishmania amazonensis protects mice against cutaneous leishmaniasis. Infect Immun 71:6270–6278

    PubMed  CAS  Google Scholar 

  • Campos-Neto A et al (2001) Protection against cutaneous leishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infect Immun 69:4103–4108

    PubMed  CAS  Google Scholar 

  • Carcelen J et al (2009) The chimerical multi-component Q protein from Leishmania in the absence of adjuvant protects dogs against an experimental Leishmania infantum infection. Vaccine 27:5964–5973

    PubMed  CAS  Google Scholar 

  • Carrion J et al (2007) Adoptive transfer of dendritic cells pulsed with Leishmania infantum nucleosomal histones confers protection against cutaneous leishmaniosis in BALB/C mice. Microbes Infect 9:735–743

    PubMed  CAS  Google Scholar 

  • Carrión J, Folgueira C, Alonso C (2008) Immunization strategies against visceral leishmaniosis with the nucleosomal histones of Leishmania infantum encoded in DNA vaccine or pulsed in dendritic cells. Vaccine 26:2537–2544

    Google Scholar 

  • Carter KC et al (2007) DNA vaccination against the parasite enzyme gamma-glutamylcysteine synthetase confers protection against Leishmania donovani infection. Vaccine 25:4502–4509

    PubMed  CAS  Google Scholar 

  • Castes M et al (1994) Immune response in healthy volunteers vaccinated with killed leishmanial promastigotes plus BCG. I: Skin-test reactivity, T-cell proliferation and interferon-gamma production. Vaccine 12:1041–1051

    PubMed  CAS  Google Scholar 

  • Cavalcante RR, Pereira MH, Gontijo NF (2003) Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects. Parasitology 127:87–93

    PubMed  CAS  Google Scholar 

  • Chikh GG et al (2001) Efficient delivery of antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8(+) T cells. J Immunol 167:6462–6470

    PubMed  CAS  Google Scholar 

  • Coler RN, Reed SG (2005) Second-generation vaccines against leishmaniasis. Trends Parasitol 21:244–249

    PubMed  CAS  Google Scholar 

  • Coler RN et al (2002) Immunization with a polyprotein vaccine consisting of the T-cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect Immun 70:4215–4225

    PubMed  CAS  Google Scholar 

  • Coler RN et al (2007) Leish-111f, a recombinant polyprotein vaccine that protects against visceral leishmaniasis by elicitation of CD4(+) T cells. Infect Immun 75:4648–4654

    PubMed  CAS  Google Scholar 

  • Connell ND et al (1993) Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proc Natl Acad Sci USA 90:11473–11477

    PubMed  CAS  Google Scholar 

  • Convit J et al (1987) Immunotherapy versus chemotherapy in localised cutaneous leishmaniasis. Lancet 1:401–405

    PubMed  CAS  Google Scholar 

  • Convit J et al (2003) Immunotherapy of American cutaneous leishmaniasis in Venezuela during the period 1990–99. Trans R Soc Trop Med Hyg 97:469–472

    PubMed  CAS  Google Scholar 

  • Convit J et al (2004) Therapy of Venezuelan patients with severe mucocutaneous or early lesions of diffuse cutaneous leishmaniasis with a vaccine containing pasteurized Leishmania promastigotes and Bacillus Calmette-Guerin - preliminary report. Mem Inst Oswaldo Cruz 99:57–62

    PubMed  Google Scholar 

  • Cruz A, Coburn CM, Beverley SM (1991) Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci USA 88:7170–7174

    PubMed  CAS  Google Scholar 

  • Cummings HE, Tuladhar R, Satoskar AR (2010) Cytokines and their STATs in cutaneous and visceral leishmaniasis. J Biomed Biotechnol 2010: 294389. Epub 15 Mar 2010

    Google Scholar 

  • Daneshvar H et al (2003) Leishmania mexicana and Leishmania major: attenuation of wild-type parasites and vaccination with the attenuated lines. J Infect Dis 187:1662–1668

    PubMed  Google Scholar 

  • Davoudi N et al (2003) Introduction of three independent selection markers in Leishmania. Iran Biomed J 7:13–18

    CAS  Google Scholar 

  • Davoudi N et al (2005) Development of a recombinant Leishmania major strain sensitive to ganciclovir and 5-fluorocytosine for use as a live vaccine challenge in clinical trials. Vaccine 23:1170–1177

    PubMed  CAS  Google Scholar 

  • De Luca PM et al (1999) Evaluation of the stability and immunogenicity of autoclaved and nonautoclaved preparations of a vaccine against American tegumentary leishmaniasis. Vaccine 17:1179–1185

    PubMed  Google Scholar 

  • Dondji B et al (2005) Heterologous prime-boost vaccination with the LACK antigen protects against murine visceral leishmaniasis. Infect Immun 73:5286–5289

    PubMed  CAS  Google Scholar 

  • Dowlati Y et al (1996) Stepwise safety trial of a killed Leishmania vaccine in Iran. Clin Dermatol 14:497–502

    PubMed  CAS  Google Scholar 

  • Dumonteil E, McMahon-Pratt D, Price VL (2001) Report of the fourth TDR/IDRI meeting on second generation vaccines against leishmaniasis. UNDP/EWorld Bank/WHO special programme for research & training in tropical diseases (TDR). TDR/PRD/Leish/Vac/01.1

    Google Scholar 

  • Dumonteil E et al (2003) DNA vaccines induce partial protection against Leishmania mexicana. Vaccine 21:2161–2168

    PubMed  CAS  Google Scholar 

  • Dunan S et al (1989) Vaccination trial against canine visceral leishmaniasis. Phocean veterinary study group on visceral leishmaniasis. Parasite Immunol 11:397–402

    PubMed  CAS  Google Scholar 

  • Dunning N (2009) Leishmania vaccines: from leishmanization to the era of DNA technology. Biosci Horiz 2:73–82

    CAS  Google Scholar 

  • Encke J, Putlitz JZ, Wands JR (1999) DNA vaccines. Intervirology 42:117–124

    PubMed  CAS  Google Scholar 

  • Ferreira WA et al (2003) Detection and characterization of Leishmania antigens from an American cutaneous leishmaniasis vaccine for diagnosis of visceral leishmaniasis. Diagn Microbiol Infect Dis 45:35–43

    PubMed  Google Scholar 

  • Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2:77–84

    PubMed  CAS  Google Scholar 

  • Flohé SB et al (1998) Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major. Eur J Immunol 28:3800–3811

    PubMed  Google Scholar 

  • Flynn B et al (2005) Prevention and treatment of cutaneous leishmaniasis in primates by using synthetic type D/A oligodeoxynucleotides expressing CpG motifs. Infect Immun 73:4948–4954

    PubMed  CAS  Google Scholar 

  • Foged C et al (2004) Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine 22:1903–1913

    PubMed  CAS  Google Scholar 

  • Foulds KE, Wu CY, Seder RA (2006) Th1 memory: implications for vaccine development. Immunol Rev 211:58–66

    PubMed  CAS  Google Scholar 

  • Fragaki K et al (2001) Immunisation with DNA encoding Leishmania infantum protein papLe22 decreases the frequency of parasitemic episodes in infected hamsters. Vaccine 19:1701–1709

    PubMed  CAS  Google Scholar 

  • Gafurov I (1999) Experience in controlling and preventing zoonotic cutaneous leishmaniasis in Uzbekistan. Med Parazitol (Mosk) 1:58–59

    Google Scholar 

  • Gamboa-Leon R et al (2006) Immunotherapy against visceral leishmaniasis with the nucleoside hydrolase-DNA vaccine of Leishmania donovani. Vaccine 24:4863–4873

    PubMed  CAS  Google Scholar 

  • Garmory HS, Brown KA, Titball RW (2003) DNA vaccines: improving expression of antigens. Genet Vaccin Ther 1:2

    Google Scholar 

  • Gavron D, Saul A (1997) Pioneer of tropical medicine. Balaban Publishers, Rehovot. ISBN 0-86689-045-9

    Google Scholar 

  • Genaro O et al (1996a) Vaccine for prophylaxis and immunotherapy, Brazil. Clin Dermatol 14:503–512

    PubMed  CAS  Google Scholar 

  • Genaro O et al (1996b) Phase III randomized double blind clinical trial on the efficacy of a vaccine against canine visceral leishmaniasis in urban area of Montes Claros. Mem Inst Oswaldo Cruz 91:166

    Google Scholar 

  • Ghalib H, Modabber F (2007) Consultation meeting on the development of therapeutic vaccines for post kala azar dermal leishmaniasis. Kinetoplastid Biol Dis 6:7

    PubMed  Google Scholar 

  • Ghedin E et al (1998) Inducible expression of suicide genes in Leishmania donovani amastigotes. J Biol Chem 273:22997–23003

    PubMed  CAS  Google Scholar 

  • Ghosh A, Labrecque S, Matlashewski G (2001a) Protection against Leishmania donovani infection by DNA vaccination: increased DNA vaccination efficiency through inhibiting the cellular p53 response. Vaccine 19:3169–3178

    PubMed  CAS  Google Scholar 

  • Ghosh A, Zhang WW, Matlashewski G (2001b) Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 20:59–66

    PubMed  CAS  Google Scholar 

  • Gillespie RD, Mbow ML, Titus RG (2000) The immunomodulatory factors of bloodfeeding arthropod saliva. Parasite Immunol 22:319–331

    PubMed  CAS  Google Scholar 

  • Glenn GM et al (2000) Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 6:1403–1406

    PubMed  CAS  Google Scholar 

  • Gomes R et al (2008) Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA 105:7845–7850

    PubMed  CAS  Google Scholar 

  • Gonzalo RM et al (2002) A heterologous prime-boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infantum P36/LACK antigen protects BALB/C mice from cutaneous leishmaniasis. Vaccine 20:1226–1231

    PubMed  CAS  Google Scholar 

  • Gorczynski RM (1985) Immunization of susceptible BALB/C mice against Leishmania braziliensis 2. Use of temperature-sensitive avirulent clones of parasite for vaccination purposes. Cell Immunol 94:11–20

    PubMed  CAS  Google Scholar 

  • Gradoni L et al (2005) Failure of a multi-subunit recombinant leishmanial vaccine (MML) to protect dogs from Leishmania infantum infection and to prevent disease progression in infected animals. Vaccine 23:5245–5251

    PubMed  CAS  Google Scholar 

  • Greenblatt CL (1980) The present and future of vaccination for cutaneous leishmaniasis. Prog Clin Biol Res 47:259–285

    PubMed  CAS  Google Scholar 

  • Gregoriadis G et al (2002) A role for liposomes in genetic vaccination. Vaccine 20:B1–B9

    PubMed  CAS  Google Scholar 

  • Gumy A, Louis JA, Launois P (2004) The murine model of infection with Leishmania major and its importance for the deciphering of mechanisms underlying differences in Th cell differentiation in mice from different genetic backgrounds. Int J Parasitol 34:433–444

    PubMed  CAS  Google Scholar 

  • Gurunathan S et al (1997) Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med 186:1137–1147

    PubMed  CAS  Google Scholar 

  • Gurunathan S et al (1998) Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat Med 4:1409–1415

    PubMed  CAS  Google Scholar 

  • Gurunathan S, Klinman DM, Seder RA (2000a) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974

    PubMed  CAS  Google Scholar 

  • Gurunathan S et al (2000b) Requirements for the maintenance of Th1 immunity in vivo following DNA vaccination: a potential immunoregulatory role for CD8(+) T cells. J Immunol 165:915–924

    PubMed  CAS  Google Scholar 

  • Hafez IM, Maurer N, Cullis PR (2001) On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 8:1188–1196

    PubMed  CAS  Google Scholar 

  • Hall LR, Titus RG (1995) Sand fly vector saliva selectively modulates macrophage functions that inhibit killing of Leishmania major and nitric-oxide production. J Immunol 155:3501–3506

    PubMed  CAS  Google Scholar 

  • Handman E (1997) Leishmania vaccines: old and new. Parasitol Today 13:236–238

    PubMed  CAS  Google Scholar 

  • Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14:229–243

    PubMed  CAS  Google Scholar 

  • Handman E et al (2000) Therapy of murine cutaneous leishmaniasis by DNA vaccination. Vaccine 18:3011–3017

    PubMed  CAS  Google Scholar 

  • Hartmann G et al (2000) Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 164:1617–1624

    PubMed  CAS  Google Scholar 

  • Hemmi H et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200

    PubMed  CAS  Google Scholar 

  • Iborra S et al (2003) The Leishmania infantum acidic ribosomal protein P0 administered as a DNA vaccine confers protective immunity to Leishmania major infection in BALB/C mice. Infect Immun 71:6562–6572

    PubMed  CAS  Google Scholar 

  • Iborra S et al (2004) Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis. Vaccine 22:3865–3876

    PubMed  CAS  Google Scholar 

  • Ivory C, Chadee K (2004) DNA vaccines: designing strategies against parasitic infections. Genet Vaccin Ther 2:17

    Google Scholar 

  • Jaafari MR et al (2007) The role of CpG ODN in enhancement of immune response and protection in BALB/C mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63) encapsulated in cationic liposome. Vaccine 25:6107–6117

    PubMed  CAS  Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    PubMed  CAS  Google Scholar 

  • Jankovic D, Liu Z, Gause WC (2001) Th1- and Th2-cell commitment during infectious disease: asymmetry in divergent pathways. Trends Immunol 22:450–457

    PubMed  CAS  Google Scholar 

  • Joshi PB et al (1998) Targeted gene deletion of Leishmania major genes encoding developmental stage-specific leishmanolysin (GP63). Mol Microbiol 27:519–530

    PubMed  CAS  Google Scholar 

  • Joshi PB et al (2002) Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 120:33–40

    PubMed  CAS  Google Scholar 

  • Kahl LP et al (1989) Vaccination against murine cutaneous leishmaniasis by using Leishmania-major antigen liposomes - optimization and assessment of the requirement for intravenous immunization. J Immunol 142:4441–4449

    PubMed  CAS  Google Scholar 

  • Kamhawi S et al (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290:1351–1354

    Google Scholar 

  • Kamil AA et al (2003) Alum-precipitated autoclaved Leishmania major plus bacille Calmette-Guerrin, a candidate vaccine for visceral leishmaniasis: safety, skin-delayed type hypersensitivity response and dose finding in healthy volunteers. Trans R Soc Trop Med Hyg 97:365–368

    PubMed  CAS  Google Scholar 

  • Katz O et al (2000) Adenosine, AMP, and protein phosphatase activity in sandfly saliva. Am J Trop Med Hyg 62:145–150

    PubMed  CAS  Google Scholar 

  • Kedzierski L, Zhu Y, Handman E (2006) Leishmania vaccines: progress and problems. Parasitology 133(Suppl):S87–S112

    PubMed  CAS  Google Scholar 

  • Kemp M et al (1994) Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis. Clin Exp Immunol 96:410–415

    PubMed  CAS  Google Scholar 

  • Khalil EA et al (2000a) Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356:1565–1569

    PubMed  CAS  Google Scholar 

  • Khalil EAG et al (2000b) Safety and immunogenicity of an autoclaved Leishmania major vaccine. East Afr Med J 77:468–470

    PubMed  CAS  Google Scholar 

  • Khamesipour A et al (2006) Leishmaniasis vaccine candidates for development: a global overview. Indian J Med Res 123:423–438

    PubMed  Google Scholar 

  • Kharazmi A et al (1999) T-cell response in human leishmaniasis. Immunol Lett 65:105–108

    PubMed  CAS  Google Scholar 

  • Kimsey PB et al (1993) An avirulent lipophosphoglycan-deficient Leishmania major clone induces CD4(+) T cells which protect susceptible BALB/C mice against infection with virulent L. major. Infect Immun 61:5205–5213

    PubMed  CAS  Google Scholar 

  • Kovar L (2004) Tick saliva in anti-tick immunity and pathogen transmission. Folia Microbiol 49:327–336

    CAS  Google Scholar 

  • Kurtzhals JA et al (1994) Dichotomy of the human T cell response to Leishmania antigens. II. Absent or Th2-like response to gp63 and Th1-like response to lipophosphoglycan-associated protein in cells from cured visceral leishmaniasis patients. Clin Exp Immunol 96:416–421

    PubMed  CAS  Google Scholar 

  • Lange UG et al (2004) DNA-Salmonella enterica serovar Typhimurium primer-booster vaccination biases towards T helper 1 responses and enhances protection against Leishmania major infection in mice. Infect Immun 72:4924–4928

    PubMed  CAS  Google Scholar 

  • Lau LL et al (1994) Cytotoxic T-cell memory without antigen. Nature 369:648–652

    PubMed  CAS  Google Scholar 

  • Lebowitz JH, Cruz A, Beverley SM (1992) Thymidine kinase as a negative selectable marker in Leishmania major. Mol Biochem Parasitol 51:321–325

    PubMed  CAS  Google Scholar 

  • Lemesre JL et al (2007) Long-lasting protection against canine visceral leishmaniasis using the LiESAp-MDP vaccine in endemic areas of France: double-blind randomised efficacy field trial. Vaccine 25:4223–4234

    PubMed  CAS  Google Scholar 

  • Lopez-Fuertes L et al (2002) DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine 21:247–257

    PubMed  CAS  Google Scholar 

  • Machado-Pinto J et al (2002) Immunochemotherapy for cutaneous leishmaniasis: a controlled trial using killed Leishmania (Leishmania) amazonensis vaccine plus antimonial. Int J Dermatol 41:73–78

    PubMed  Google Scholar 

  • Marques-da-Silva EA et al (2005) Intramuscular immunization with p36(LACK) DNA vaccine induces IFN-gamma production but does not protect BALB/C mice against Leishmania chagasi intravenous challenge. Parasitol Res 98:67–74

    PubMed  Google Scholar 

  • Marzochi KB et al (1998) Phase 1 study of an inactivated vaccine against American tegumentary leishmaniasis in normal volunteers in Brazil. Mem Inst Oswaldo Cruz 93:205–212

    PubMed  CAS  Google Scholar 

  • Masina S et al (2003) Protection against cutaneous leishmaniasis in outbred vervet monkeys, using a recombinant histone H1 antigen. J Infect Dis 188:1250–1257

    PubMed  Google Scholar 

  • Mattner F et al (1996) Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 26:1553–1559

    PubMed  CAS  Google Scholar 

  • Maurer T et al (2002) CpG-DNA aided cross presentation of soluble antigens by dendritic cells. Eur J Immunol 32:2356–2364

    PubMed  CAS  Google Scholar 

  • Mayrink W et al (1979) A field trial of a vaccine against American dermal leishmaniasis. Trans R Soc Trop Med Hyg 73:385–387

    PubMed  CAS  Google Scholar 

  • Mayrink W et al (1985) An experimental vaccine against American dermal leishmaniasis: experience in the state of Espirito Santo, Brazil. Ann Trop Med Parasitol 79:259–269

    PubMed  CAS  Google Scholar 

  • Mayrink W et al (1986) Further trials of a vaccine against American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 80:1001

    PubMed  CAS  Google Scholar 

  • Mazumdar T, Anam K, Ali N (2004) A mixed Th1/Th2 response elicited by a liposomal formulation of Leishmania vaccine instructs Th1 responses and resistance to Leishmania donovani in susceptible BALB/C mice. Vaccine 22:1162–1171

    PubMed  CAS  Google Scholar 

  • Mazumdar T, Anam K, Ali N (2005) Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens. J Parasitol 91:269–274

    PubMed  CAS  Google Scholar 

  • Mazumder S et al (2007) Non-coding pDNA bearing immunostimulatory sequences co-entrapped with leishmanial antigens in cationic liposomes elicits almost complete protection against experimental visceral leishmaniasis in BALB/C mice. Vaccine 25:8771–8781

    PubMed  CAS  Google Scholar 

  • Mbow ML et al (1998) Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J Immunol 161:5571–5577

    PubMed  CAS  Google Scholar 

  • McMahon-Pratt D et al (1993) Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infect Immun 61:3351–3359

    PubMed  CAS  Google Scholar 

  • McShane H (2002) Prime-boost immunization strategies for infectious diseases. Curr Opin Mol Ther 4:23–27

    PubMed  CAS  Google Scholar 

  • Melby PC et al (2001) Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect Immun 69:4719–4725

    PubMed  CAS  Google Scholar 

  • Mendez S et al (2001) The potency and durability of DNA- and protein-based vaccines against Leishmania major evaluated using low-dose, intradermal challenge. J Immunol 166:5122–5128

    PubMed  CAS  Google Scholar 

  • Mendez A et al (2002) Optimization of DNA vaccination against cutaneous leishmaniasis. Vaccine 20:3702–3708

    PubMed  CAS  Google Scholar 

  • Mendez S et al (2003) Coinjection with CpG-containing immunostimulatory oligodeoxynucleotides reduces the pathogenicity of a live vaccine against cutaneous leishmaniasis but maintains its potency and durability. Infect Immun 71:5121–5129

    PubMed  CAS  Google Scholar 

  • Misra A et al (2001) Successful vaccination against Leishmania donovani infection in Indian langur using alum-precipitated autoclaved Leishmania major with BCG. Vaccine 19:3485–3492

    PubMed  CAS  Google Scholar 

  • Mitchell GF, Handman E (1986) The glycoconjugate derived from a Leishmania major receptor for macrophages is a suppressogenic, disease-promoting antigen in murine cutaneous leishmaniasis. Parasite Immunol 8:255–263

    PubMed  CAS  Google Scholar 

  • Mitchell GF, Handman E, Spithill TW (1984) Vaccination against cutaneous leishmaniasis in mice using nonpathogenic cloned promastigotes of Leishmania major and importance of route of injection. Aust J Exp Biol Med 62:145–153

    Google Scholar 

  • Modabber F, Reed S (2004) Vaccines against leishmaniasis. In: Levine M, Kaper JB, Rappuolo R, Liu MA, Good MF (eds) New generation vaccine. Dekker, New York, pp 903–915

    Google Scholar 

  • Mohebali M et al (2004) Double-blind randomized efficacy field trial of alum precipitated autoclaved Leishmania major vaccine mixed with BCG against canine visceral leishmaniasis in Meshkin-Shahr district, I.R. Iran. Vaccine 22:4097–4100

    PubMed  CAS  Google Scholar 

  • Molano I et al (2003) A Leishmania infantum multi-component antigenic protein mixed with live BCG confers protection to dogs experimentally infected with L. infantum. Vet Immunol Immunopathol 92:1–13

    PubMed  CAS  Google Scholar 

  • Moll H, Berberich C (2001) Dendritic cell-based vaccination strategies: induction of protective immunity against leishmaniasis. Immunobiology 204:659–666

    PubMed  CAS  Google Scholar 

  • Momeni AZ et al (1999) A randomised, double-blind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine 17:466–472

    PubMed  CAS  Google Scholar 

  • Morris RV et al (2001) Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 167:5226–5230

    PubMed  CAS  Google Scholar 

  • Mottram JC et al (1996) Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci USA 93:6008–6013

    PubMed  CAS  Google Scholar 

  • Murray HW et al (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    PubMed  CAS  Google Scholar 

  • Muyombwe A et al (1997) Selective killing of Leishmania amastigotes expressing a thymidine kinase suicide gene. Exp Parasitol 85:35–42

    PubMed  CAS  Google Scholar 

  • Muyombwe A et al (1998) Protection against Leishmania major challenge infection in mice vaccinated with live recombinant parasites expressing a cytotoxic gene. J Infect Dis 177:188–195

    PubMed  CAS  Google Scholar 

  • Nakanishi T et al (1999) Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins. J Control Release 61:233–240

    PubMed  CAS  Google Scholar 

  • Noormohammadi AH et al (2001) Paradoxical effects of IL-12 in leishmaniasis in the presence and absence of vaccinating antigen. Vaccine 19:4043–4052

    PubMed  CAS  Google Scholar 

  • Norsworthy NB et al (2004) Sand fly saliva enhances Leishmania amazonensis infection by modulating interleukin-10 production. Infect Immun 72:1240–1247

    PubMed  CAS  Google Scholar 

  • Okwor I, Uzonna J (2008) Persistent parasites and immunologic memory in cutaneous leishmaniasis: implications for vaccine designs and vaccination strategies. Immunol Res 41:123–136

    PubMed  Google Scholar 

  • Okwor I, Uzonna J (2009) Vaccines and vaccination strategies against human cutaneous leishmaniasis. Hum Vaccin 5:291–301

    PubMed  Google Scholar 

  • Oliveira-Freitas E et al (2006) Acylated and deacylated saponins of Quillaja saponaria mixture as adjuvants for the FML-vaccine against visceral leishmaniasis. Vaccine 24:3909–3920

    PubMed  CAS  Google Scholar 

  • Olobo JOAC et al (1995) Vaccination of vervet monkeys against cutaneous leishmaniasis using recombinant Leishmania major surface glycoprotein (gp63). Vet Parasitol 60:199–212

    PubMed  CAS  Google Scholar 

  • Ozinsky A et al (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97:13766–13771

    PubMed  CAS  Google Scholar 

  • Palatnik-de-Sousa CB (2008) Vaccines for leishmaniasis in the fore coming 25 years. Vaccine 26:1709–1724

    PubMed  CAS  Google Scholar 

  • Palatnik-de-Sousa CB et al (1994) Experimental murine Leishmania donovani infection: immunoprotection by the fucose-mannose ligand (FML). Braz J Med Biol Res 27:547–551

    PubMed  CAS  Google Scholar 

  • Papadopoulou B et al (2002) Reduced infectivity of a Leishmania donovani biopterin transporter genetic mutant and its use as an attenuated strain for vaccination. Infect Immun 70:62–68

    PubMed  CAS  Google Scholar 

  • Perez-Jimenez E et al (2006) MVA-LACK as a safe and efficient vector for vaccination against leishmaniasis. Microbes Infect 8:810–822

    PubMed  CAS  Google Scholar 

  • Persing DH et al (2002) Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol 10:S32–S37

    PubMed  CAS  Google Scholar 

  • Pinto EF et al (2004) Intranasal vaccination against cutaneous leishmaniasis with a particulated leishmanial antigen or DNA encoding LACK. Infect Immun 72:4521–4527

    PubMed  CAS  Google Scholar 

  • Rafati S et al (2001) A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine 19:3369–3375

    PubMed  CAS  Google Scholar 

  • Rafati S et al (2002) Recombinant cysteine proteinases-based vaccines against Leishmania major in BALB/C mice: the partial protection relies on interferon gamma producing CD8(+) T lymphocyte activation. Vaccine 20:2439–2447

    PubMed  CAS  Google Scholar 

  • Rafati S et al (2005) Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of Leishmania infantum. Vaccine 23:3716–3725

    PubMed  CAS  Google Scholar 

  • Rafati S, Zahedifard F, Nazgouee F (2006) Prime-boost vaccination using cysteine proteinases type I and II of Leishmania infantum confers protective immunity in murine visceral leishmaniasis. Vaccine 24:2169–2175

    PubMed  CAS  Google Scholar 

  • Ramírez JR et al (2001) Attenuated Toxoplasma gondii ts-4 mutants engineered to express the Leishmania antigen KMP-11 elicit a specific immune response in BALB/C mice. Vaccine 20:455–461

    PubMed  Google Scholar 

  • Ramírez-Pineda JR et al (2004) Dendritic cells (DC) activated by CpG DNA ex vivo are potent inducers of host resistance to an intracellular pathogen that is independent of IL-12 derived from the immunizing DC. J Immunol 172:6281–6289

    PubMed  Google Scholar 

  • Ramiro MJ et al (2003) Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime-boost regime using DNA and vaccinia recombinant vectors expressing LACK. Vaccine 21:2474–2484

    PubMed  CAS  Google Scholar 

  • Ramos I et al (2008) Heterologous prime-boost vaccination with a non-replicative vaccinia recombinant vector expressing LACK confers protection against canine visceral leishmaniasis with a predominant Th1-specific immune response. Vaccine 26:333–344

    PubMed  CAS  Google Scholar 

  • Rao M, Alving CR (2000) Delivery of lipids and liposomal proteins to the cytoplasm and Golgi of antigen-presenting cells. Adv Drug Deliv Rev 41:171–188

    PubMed  CAS  Google Scholar 

  • Remer KA et al (2007) Vaccination with plasmacytoid dendritic cells induces protection against infection with Leishmania major in mice. Eur J Immunol 37:2463–2473

    PubMed  CAS  Google Scholar 

  • Requena JM et al (2004) Recent advances in vaccines for leishmaniasis. Expert Opin Biol Ther 4:1505–1517

    PubMed  CAS  Google Scholar 

  • Restifo NP et al (2000) The promise of nucleic acid vaccines. Gene Ther 7:89–92

    PubMed  CAS  Google Scholar 

  • Rhee EG et al (2002) Vaccination with heat-killed Leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4(+) and CD8(+) T cell responses and protection against Leishmania major infection. J Exp Med 195:1565–1573

    PubMed  CAS  Google Scholar 

  • Rivier D et al (1993) Vaccine development against cutaneous leishmaniasis - subcutaneous administration of radioattenuated parasites protects CBA mice against virulent Leishmania major challenge. Parasite Immunol 15:75–84

    PubMed  CAS  Google Scholar 

  • Roberts MT (2005) Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. Br Med Bull 75–76:115–130

    PubMed  Google Scholar 

  • Rodriguez-Cortees A et al (2007) Vaccination with plasmid DNA encoding KMPII, TRYP, LACK and GP63 does not protect dogs against Leishmania infantum experimental challenge. Vaccine 25:7962–7971

    Google Scholar 

  • Rogers KA et al (2002) Type 1 and type 2 responses to Leishmania major. FEMS Microbiol Lett 209:1–7

    PubMed  CAS  Google Scholar 

  • Ross R et al (2003) Transcriptional targeting of dendritic cells for gene therapy using the promoter of the cytoskeletal protein fascin. Gene Ther 10:1035–1040

    PubMed  CAS  Google Scholar 

  • Ruiz JH, Becker I (2007) CD8 cytotoxic T cells in cutaneous leishmaniasis. Parasite Immunol 29:671–678

    PubMed  CAS  Google Scholar 

  • Russell DG, Alexander J (1988) Effective immunization against cutaneous leishmaniasis with defined membrane-antigens reconstituted into liposomes. J Immunol 140:1274–1279

    PubMed  CAS  Google Scholar 

  • Sacks D, Kamhawi S (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 55:453–483

    PubMed  CAS  Google Scholar 

  • Sacks DL et al (2000) The role of phosphoglycans in Leishmania-sand fly interactions. Proc Natl Acad Sci USA 97:406–411

    PubMed  CAS  Google Scholar 

  • Santos WR et al (1999) Vaccination of Swiss Albino mice against experimental visceral leishmaniasis with the FML antigen of Leishmania donovani. Vaccine 17:2554–2561

    PubMed  CAS  Google Scholar 

  • Santos WR et al (2002) Saponins, IL12 and BCG adjuvant in the FML-vaccine formulation against murine visceral leishmaniasis. Vaccine 21:30–43

    PubMed  CAS  Google Scholar 

  • Santos WR et al (2003) Immunotherapy against murine experimental visceral leishmaniasis with the FML-vaccine. Vaccine 21:4668–4676

    PubMed  CAS  Google Scholar 

  • Saravia NG et al (2006) Pathogenicity and protective immunogenicity of cysteine proteinase-deficient mutants of Leishmania mexicana in non-murine models. Vaccine 24:4247–4259

    PubMed  CAS  Google Scholar 

  • Satti IN et al (2001) Immunogenicity and safety of autoclaved Leishmania major plus BCG vaccine in healthy Sudanese volunteers. Vaccine 19:2100–2106

    PubMed  CAS  Google Scholar 

  • Schnitzer JK et al (2010) Fragments of antigen-loaded dendritic cells (DC) and DC-derived exosomes induce protective immunity against Leishmania major. Vaccine 28:5785–5793

    PubMed  CAS  Google Scholar 

  • Schoeler GB, Wikel SK (2001) Modulation of host immunity by haematophagous arthropods. Ann Trop Med Parasitol 95:755–771

    PubMed  CAS  Google Scholar 

  • Sedegah M et al (1998) Boosting with recombinant vaccinia increases immunogenicity and protective efficacy of malaria DNA vaccine. Proc Natl Acad Sci USA 95:7648–7653

    PubMed  CAS  Google Scholar 

  • Selvapandiyan A et al (2009) Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol 183:1813–1820

    PubMed  CAS  Google Scholar 

  • Senekji HA, Beattie CP (1941) Artificial infection and immunization of 368 men with cultures of L. tropica. Trans R Soc Trop Med Hyg 369:415–419

    Google Scholar 

  • Sergiev V (1992) Control and prophylaxis of cutaneous leishmaniasis in the middle asia republics of the former USSR. Bull Soc Fr Parasit 10:183–184

    Google Scholar 

  • Sharifi I et al (1998) Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet 351:1540–1543

    PubMed  CAS  Google Scholar 

  • Sharma SK et al (2006) Non PC liposome entrapped promastigote antigens elicit parasite specific CD8(+) and CD4(+) T-cell immune response and protect hamsters against visceral leishmaniasis. Vaccine 24:1800–1810

    PubMed  CAS  Google Scholar 

  • Silvestre R et al (2007) SIR2-Deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. J Immunol 179:3161–3170

    PubMed  CAS  Google Scholar 

  • Silvestre R, Cordeiro-da-Silva A, Ouaissi A (2008) Live attenuated Leishmania vaccines: a potential strategic alternative. Arch Immunol Ther Exp (Warsz) 56:123–126

    Google Scholar 

  • Sjolander A et al (1998a) Vaccination with recombinant parasite surface antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine 16:2077–2084

    PubMed  CAS  Google Scholar 

  • Sjolander A et al (1998b) Induction of a Th1 immune response and simultaneous lack of activation of a Th2 response are required for generation of immunity to leishmaniasis. J Immunol 160:3949–3957

    PubMed  CAS  Google Scholar 

  • Skeiky YAW et al (1995) A recombinant Leishmania antigen that stimulates human peripheral-blood mononuclear-cells to express a Th1-type cytokine profile and to produce interleukin-12. J Exp Med 181:1527–1537

    PubMed  CAS  Google Scholar 

  • Skeiky YAW et al (1998) LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. J Immunol 161:6171–6179

    PubMed  CAS  Google Scholar 

  • Skeiky YA et al (2002) Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine 20:3292–3303

    PubMed  CAS  Google Scholar 

  • Smrkovski LL, Larson CL (1977) Effect of treatment with BCG on the course of visceral leishmaniasis in BALB/C mice. Infect Immun 16:249–257

    PubMed  CAS  Google Scholar 

  • Solioz N et al (1999) The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine 18:850–859

    PubMed  CAS  Google Scholar 

  • Soussi N et al (2000) Listeria monocytogenes as a short-lived delivery system for the induction of type 1 cell-mediated immunity against the p36/LACK antigen of Leishmania major. Infect Immun 68:1498–1506

    PubMed  CAS  Google Scholar 

  • Späth GF et al (2003a) The role(s) of lipophosphoglycan (LPG) in the establishment of Leishmania major infections in mammalian hosts. Proc Natl Acad Sci USA 100:9536–9541

    PubMed  Google Scholar 

  • Späth GF et al (2003b) Persistence without pathology in phosphoglycan-deficient Leishmania major. Science 301:1241–1243

    PubMed  Google Scholar 

  • Spitzer N et al (1999) Long-term protection of mice against Leishmania major with a synthetic peptide vaccine. Vaccine 17:1298–1300

    PubMed  CAS  Google Scholar 

  • Sprent J, Tough DF (2001) T cell death and memory. Science 293:245–248

    PubMed  CAS  Google Scholar 

  • Stäger S, Smith DF, Kaye PM (2000) Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol 165:7064–7071

    PubMed  Google Scholar 

  • Stevenson FK (2004) DNA vaccines and adjuvants. Immunol Rev 199:5–8

    PubMed  CAS  Google Scholar 

  • Streit JA et al (2000) BCG expressing LCR1 of Leishmania chagasi induces protective immunity in susceptible mice. Exp Parasitol 94:33–41

    PubMed  CAS  Google Scholar 

  • Sukumaran B et al (2003) Vaccination with DNA encoding ORFF antigen confers protective immunity in mice infected with Leishmania donovani. Vaccine 21:1292–1299

    PubMed  CAS  Google Scholar 

  • Swain SL (2000) CD4 T-cell memory can persist in the absence of class II. Philos Trans R Soc Lond B Biol Sci 355:407–411

    PubMed  CAS  Google Scholar 

  • Tapia E et al (2003) The combination of DNA vectors expressing IL-12 + IL-18 elicits high protective immune response against cutaneous leishmaniasis after priming with DNA-p36/LACK and the cytokines, followed by a booster with a vaccinia virus recombinant expressing p36/LACK. Microbes Infect 5:73–84

    PubMed  CAS  Google Scholar 

  • Tewary P et al (2005) A heterologous prime-boost vaccination regimen using ORFF DNA and recombinant ORFF protein confers protective immunity against experimental visceral leishmaniasis. J Infect Dis 191:2130–2137

    PubMed  CAS  Google Scholar 

  • Tewary P, Saxena S, Madhubala R (2006) Co-administration of IL-12 DNA with rORFF antigen confers long-term protective immunity against experimental visceral leishmaniaisis. Vaccine 24:2409–2416

    PubMed  CAS  Google Scholar 

  • Theodos CM, Titus RG (1993) Salivary-gland material from the sand fly Lutzomyia longipalpis has an inhibitory effect on macrophage function in vitro. Parasite Immunol 15:481–487

    PubMed  CAS  Google Scholar 

  • Theodos CM, Ribeiro JM, Titus RG (1991) Analysis of enhancing effect of sand fly saliva on Leishmania infection in mice. Infect Immun 59:1592–1598

    PubMed  CAS  Google Scholar 

  • Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    PubMed  Google Scholar 

  • Titus RG (1998) Salivary gland lysate from the sand fly Lutzomyia longipalpis suppresses the immune response of mice to sheep red blood cells in vivo and concanavalin A in vitro. Exp Parasitol 89:133–136

    PubMed  CAS  Google Scholar 

  • Titus RG, Ribeiro JM (1988) Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239:1306–1308

    PubMed  CAS  Google Scholar 

  • Titus RG, Ribeiro JM (1990) The role of vector saliva in transmission of arthropod-borne disease. Parasitol Today 6:157–160

    PubMed  CAS  Google Scholar 

  • Titus RG et al (1995) Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci USA 92:10267–10271

    PubMed  CAS  Google Scholar 

  • Trujillo C et al (1999) The humoral immune response to the kinetoplastid membrane protein-11 in patients with American leishmaniasis and Chagas disease: prevalence of IgG subclasses and mapping of epitopes. Immunol Lett 70:203–209

    PubMed  CAS  Google Scholar 

  • Uzonna JE et al (2001) Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease. J Immunol 167:6967–6974

    PubMed  CAS  Google Scholar 

  • Uzonna JE et al (2004) Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol 172:3793–3797

    PubMed  CAS  Google Scholar 

  • Valenzuela JG et al (2001) Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194:331–342

    PubMed  CAS  Google Scholar 

  • Velez ID et al (2000) Safety and immunogenicity of a killed Leishmania (L.) amazonensis vaccine against cutaneous leishmaniasis in Colombia: a randomized controlled trial. Trans R Soc Trop Med Hyg 94:698–703

    PubMed  CAS  Google Scholar 

  • Velez ID et al (2005) Failure of a killed Leishmania amazonensis vaccine against American cutaneous leishmaniasis in Colombia. Trans R Soc Trop Med Hyg 99:593–598

    PubMed  Google Scholar 

  • Verthelyi D et al (2003) CpG oligodeoxynucleotides protect normal and SIV-infected macaques from Leishmania infection. J Immunol 170:4717–4723

    PubMed  CAS  Google Scholar 

  • Waitumbi J, Warburg A (1998) Phlebotomus papatasi saliva inhibits protein phosphatase activity and nitric oxide production by murine macrophages. Infect Immun 66:1534–1537

    PubMed  CAS  Google Scholar 

  • Walker PS et al (1999) Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-gamma-dependent mechanisms. Proc Natl Acad Sci USA 96:6970–6975

    PubMed  CAS  Google Scholar 

  • Webb JR et al (1996) Molecular cloning of a novel protein antigen of Leishmania major that elicits a potent immune response in experimental murine leishmaniasis. J Immunol 157:5034–5041

    PubMed  CAS  Google Scholar 

  • Webb JR et al (1998) Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect Immun 66:3279–3289

    PubMed  CAS  Google Scholar 

  • Weintraub J, Weinbaum FI (1977) Effect of BCG on experimental cutaneous leishmaniasis in mice. J Immunol 118:2288–2290

    PubMed  CAS  Google Scholar 

  • Wikel SK, Bergman D (1997) Tick-host immunology: significant advances and challenging opportunities. Parasitol Today 13:383–389

    PubMed  CAS  Google Scholar 

  • Wolff JA et al (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    PubMed  CAS  Google Scholar 

  • Wu WH et al (2006) Immunomodulatory effects associated with a live vaccine against Leishmania major containing CpG oligodeoxynucleotides. Eur J Immunol 36:3238–3247

    PubMed  CAS  Google Scholar 

  • Xu D, Liew FY (1994) Genetic vaccination against leishmaniasis. Vaccine 12:1534–1536

    PubMed  CAS  Google Scholar 

  • Xu D et al (1998) Protective effect on Leishmania major infection of migration inhibitory factor, TNF-alpha, and IFN-gamma administered orally via attenuated Salmonella typhimurium. J Immunol 160:1285–1289

    PubMed  CAS  Google Scholar 

  • Yang DM et al (1990) Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J Immunol 145:2281–2285

    PubMed  CAS  Google Scholar 

  • Zadeh-Vakili A et al (2004) Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis. Vaccine 22:1930–1940

    PubMed  CAS  Google Scholar 

  • Zanin FHC et al (2007) Evaluation of immune responses and protection induced by A2 and nucleoside hydrolase (NH) DNA vaccines against Leishmania chagasi and Leishmania amazonensis experimental infections. Microbes Infect 9:1070–1077

    PubMed  CAS  Google Scholar 

  • Zaph C et al (2004) Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med 10:1104–1110

    PubMed  CAS  Google Scholar 

  • Zer R et al (2001) Effect of sand fly saliva on Leishmania uptake by murine macrophages. Int J Parasitol 31:810–814

    PubMed  CAS  Google Scholar 

  • Zhang WW, Matlashewski G (2001) Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol 39:935–948

    PubMed  CAS  Google Scholar 

  • Zimmermann S et al (1998) CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol 160:3627–3630

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG Collaborative Research Center 630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidrun Moll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Färber, K., Moll, H. (2013). Vaccination as a Control Measure. In: Ponte-Sucre, A., Diaz, E., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1125-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1125-3_6

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0238-1

  • Online ISBN: 978-3-7091-1125-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics