Skip to main content

Discretization Techniques for Transient, Dynamic and Cyclic Problems in Geotechnical Engineering: Second Order Equation

  • Chapter
Mechanical Behaviour of Soils Under Environmentally Induced Cyclic Loads

Part of the book series: CISM Courses and Lectures ((CISM,volume 534))

  • 1762 Accesses

Abstract

The second order equations are the form more widely used both in solids and in soil dynamics. This Chapter is devoted to present the Discretization techniques which are used. The solution strategy consists on (i) perform a discretization in space from which a system of ordinary differential equations (ODE) is obtained, and (ii) discretize this system in time. An important aspect is that of imposing suitable boundary conditions. Here we will present a simple technique which can be used for elastic or viscoplastic materials assuming that the wave is planar in the neighbourhood of the boundary. Finally, we will present some applications to cyclic and dynamic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • I. Babuška. The finite element method with Lagrange multipliers. Numerische Mathematik, 20:179–192, 1973.

    Article  MATH  Google Scholar 

  • K. J. Bathe. Finite Element Procedures. Prentice Hall, 1996.

    Google Scholar 

  • F. Brezzi. On the existence, uniqueness and approximations of saddle point problems arising from Lagrange multipliers. RAIRO, 8-R2:129–151, 1974.

    MathSciNet  Google Scholar 

  • F. Brezzi and J. Pitkaranta. On the stabilization of finite element approximations of the Stokes problem. In W. Hackbusch, editor, Efficient solutions of elliptic problems, Notes on Numerical Fluid Mechanics, volume 10, pages 11–19, Wiesbaden, 1984. Vieweg.

    Google Scholar 

  • A. J. Chorin. Numerical solution of incompressible flow problems. Studies in Numerical Analysis 2. 1968.

    Google Scholar 

  • R. Codina, M. Vázquez, and O. C. Zienkiewicz. A fractional step method for compressible flows: boundary conditions and incompressible limit. In M. Morandi Cecchi, K. Morgan, J. Periaux, B. A. Schrefler, and O. C. Zienkiewicz, editors, Proc. Int. Conf. on Finite Elements in Fluids-New trends and applications, pages 409–418, Venezia, Italy, October 1995.

    Google Scholar 

  • M. Hafez and M. Soliman. Numerical solution of the incompressible Navier-Stokes equations in primitive variables on unstaggered grids. In Proc. AIAA Conf., volume 91-1561-CP, pages 368–379, 1991.

    Google Scholar 

  • T. J. R. Hughes. The Finite Element Method. Linear static and Dynamic Finite Element Analysis. Prentice Hall, London, 1987.

    Google Scholar 

  • T. J. R. Hughes, L. P. Franca, and M. Balestra. A new finite element formulation for fluid dynamics. V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comp. Meth. Appl. Mech. Eng., 59:85–99, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Kawahara and K. Ohmiya. Finite element analysis of density flow using velocity correction method. Int. J. Num. Meth. Fluids, 5:981–993, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  • S. López Querol and R. Blázquez. Liquefaction and cyclic mobility model for saturated granular media. Int. J. Num. Anal. Meth. Geomech., 30: 413–439, 2006.

    Article  MATH  Google Scholar 

  • S. López Querol, J. A. Fernández Merodo, P. Mira, and M. Pastor. Numerical modelling of dynamic consolidation on granular soils. Int. J. Num. Anal. Meth. Geomech., 32(12):1431–1457, 2007.

    Article  Google Scholar 

  • M. Mabssout, I. Herreros, and M. Pastor. Wave propagation and localization problems in saturated viscoplastic geomaterials. Int. J. Num. Meth. Engng., 68(4):425–447, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Mira, M. Pastor, T. Li, and X. Liu. A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems. Comp. Meth. Appl. Mech. Engrg., 192:4257–4277, 2003.

    Article  MATH  Google Scholar 

  • J. L. Pan and A. R. Selby. Simulation of dynamic compaction of loose granular soils. Advances in Engineering Software, 33:631–640, 2002.

    Article  Google Scholar 

  • M. Pastor, M. Quecedo, and O. C. Zienkiewicz. A mixed displacementpressure formulation for numerical analysis of plastic failure. Computers and Structures, 62:13–23, 1996.

    Article  Google Scholar 

  • M. Pastor, T. Li, and J. A. Fernández Merodo. Stabilized finite elements for harmonic soil dynamics problems near the undrained-incompressible limit. Soil Dynamics and Earthquake Engineering, 16:161–171, 1997.

    Article  Google Scholar 

  • M. Pastor, T. Li, X. Liu, and O. C. Zienkiewicz. Stabilized low-order finite elements for failure and localization problems in undrained soils and foundations. Comp. Meth. Appl. Mech. Engng., 174:219–234, 1999a.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Pastor, O. C. Zienkiewicz, T. Li, L. Xiaoqing, and M. Huang. Stabilized finite elements with equal order of interpolation for soil dynamics problems. Archives of Computational Methods in Engineering, 6(1):3–33, 1999b.

    Article  MathSciNet  Google Scholar 

  • M. Quecedo, M. Pastor, and O. C. Zienkiewicz. Application of a fractional step method to localization problems. Computers and Structures, 74: 535–545, 2000.

    Article  MathSciNet  Google Scholar 

  • G. E. Schneider, G. D. Raithby, and M. M. Yovanovich. Finite element analysis of incompressible flow incorporating equal order pressure and velocity interpolation. In K. Morgan C. Taylor and C. Brebbia, editors, Numerical Methods for Laminar and Turbulent Flow, Plymouth, 1978. Pentech Press.

    Google Scholar 

  • O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method. Butterworth-Heinmann, 5th edition, 2000.

    Google Scholar 

  • O. C. Zienkiewicz and Wu. Incompressibility without tears! How to avoid restrictions of mixed formulations. Int. J. Num. Meth. Engng., 32:1184–1203, 1991.

    MathSciNet  Google Scholar 

  • O. C. Zienkiewicz, C. T. Chang, and P. Bettess. Drained, undrained, consolidating dynamic behaviour assumptions in soils. Géotechnique, 30: 385–395, 1980.

    Article  Google Scholar 

  • O. C. Zienkiewicz, S. Qu, R. L. Taylor, and S. Nakazawa. The patch test for mixed formulations. Int. J. Num. Meth. Engng., 23:1873–1883, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  • O. C. Zienkiewicz, M. Huang, Wu, and S. Wu. A new algorithm for the coupled soil-pore fluid problem. Shock and Vibration, 1:3–14, 1993.

    Google Scholar 

  • O. C. Zienkiewicz, M. Huang, and M. Pastor. Computational soil dynamics — A new algorithm for drained and undrained conditions. In H. J. Siriwardne and M. M. Zaman, editors, Comp. Meth. Adv. Geomechanics, pages 47–59, Balkema, 1994.

    Google Scholar 

  • O. C. Zienkiewicz, J. Rojek, R. L. Taylor, and M. Pastor. Triangles and tetrahedra in explicit dynamic codes for solids. Int. J. Num. Meth. Engng., 43:565–583, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  • O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Shrefler, and T. Shiomi. Computational Geomechanics. J. Wiley and Sons, Chichester, 1999.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 CISM, Udine

About this chapter

Cite this chapter

Pastor, M., Fernández Merodo, J.A., Mira, P., López Querol, S., Herreros, I., Mabssout, M. (2012). Discretization Techniques for Transient, Dynamic and Cyclic Problems in Geotechnical Engineering: Second Order Equation. In: Di Prisco, C., Wood, D.M. (eds) Mechanical Behaviour of Soils Under Environmentally Induced Cyclic Loads. CISM Courses and Lectures, vol 534. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1068-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1068-3_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1067-6

  • Online ISBN: 978-3-7091-1068-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics