Skip to main content

Functional Analysis of Leishmania Membrane (Non-ABC) Transporters Involved in Drug Resistance

  • Chapter
  • First Online:
  • 1041 Accesses

Summary

Leishmania parasites rely heavily upon membrane transport proteins to deliver essential nutrients from their hosts to the interior of the parasite. Some of these transporters also serve as routes for uptake of drugs used for treatment of leishmaniasis or experimental drugs with potential for development of novel anti-leishmanial therapies. Hence, mutations within the coding regions of such permeases or alterations in the expression of the carrier proteins can confer drug resistance upon the parasites. This chapter reviews the current level of knowledge regarding several classes of membrane transporters known to play roles in uptake or sensitivity to drugs. The increasing knowledge of the “permeome,” provided by complete genome sequences of several Leishmania species, has advanced considerably our knowledge of how nutrients and drugs or other cytotoxic compounds enter these pathogenic protozoa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Salabi MI, de Koning HP (2005) Purine nucleobase transport in amastigotes of Leishmania mexicana: involvement in allopurinol uptake. Antimicrob Agents Chemother 49:3682–3689

    Article  PubMed  CAS  Google Scholar 

  • Al-Salabi MI, Wallace LJ, De Koning HP (2003) A Leishmania major nucleobase transporter responsible for allopurinol uptake is a functional homolog of the Trypanosoma brucei H2 transporter. Mol Pharmacol 63:814–820

    Article  PubMed  CAS  Google Scholar 

  • Antoine JC, et al (1990) Parasitophorous vacuoles of Leishmania amazonensis-infected macrophages maintain an acidic pH. Infect Immun 58:779–787

    PubMed  CAS  Google Scholar 

  • Arastu-Kapur S, et al (2003) Functional analysis of an inosine-guanosine transporter from Leishmania donovani: the role of conserved residues, aspartate 389 and arginine 393. J Biol Chem 278:33327–33333

    Article  PubMed  CAS  Google Scholar 

  • Arastu-Kapur S, et al (2005) Second-site suppression of a nonfunctional mutation within the Leishmania donovani inosine-guanosine transporter. J Biol Chem 280:2213–2219

    Article  PubMed  CAS  Google Scholar 

  • Aronow B, et al (1987) Two high affinity nucleoside transporters in Leishmania donovani. Mol Biochem Parasitol 22:29–37

    Article  PubMed  CAS  Google Scholar 

  • Beverley SM, Ellenberger TE, Cordingley JS (1986) Primary structure of the gene encoding the bifunctional dihydrofolate reductase-thymidylate synthase of Leishmania major. Proc Natl Acad Sci USA 83:2584–2588

    Article  PubMed  CAS  Google Scholar 

  • Brochu C, et al (2003) Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother 47:3073–3079

    Article  PubMed  CAS  Google Scholar 

  • Callahan HL, Beverley SM (1992) A member of the aldoketo reductase family confers methotrexate resistance in Leishmania. J Biol Chem 267:24165–24168

    PubMed  CAS  Google Scholar 

  • Callahan HL, et al (1997) An axenic amastigote system for drug screening. Antimicrob Agents Chemother 41:818–822

    PubMed  CAS  Google Scholar 

  • Carrió J, et al (2000) Leishmania infantum: stage-specific activity of pentavalent antimony related with the assay conditions. Exp Parasitol 95:209–214

    Article  PubMed  Google Scholar 

  • Carson DA, Chang KP (1981) Phosphorylation and anti-leishmanial activity of formycin B. Bioch Biophys Res Commun 100:1377–1383

    Article  CAS  Google Scholar 

  • Carter NS, et al (2000) Cloning of a novel inosine-guanosine transporter gene from Leishmania donovani by functional rescue of a transport-deficient mutant. J Biol Chem 275:20935–20941

    Article  PubMed  CAS  Google Scholar 

  • Carter NS, et al (2008) Purine and pyrimidine metabolism in Leishmania. Adv Exp Med Biol 625:141–154

    Article  PubMed  CAS  Google Scholar 

  • Coderre JA, et al (1983) Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci USA 80:2132–2136

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19(1):111–126

    Article  PubMed  CAS  Google Scholar 

  • Cunningham ML, Beverley SM (2001) Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy. Mol Biochem Parasitol 113:199–213

    Article  PubMed  CAS  Google Scholar 

  • Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382

    Article  PubMed  CAS  Google Scholar 

  • Decuypere S, et al (2005) Gene expression analysis of the mechanism of natural SbV resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother 49:4616–4621

    Article  PubMed  CAS  Google Scholar 

  • Detke S (1997) Identification of a transcription factor like protein at the TOR locus in Leishmania mexicana amazonensis. Mol Biochem Parasitol 90:505–511

    Article  PubMed  CAS  Google Scholar 

  • Detke S (2007) TOR-induced resistance to toxic adenosine analogs in Leishmania brought about by the internalization and degradation of the adenosine permease. Exp Cell Res 313:1963–1978

    Article  PubMed  CAS  Google Scholar 

  • Dewes H, Ostergaard HL, Simpson L (1986) Impaired drug uptake in methotrexate resistant Crithidia fasciculata without changes in dihydrofolate reductase activity or gene amplification. Mol Biochem Parasitol 19:149–161

    Article  PubMed  CAS  Google Scholar 

  • Dey S, et al (1996) An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci USA 93:2192–2197

    Article  PubMed  CAS  Google Scholar 

  • Dridi L, Haimeur A, Ouellette M (2010a) Structure-function analysis of the highly conserved charged residues of the membrane protein FT1, the main folic acid transporter of the protozoan parasite Leishmania. Biochem Pharmacol 79:30–38

    Article  PubMed  CAS  Google Scholar 

  • Dridi L, Ahmed Ouameur A, Ouellette M (2010b) High affinity S-adenosylmethionine plasma membrane transporter of Leishmania is a member of the folate biopterin transporter (FBT) family. J Biol Chem 285:19767–19775

    Article  PubMed  CAS  Google Scholar 

  • Ellenberger TE, Beverley SM (1987) Biochemistry and regulation of folate and methotrexate transport in Leishmania major. J Biol Chem 262:10053–10058

    PubMed  CAS  Google Scholar 

  • Eudes A, et al (2010) Identification of transport-critical residues in a folate transporter from the folate-biopterin transporter (FBT) family. J Biol Chem 285:2867–2875

    Article  PubMed  CAS  Google Scholar 

  • Figarella K, et al (2007) Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol Microbiol 65:1006–1017

    Article  PubMed  CAS  Google Scholar 

  • Fu D, et al (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486

    Article  PubMed  CAS  Google Scholar 

  • Goldberg B, et al (1997) A unique transporter of S-adenosylmethionine in African trypanosomes. FASEB J 11:256–260

    PubMed  CAS  Google Scholar 

  • Goodwin LG (1995) Pentostam (sodium stibogluconate): a 50-year personal reminiscence. Trans R Soc Trop Med Hyg 89:339–341

    Article  PubMed  CAS  Google Scholar 

  • Goodwin LG, Page JE (1943) A study of the excretion of organic antimonials using a polarographic procedure. Biochem J 37:198–209

    PubMed  CAS  Google Scholar 

  • Gourbal B, et al (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017

    Article  PubMed  CAS  Google Scholar 

  • Griffiths M, et al (1997) Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med 3:89–93

    Article  PubMed  CAS  Google Scholar 

  • Grondin K, et al (1997) Co-amplification of the γ-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J 16:3057–3065

    Article  PubMed  CAS  Google Scholar 

  • Guan L, Kaback HR (2006) Lessons from lactose permease. Annu Rev Biophys Biomol Struct 35:67–91

    Article  PubMed  CAS  Google Scholar 

  • Hammond DJ, Gutteridge WE (1984) Purine and pyrimidine metabolism in the Trypanosomatidae. Mol Biochem Parasitol 13:243–261

    Article  PubMed  CAS  Google Scholar 

  • Hansen BD, et al (1982) The specificity of purine base and nucleoside uptake in promastigotes of Leishmania braziliensis panamensis. Parasitology 85:271–282

    Article  PubMed  CAS  Google Scholar 

  • Iovannisci DM, Ullman B (1983) High efficiency plating method for Leishmania promastigotes in semidefined or completely-defined medium. J Parasitol 69:633–636

    Article  PubMed  CAS  Google Scholar 

  • Iovannisci DM, et al (1984) Genetic analysis of nucleoside transport in Leishmania donovani. Mol Cell Biol 4:1013–1019

    PubMed  CAS  Google Scholar 

  • Ivens AC, et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  • Javitch JA, et al (1995) Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron 14:825–831

    Article  PubMed  CAS  Google Scholar 

  • Kaur K, et al (1988) Methotrexate-resistant Leishmania donovani genetically deficient in the folate-methotrexate transporter. J Biol Chem 263:7020–7028

    PubMed  CAS  Google Scholar 

  • Kavanaugh MP (1998) Neurotransmitter transport: models in flux. Proc Natl Acad Sci USA 95:12737–12738

    Article  PubMed  CAS  Google Scholar 

  • Kerby BR, Detke S (1993) Reduced purine accumulation is encoded on an amplified DNA in Leishmania mexicana amazonensis resistant to toxic nucleosides. Mol Biochem Parasitol 60:171–185

    Article  PubMed  CAS  Google Scholar 

  • King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698

    Article  PubMed  CAS  Google Scholar 

  • King AE, et al (2006) Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci 27:416–425

    Article  PubMed  CAS  Google Scholar 

  • Kündig C, et al (1999) Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae. EMBO J 18:2342–2351

    Article  PubMed  Google Scholar 

  • Légaré D, et al (2001) The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem 276:26301–26307

    Article  PubMed  Google Scholar 

  • Lemley C, et al (1999) The Leishmania donovani LD1 locus gene ORFG encodes a biopterin transporter (BT1). Mol Biochem Parasitol 104:93–105

    Article  PubMed  CAS  Google Scholar 

  • Leslie G, Barrett M, Burchmore R (2002) Leishmania mexicana: promastigotes migrate through osmotic gradients. Exp Parasitol 102:117–120

    Article  PubMed  Google Scholar 

  • Liu Z, et al (2002) Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci USA 99:6053–6058

    Article  PubMed  CAS  Google Scholar 

  • Maharjan M, et al (2008) Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am J Trop Med Hyg 79:69–75

    PubMed  CAS  Google Scholar 

  • Mandal S, et al (2010) Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. J Antimicrob Chemother 65:496–507

    Article  PubMed  CAS  Google Scholar 

  • Marquis N, et al (2005) Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 57:1690–1699

    Article  PubMed  CAS  Google Scholar 

  • Marr JJ (1991) Purine analogs as chemotherapeutic agents in leishmaniasis and American trypanosomiasis. J Lab Clin Med 118:111–119

    PubMed  CAS  Google Scholar 

  • Marr JJ, Berens RL, Nelson DJ (1978) Purine metabolism in Leishmania donovani and Leishmania braziliensis. Biochim Biophys Acta 544:360–371

    Article  PubMed  CAS  Google Scholar 

  • Martinez S, Marr JJ (1992) Allopurinol in the treatment of American cutaneous leishmaniasis. N Engl J Med 326:741–744

    Article  PubMed  CAS  Google Scholar 

  • Martinez S, et al (1988) The synergistic action of pyrazolopyrimidines and pentavalent antimony against Leishmania donovani and L. braziliensis. Am J Trop Med Hyg 39:250–255

    PubMed  CAS  Google Scholar 

  • Murata K, et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  • Myler PJ, et al (1994) A frequently amplified region in Leishmania contains a gene conserved in prokaryotes and eukaryotes. Gene 148:187–193

    Article  PubMed  CAS  Google Scholar 

  • Newby ZE, et al (2008) Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat Struct Mol Biol 15:619–625

    Article  PubMed  CAS  Google Scholar 

  • Ortiz D, et al (2007) Molecular genetic analysis of purine nucleobase transport in Leishmania major. Mol Microbiol 64:1228–1243

    Article  PubMed  CAS  Google Scholar 

  • Ortiz D, et al (2009) An acid-activated nucleobase transporter from Leishmania major. J Biol Chem 284:16164–16169

    Article  PubMed  CAS  Google Scholar 

  • Ouameur AA, et al (2008) Functional analysis and complex gene rearrangements of the folate/biopterin transporter (FBT) gene family in the protozoan parasite Leishmania. Mol Biochem Parasitol 162:155–164

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou B, Roy G, Ouellette M (1993) Frequent amplification of a short chain dehydrogenase gene as part of circular and linear amplicons in methotrexate resistant Leishmania. Nucleic Acids Res 21:4305–4312

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou B, et al (1994) Changes in folate and pterin metabolism after disruption of the Leishmania H locus short chain dehydrogenase gene. J Biol Chem 269:7310–7315

    PubMed  CAS  Google Scholar 

  • Peacock CS, Seeger K et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847

    Article  PubMed  CAS  Google Scholar 

  • Phelouzat MA, et al (1995) Sinefungin shares AdoMet-uptake system to enter Leishmania donovani promastigotes. Biochem J 305:133–137

    PubMed  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Solís A, et al (2004) Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O. Inorg Chem 43:2954–2959

    Article  PubMed  Google Scholar 

  • Richard D, Kündig C, Ouellette M (2002) A new type of high affinity folic acid transporter in the protozoan parasite Leishmania and deletion of its gene in methotrexate-resistant cells. J Biol Chem 277:29460–29467

    Article  PubMed  CAS  Google Scholar 

  • Richard D, et al (2004) Growth phase regulation of the main folate transporter of Leishmania infantum and its role in methotrexate resistance. J Biol Chem 279:54494–55450

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr, et al (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279

    PubMed  CAS  Google Scholar 

  • Sanchez MA, et al (2004) Functional expression and characterisation of a purine nucleobase transporter gene from Leishmania major. Mol Membr Biol 21:11–18

    Article  PubMed  CAS  Google Scholar 

  • Sanders OI, et al (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367

    PubMed  CAS  Google Scholar 

  • Segovia M, Ortiz G (1997) LD1 amplifications in Leishmania. Parasitol Today 13:342–348

    Article  PubMed  CAS  Google Scholar 

  • Sereno D, et al (1998) Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother 42:3097–3102

    PubMed  CAS  Google Scholar 

  • Shaked-Mishan P, et al (2001) Novel Intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276:3971–3976

    Article  PubMed  CAS  Google Scholar 

  • Stein A, et al (2003) Equilibrative nucleoside transporter family members from Leishmania donovani are electrogenic proton symporters. J Biol Chem 278:35127–35134

    Article  PubMed  CAS  Google Scholar 

  • Stroud RM, et al (2003) Selectivity and conductance among the glycerol and water conducting aquaporin family of channels. FEBS Lett 555:79–84

    Article  PubMed  CAS  Google Scholar 

  • Sui H, et al (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  PubMed  CAS  Google Scholar 

  • Ubeda JM, et al (2008) Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 9:R115

    Article  PubMed  Google Scholar 

  • Ullman B (1984) Pyrazolopyrimidine metabolism in parasitic protozoa. Pharmaceut Res 1:194–203

    Article  Google Scholar 

  • Uzcategui NL, et al (2008) Alteration in glycerol and metalloid permeability by a single mutation in the extracellular C-loop of Leishmania major aquaglyceroporin LmAQP1. Mol Microbiol 70:1477–1486

    Article  PubMed  CAS  Google Scholar 

  • Valdés R, et al (2004) Transmembrane domain 5 of the LdNT1.1 nucleoside transporter is an amphipathic helix that forms part of the nucleoside translocation pathway. Biochemistry 43:6793–6802

    Article  PubMed  Google Scholar 

  • Valdés R, et al (2006) Comprehensive examination of charged intramembrane residues in a nucleoside transporter. J Biol Chem 281:22647–22655

    Article  PubMed  Google Scholar 

  • Valdés R, et al (2009) An ab initio structural model of a nucleoside permease predicts functionally important residues. J Biol Chem 284:19067–19076

    Article  PubMed  Google Scholar 

  • Van Winkle LJ (1999) Biomembrane transport. Academic Press, San Diego

    Google Scholar 

  • Vasudevan G, et al (1998) Cloning of Leishmania nucleoside transporter genes by rescue of a transport-deficient mutant. Proc Natl Acad Sci USA 95:9873–9878

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan G, Ullman B, Landfear SM (2001) Point mutations in a nucleoside transporter gene from Leishmania donovani confer drug resistance and alter substrate selectivity. Proc Natl Acad Sci USA 98:6092–6097

    Article  PubMed  CAS  Google Scholar 

  • Vinothkumar KR, Henderson R (2010) Structures of membrane proteins. Q Rev Biophys 43:65–158

    Article  PubMed  CAS  Google Scholar 

  • Wysocki R, et al (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, et al (2004) Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem 279:37445–37451

    Article  PubMed  CAS  Google Scholar 

  • Zilberstein D, Philosoph H, Gepstein A (1989) Maintenance of cytoplasmic pH and proton motive force in promastigotes of Leishmania donovani. Mol Biochem Parasitol 36:109–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Preparation of this chapter was supported by grants AI25920 and AI44138 to the author from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott M. Landfear .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Landfear, S.M. (2013). Functional Analysis of Leishmania Membrane (Non-ABC) Transporters Involved in Drug Resistance. In: Ponte-Sucre, A., Diaz, E., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1125-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1125-3_13

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0238-1

  • Online ISBN: 978-3-7091-1125-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics