Skip to main content

Behaviour of Granular Soils Under Environmentally Induced Cyclic Loads

  • Chapter

Part of the book series: CISM Courses and Lectures ((CISM,volume 534))

Abstract

Cyclic loading and its impacts are of practical relevance for many problems in geotechnical engineering. Some examples of non-endogenous nature are illustrated in Fig. 1. A cyclic loading may be caused by traffic (high-speed trains, magnetic levitation trains), industrial sources (crane rails, machine foundations), wind and waves (on-shore and off-shore wind power plants, coastal structures) or repeated filling and emptying processes (watergates, tanks and silos). Furthermore, construction processes (e.g. vibroinstallation of sheet piles) and mechanical compaction (e.g. vibratory compaction) impose cyclic loads into the soil. A cyclic loading of the soil may be also caused by endogenous sources. Earthquake events due to a slip between adjacent tectonic plates lead to a propagation of shear waves. The shear waves induce a cyclic shearing of the soil. The cyclic loading of the soil can lead to an accumulation of permanent deformations or to a possible liquefaction due to a build-up of excess pore water pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • M. Abdelkrim, P. De Buhan, and G. Bonnet. A general method for calculating the traffic load-induced residual settlement of a platform, based on a structural analysis approach. Soils and Foundations, 46(4):401–414, 2006.

    Google Scholar 

  • S.S. Afifi and Jr. Richart, F.E. Stress-history effects on shear modulus of soils. Soils and Foundations, 13(1):77–95, 1973.

    Google Scholar 

  • S.S. Afifi and R.D. Woods. Long-term pressure effects on shear modulus of soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM10):1445–1460, 1971.

    Google Scholar 

  • I. Alpan. The Geotechnical Properties of Soils. Earth Science Reviews, Elsevier, 6(6):5–49, 1970.

    Google Scholar 

  • R.D. Andrus and T.L. Youd. Subsurface investigation of a liquefaction-induced lateral spread Thousand Springs Valley, Idaho. In Miscellaneous Paper (GL-87-8), US Army Corps of Engineers, 1987.

    Google Scholar 

  • R.D. Andrus and T.L. Youd. Penetration tests on liquefiable gravels. In Proc. of the 12th International Conference on Soil Mechanics and Foundation Engineering, volume 1, pages 679–682, 1989.

    Google Scholar 

  • A. Arwanitaki and Th. Triantafyllidis. Numerische Simulation mehrlagig mit Geogittern bewehrter Erdkörper über pfahlartigen Gründungselementen unter statischer und zyklischer Einwirkung. Bautechnik, 83(10): 695–707, 2006.

    Google Scholar 

  • C.D.P. Baxter. An experimental study on the aging of sands. PhD thesis, Faculty of the Virginia Polytechnic Institute and State University, July 1999.

    Google Scholar 

  • R. Bellotti, M. Jamiolkowski, D.C.F. Lo Presti, and D.A. O’Neill. Anisotropy of small strain stiffness in Ticino sand. Géotechnique, 46(1):115–131, 1996.

    Google Scholar 

  • T. Benz and P.A. Vermeer. Discussion of “On the correlation of oedometric and “dynamic” stiffness of non-cohesive soils” by T. Wichtmann and Th. Triantafyllidis (Bautechnik 83, No. 7, 2006) (in German). Bautechnik, 84(5):361–364, 2007.

    Google Scholar 

  • G. Bierschwale and K.H. Stokoe. Analytical evaluation of liquefaction potential of sands subjected to the 1981 Westmorland earthquake. Technical Report Geotechnical Engineering Report GR-84-15, Civil Engineering Department, University of Texas, Austin, 1984.

    Google Scholar 

  • A.W. Bishop. Shear strength parameters for undisturbed and remoulded soil specimens. In Proceedings of the Roscoe Memorial Symposium, Cambridge University, Cambridge, Mass., pages 3–58, 1971.

    Google Scholar 

  • G. Bouckovalas, R.V. Whitman, and W.A. Marr. Permanent displacement of sand with cyclic loading. Journal of Geotechnical Engineering, ASCE, 110(11):1606–1623, 1984.

    Google Scholar 

  • M. Budhu. Nonuniformities imposed by simple shear apparatus. Canadian Geotechnical Journal, 20:125–137, 1984.

    Google Scholar 

  • M. Budhu and A. Britto. Numerical analysis of soils in simple shear devices. Soils and Foundations, 27(2):31–41, 1987.

    Google Scholar 

  • G. Castro. Liquefaction and cyclic mobility of saturated sands. Journal of the Geotechnical Engineering Division, ASCE, 101(GT6):551–569, 1975.

    Google Scholar 

  • G. Castro and S.J. Poulos. Factors affecting liquefaction and cyclic mobility. Journal of the Geotechnical Engineering Division, ASCE, 103(GT6):501–516, 1977.

    Google Scholar 

  • J.L. Chaboche. Modelling of ratchetting: evaluation of various approaches. European Journal of Mechanics, 13(4):501–781, 1994.

    Google Scholar 

  • C.S. Chang and R.V. Whitman. Drained permanent deformation of sand due to cyclic loading. Journal of Geotechnical Engineering, ASCE, 114(10):1164–1180, 1988.

    Google Scholar 

  • L.-K. Chien, Y.-N. Oh, and C.-H. Chang. Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil. Canadian Geotechnical Journal, 39:254–265, 2002.

    Google Scholar 

  • C. Choi and P. Arduino. Behavioral characteristics of gravelly soils under general cyclic loading conditions. In T. Triantafyllidis, editor, Cyclic behaviour of soils and liquefaction phenomena, Proc. of CBS04, pages 115–122. CRC Press, Taylor & Francis Group, London, 2004.

    Google Scholar 

  • J.T. Christian and W.F. Swiger. Statistics of Liquefaction and SPT results. Journal of the Geotechnical Engineering Division, ASCE, 101(GT11): 1135–1150, 1975.

    Google Scholar 

  • P. DeAlba, C.K. Chan, and H.B. Seed. Determination of soil liquefaction characteristics by large scale laboratory tests. Technical Report 75-14, Earthquake Engineering Research Center, University of California, 1975.

    Google Scholar 

  • DGGT. Empfehlungen des Arbeitskreises 1.4 “Baugrunddynamik” der Deutschen Gesellschaft für Geotechnik e.V., 2001.

    Google Scholar 

  • V.A. Diyaljee and G.P. Raymond. Repetitive load deformation of cohesion-less soil. Journal of the Geotechnical Engineering Division, ASCE, 108(GT10):1215–1229, 1982.

    Google Scholar 

  • T. Doanh, Z. Finge, S. Boucq, and Ph. Dubujet. Histotropy of Hostun RF loose sand. In W. Wu and H.-S. Yu, editors, Modern Trends in Geomechanics, volume 106, pages 399–411. Springer, 2006.

    Google Scholar 

  • R. Dobry and R. Ladd. Discussion to “Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes” by H.B. Seed and “Liquefaction potential: Science versus Practice” by R.B. Peck. Journal of the Geotechnical Engineering Division, ASCE, 106(GT6):720–724, 1980.

    Google Scholar 

  • R. Dobry, R.S. Ladd, F.Y. Yokel, R.M. Chung, and D. Powell. Prediction of pore pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method. Technical Report 138, U.S. Department of Commerce, National bureau of standards, 1982. NBS Building science series.

    Google Scholar 

  • V.P. Drnevich and F.E. Richart. Dynamic prestraining of dry sand. Journal of the Soil Mechanics and Foundations Division, ASCE, 96(SM2):453–467, 1970.

    Google Scholar 

  • V.P. Drnevich, J.R. Jr. Hall, and F.E. Jr. Richart. Effects of amplitude of vibration on the shear modulus of sand. In Proc. Int. Symp. on Wave Propagation and Dynamic Properties of Earth Mat., pages 189–199, 1967.

    Google Scholar 

  • J. Duffy and R.D. Mindlin. Stress-strain relations and vibrations of a granular medium. Journal of Applied Mechanics, pages 585–593, 1957.

    Google Scholar 

  • P.M. Duku, J.P. Stewart, D.H. Whang, and E. Yee. Volumetric strains of clean sands subject to cyclic loads. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 134(8):1073–1085, 2008.

    Google Scholar 

  • J.-C. Dupla and J. Canou. Cyclic pressuremeter loading and liquefaction properties of sands. Soils and Foundations, 43(2):17–31, 2003.

    Google Scholar 

  • J.J. Emery, W.D.L. Finn, and K.W. Lee. Uniformity of saturated sand specimen. Technical Report STP523, pp. 182–194, ASTM, 1973.

    Google Scholar 

  • W.D.L. Finn, P.L. Bransby, and D.J. Pickering. Effect of strain history on liquefaction of sand. Journal of the Soil Mechanics and Foundations Division, ASCE, 96(SM6):1917–1934, 1970.

    Google Scholar 

  • S. Frydman, D. Hendron, H. Horn, J. Steinbach, R. Baker, and B. Shaal. Liquefaction study of cemented sand. Journal of Geotechnical Engineering, ASCE, 106(GT3):275–297, 1980.

    Google Scholar 

  • G. Gazetas. Foundation Engineering Handbook, 2nd Edition, chapter 15: Foundation vibrations, pages 553–593. 1991.

    Google Scholar 

  • V.N. Ghionna and D. Porcino. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(2):194–201, 2006.

    Google Scholar 

  • J.D. Goddard. Nonlinear elasticity and pressure-dependent wave speeds in granular media. Proceedings of the Royal Society London, 430:105–131, 1990.

    MATH  Google Scholar 

  • S. Goto, S. Nishio, and Y. Yoshimi. Dynamic properties of gravels sampled by ground freezing. In Proceedings of Session on Ground Failures under Seismic Conditions, ASCE Convention, Atlanta, pages 141–157, 1994.

    Google Scholar 

  • A. Gotschol. Veränderlich elastisches und plastisches Verhalten nichtbindiger Böden und Schotter unter zyklisch-dynamischer Beanspruchung. Dissertation, Universität Gh Kassel, 2000.

    Google Scholar 

  • G. Gudehus. Nichtlineare Bodendynamik in der Geotechnik. In Vorträge der Baugrundtagung 2000 in Hannover, pages 263–270. DGGT, 2000.

    Google Scholar 

  • H. Hanzawa. Undrained strength and stability analysis for a quick sand. Soils and Foundations, 20(2):17–29, 1980.

    Google Scholar 

  • B.O. Hardin and W.L. Black. Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division, ASCE, 92(SM2):27–42, 1966.

    Google Scholar 

  • B.O. Hardin and V.P. Drnevich. Shear modulus and damping in soils: measurement and parameter effects. Journal of the Soil Mechanics and Foundations Division, ASCE, 98(SM6):603–624, 1972a.

    Google Scholar 

  • B.O. Hardin and V.P. Drnevich. Shear modulus and damping in soils: design equations and curves. Journal of the Soil Mechanics and Foundations Division, ASCE, 98(SM7):667–692, 1972b.

    Google Scholar 

  • B.O. Hardin and M.E. Kalinski. Estimating the shear modulus of gravelly soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 131(7):867–875, 2005.

    Google Scholar 

  • B.O. Hardin and F.E. Richart Jr. Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 89(SM1):33–65, 1963.

    Google Scholar 

  • M. Hatanaka, Y. Suzuki, T. Kawasaki, and M. Endo. Cyclic undrained shear properties of high quality undisturbed Tokyo gravel. Soils and Foundations, 28(4):57–68, 1988.

    Google Scholar 

  • J. Helm, J. Laue, and Th. Triantafyllidis. Untersuchungen an der RUB zur Verformungsentwicklung von Böden unter zyklischen Belastungen. In Beiträge zum Workshop: Boden unter fast zyklischer Belastung: Erfahrungen und Forschungsergebnisse, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 32, pages 201–222, 2000.

    Google Scholar 

  • H. Hertz. Über die Berührung fester elastischer Körper. Journal reine und angewandte Mathematik, 92:156–171,1881.

    Google Scholar 

  • B.A. Hofmann, D.C. Sego, and P.K. Robertson. Undisturbed sampling of loose sand using ground freezing. In Proceedings of the 48th Canadian Geotechnical Conference, Vancouver, pages 197–204, 1995.

    Google Scholar 

  • Y. Hu, E. Gartung, H. Prühs, and B. Müllner. Bewertung der dynamischen Stabilität von Erdbauwerken unter Eisenbahnverkehr. Geotechnik, 26(1), 2003.

    Google Scholar 

  • Y. Hu, W. Haupt, and B. M;ullner. ResCol-Versuche zur Prüfung der dynamischen Langzeitstabilität von TA/TM-Böden unter Eisenbahnverkehr. Bautechnik, 81(4):295–306, 2004.

    Google Scholar 

  • B.C. Hydro. Liquefaction assessment and seismic stability of Duncan Dam. Technical Report H2599, B.C. Hydro Hydroelectric Engineering Division, Geotechnical Department, 1993.

    Google Scholar 

  • M. Hyodo, H. Tanimizu, N. Yasufuku, and H. Murata. Undrained cyclic and monotonic triaxial behaviour of saturated loose sand. Soils and Foundations, 34(1):19–32, 1994.

    Google Scholar 

  • T. Imai and M. Yoshimura. Elastic shear wave velocity and mechanical characteristics of soft soil deposits (in Japanese). Tsuchi to Kiso, 18(1): 17–22, 1970.

    Google Scholar 

  • K. Ishihara. Liquefaction and flow failure during earthquakes. The 33rd Rankine Lecture. Géotechnique, 43(3):351–415, 1993.

    Google Scholar 

  • K. Ishihara. Soil Behaviour in Earthquake Geotechnics. Oxford Science Publications, 1995.

    Google Scholar 

  • K. Ishihara and J. Koseki. Cyclic shear strength of fines-containing sands, earthquake geotechnical engineering. In Proceedings of the Discussion Session on Influence of Local Conditions on Seismic Response, 12th ICSMFE Rio de Janeiro, pages 101–106, 1989.

    Google Scholar 

  • K. Ishihara and H. Nagase. Multi-directional irregular loading tests on sand. Soil Dynamics and Earthquake Engineering, 7:201–212, 1988.

    Google Scholar 

  • K. Ishihara and S. Okada. Effects of stress history on cyclic behavior of sand. Soils and Foundations, 18(4):31–45, 1978.

    Google Scholar 

  • K. Ishihara and S. Okada. Effects of large preshearing on cyclic behavior of sand. Soils and Foundations, 22(3):109–125, 1982.

    Google Scholar 

  • K. Ishihara and F Yamazaki. Cyclic simple shear tests on saturated sand in multi-directional loading. Soils and Foundations, 20(1):45–59, 1980.

    Google Scholar 

  • K. Ishihara and S. Yasuda. Sand liquefaction due to irregular excitation. Soils and Foundations, 12(4):65–77, 1972.

    Google Scholar 

  • K. Ishihara and S. Yasuda. Sand liquefaction in hollow cylinder torsion under irregular excitation. Soils and Foundations, 15(1):29–45, 1975.

    Google Scholar 

  • K. Ishihara, M. Sodekawa, and Y. Tanaka. Effects of overconsolidation on liquefaction characteristics of sands containing fines. Dynamic Geotechnical Testing, ASTM, STP 654:246–264, 1978.

    Google Scholar 

  • T. Iwasaki and F. Tatsuoka. Effects of grain size and grading on dynamic shear moduli of sands. Soils and Foundations, 17(3):19–35, 1977.

    Google Scholar 

  • W.S. Kaggwa, J.R. Booker, and J.P. Carter. Residual strains in calcareous sand due to irregular cyclic loading. Journal of Geotechnical Engineering, ASCE, 117(2):201–218, 1991.

    Google Scholar 

  • I. Katayama, F. Fukui, M. Goto, Y. Makihara, and K. Tokimatsu. Comparison of dynamic deformation characteristics of dense sand between undisturbed and disturbed samples (in Japanese). In Proceedings of the 21st Annual Conference of JSSMFE, pages 583–584, 1986.

    Google Scholar 

  • D.P. Knox, K.H.II Stokoe, and S.E. Kopperman. Effects of state of stress on velocity of low-amplitude shear wave propagating along principal stress directions in dry sand. Technical Report GR 82-23, University of Texas, Austin, 1982.

    Google Scholar 

  • T. Kokusho. Cyclic triaxial test of dynamic soil properties for wide strain range. Soils and Foundations, 20(2):45–59, 1980.

    Google Scholar 

  • T. Kokusho. In situ dynamic soil properties and their evaluation. In Proceedings of the 8th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Kyoto, Japan, volume 2, pages 215–435, 1987.

    Google Scholar 

  • T. Kokusho and Y. Tanaka. Dynamic properties of gravel layers investigated by in situ freezing sampling. In Proc. of Session on Ground Failures under Seismic Conditions, ASCE Convention, Atlanta, pages 121–140, 1994.

    Google Scholar 

  • T. Kokusho, Y. Yoshida, K. Nishi, and Y. Esashi. Evaluation of seismic stability of dense sand layer (part 1) — dynamic strength characteristics of dense sand (in Japanese). Technical Report 383025, Electric Power Central Research Institute, Japan, 1983.

    Google Scholar 

  • T. Kokusho, T. Hara, and R. Hiraoka. Undrained shear strength of granular soils with different particle gradations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(6):621–629, 2004.

    Google Scholar 

  • T. Konno, M. Hatanaka, K. Ishihara, Y. Ibe, and S. Iizuka. Gravelly soil properties evaluation by large scale in situ cyclic shear tests. In Proceedings of Session on Ground Failures under Seismic Conditions, ASCE Convention, Atlanta, pages 177–200, 1994.

    Google Scholar 

  • J.-M. Konrad and M. Pouliet. Ultimate state of reconstituted and intact samples of deltaic sand. Canadian Geotechnical Journal, 34:737–748, 1997.

    Google Scholar 

  • R. Kuerbis and Y.P. Vaid. Sand sample preparation — the slurry deposition method. Soils and Foundations, 28(4):107–118, 1988.

    Google Scholar 

  • E. Kuribayashi, T. Iwasaki, F. Tatsuoka, and S. Horiuchi. Effects of particle characteristics on dynamic deformational properties of soils. In Proceedings of the 5th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Bangalore, India, pages 361–367, 1975.

    Google Scholar 

  • K. Kuwano, H. Nakazawa, K. Sugihara, and H. Yabe. Undrained cyclic shear strength of sand containing fines (in Japanese). In Proc. 11th Japan Nat. Conf. Geotech. Eng., volume 1, pages 993–994, 1996.

    Google Scholar 

  • R.S. Ladd. Specimen preparation and liquefaction of sands. Journal of the Geotechnical Engineering Division, ASCE, 100(GT10):1180–1184, 1974.

    Google Scholar 

  • R.S. Ladd. Specimen preparation and cyclic stability of sands. Journal of the Geotechnical Engineering Division, ASCE, 103(GT6):535–547, 1977.

    Google Scholar 

  • K.L. Lee and J.A. Fitton. Factors affecting the cyclic loading strength of soil. In Vibration Effects of Earthqakes on Soils and Foundations, ASTM Special Technical Publication 450, pages 71–95, 1969.

    Google Scholar 

  • K.L. Lee and H.B. Seed. Cyclic stress conditions causing liquefaction of sand. Journal of the Soil Mechanics and Foundations Division, ASCE, 93(SM1):47–70, 1967.

    Google Scholar 

  • R.W. Lentz and G.Y. Baladi. Simplified procedure to characterize permanent strain in sand subjected to cyclic loading. In International Symposium on soils under cyclic and transient loading, pages 89–95, Januar 1980.

    Google Scholar 

  • X.S. Li and Z.Y. Cai. Effects of low-number previbration cycles on dynamic properties of dry sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125(11):979–987, 1999.

    Google Scholar 

  • X.S. Li and W.L. Yang. Effects of vibration history on modulus and damping of dry sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(11):1071–1081, 1998.

    Google Scholar 

  • X.S. Li, W.L. Yang, C.K. Chen, and W.C. Wang. Energy-injecting virtual mass resonant column system. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(5):428–438, 1998.

    Google Scholar 

  • M.P. Luong. Mechanical aspects and thermal effects of cohesionless soils under cyclic and transient loading. In Proc. IUTAM Conf. on Deformation and Failure of Granular materials, Delft, pages 239–246, 1982.

    Google Scholar 

  • J. Malkus. Untersuchung des Bodenverhaltens im Kontaktbereich zyklisch axial belasteter zylindrischer Gründungselemente. In Beiträge zum Workshop: Boden unter fast zyklischer Belastung: Erfahrungen und Forschungsergebnisse, pages 93–108, 2000. Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 32.

    Google Scholar 

  • W.A. Marr and J.T. Christian. Permanent displacements due to cyclic wave loading. Journal of the Geotechnical Engineering Division, ASCE, 107(GT8):1129–1149, 1981.

    Google Scholar 

  • G.R. Martin, W.D.L. Finn, and H.B. Seed. Effects of system compliance on liquefaction tests. Journal of the Geotechnical Engineering Division, ASCE, 104(GT4):463–479, 1978.

    Google Scholar 

  • R. Martinez. Influence of the grain size distribution curve on the stiffness and the damping ratio of non-cohesive soils at small strains (in German). Diploma thesis, Institute of Soil Mechanics and Foundation Engineering, Ruhr-University Bochum, 2007.

    Google Scholar 

  • H. Matsuoka and T. Nakai. A new failure criterion for soils in three-dimensional stresses. In Deformation and Failure of Granular Materials, pages 253–263, 1982. Proc. IUTAM Symp. in Delft.

    Google Scholar 

  • M. Miner. Cumulative damage in fatigue. Transactions of the American Society of Mechanical Engineering, 67:A159–A164, 1945.

    Google Scholar 

  • J.K. Mitchell and D.-J. Tseng. Assessment of liquefaction potential by cone penetration resistance. In J.M. Duncan, editor, Proceedings of the H. Bolton Seed Memorial Symposium, Berkeley, Calif., volume 2, pages 335–350. Bitech Publishers, 1990.

    Google Scholar 

  • S. Miura and S. Toki. A sample preparation method and its effect on static and cyclic deformation-strength properties of sand. Soils and Foundations, 22(1):61–77, 1982.

    Google Scholar 

  • K. Mori, H.B. Seed, and C.K. Chan. Influence of sample disturbance on sand response to cyclic loading. Journal of the Geotechnical Engineering Division, ASCE, 104(GT3):323–339, 1978.

    Google Scholar 

  • Z. Mróz, V.A. Norris, and O.C. Zienkiewicz. An anisotropic hardening model for soils and its application to cyclic loading. Int. J. Numer. Anal. Meth. Geomech., 2:203–221, 1978.

    MATH  Google Scholar 

  • J.P. Mulilis, C.K. Chan, and H.B. Seed. The effects of method of sample preparation on the cyclic stress-strain behavior of sands. Technical Report EERC 75-18, Earthquake Engineering Research Center, University of California, Berkeley, 1975.

    Google Scholar 

  • J.P. Mulilis, H.B. Seed, C.K. Chan, J.K. Mitchell, and K. Arulanandan. Effects of sample preparation on sand liquefaction. Journal of the Geotechnical Engineering Division, ASCE, 103(GT2):91–108, 1977.

    Google Scholar 

  • P.G. Nicholson, R.B. Seed, and H.A. Anwar. Elimination of membrane compliance in undrained triaxial testing. I. Measurement and evaluation. Canadian Geotechnical Journal, 30:727–738, 1993.

    Google Scholar 

  • A. Niemunis. Extended hypoplastic models for soils. Habilitation, Veröffentlichungen des Institutes für Grundbau und Bodenmechanik, Ruhr-Universität Bochum, Heft Nr. 34, 2003. available from www.pg.gda.pl/~aniem/an-liter.html.

    Google Scholar 

  • A. Niemunis and I. Herle. Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, 2:279–299, 1997.

    Google Scholar 

  • A. Niemunis, T. Wichtmann, Y. Petryna, and Th. Triantafyllidis. Stochastic modelling of settlements due to cyclic loading for soil-structure interaction. In G. Augusti, et al. editor, Proc. of 9th International Conference on Structural Safety and Reliability, ICOSSAR 2005, Rom, page 263, 2005a.

    Google Scholar 

  • A. Niemunis, T. Wichtmann, and T. Triantafyllidis. A high-cycle accumulation model for sand. Computers and Geotechnics, 32(4):245–263, 2005b.

    Google Scholar 

  • A. Niemunis, T. Wichtmann, and Th. Triantafyllidis. On the definition of the fatigue loading for sand. In International Workshop on Constitutive Modelling — Development, Implementation, Evaluation, and Application, 12–13 January 2007, Hong Kong, 2007a.

    Google Scholar 

  • A. Niemunis, T. Wichtmann, and Th. Triantafyllidis. Statial stress fluctuations: acoustic evidence and numerical simulations. In G. Pande and S. Pietruszczak, editors, Numerical Models in Geomechanics: Proceedings of the Tenth International Symposium on Numerical Models in Geomechanics (NUMOG X), Rhodes, Greece, 25–27 April 2007, pages 159–166. Taylor & Francis, 2007b.

    Google Scholar 

  • M. Oda, K. Kawamoto, K. Suzuki, H. Fujimori, and M. Sato. Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127(5):416–423, 2001.

    Google Scholar 

  • R.S. Olsen and J.P. Koester. Prediction of liquefaction resistance using the CPT. In Proceedings of the International Symposium on Cone Penetration Testing, CPT’95, Linkoping, Sweden, volume 2, pages 251–256, 1995.

    Google Scholar 

  • V.A. Osinov. A numerical model for the site response analysis and liquefaction of soil during earthquakes. In O. Natau, E. Fecker, and E. Pimentel, editors, Geotechnical Measurements and Modelling, pages 475–481. Swets & Zeitlinger, Lisse, 2003a.

    Google Scholar 

  • V.A. Osinov. Cyclic shearing and liquefaction of soil under irregular loading: an incremental model for the dynamic earthquake-induced deformation. Soil Dynamics and Earthquake Engineering, 23:533–548, 2003b.

    Google Scholar 

  • T. Park and M.L. Silver. Dynamic soil properties required to predict the dynamic behavior of elevated transportation structures. Technical Report DOT-TST-75-44, U.S. Dept. of Transportation, 1975.

    Google Scholar 

  • R.B. Peck. Liquefaction potential: science versus practice. Journal of the Geotechnical Engineering Division, ASCE, 105(GT3):393–398, 1979.

    Google Scholar 

  • D. Porcino, G. Cicciùu, and V.N. Ghionna. Laboratory investigation of the undrained cyclic behaviour of a natural coarse sand from undisturbed and reconstituted samples. In T. Triantafyllidis, editor, Cyclic Behaviour of Soils and Liquefaction Phenomena, Proc. of CBS04, pages 187–192. CRC Press, Taylor & Francis Group, London, 2004.

    Google Scholar 

  • T.B.S. Pradhan, F. Tatsuoka, and Y. Sato. Experimental stress-dilatancy relations of sand subjected to cyclic loading. Soils and Foundations, 29(1):45–64, 1989.

    Google Scholar 

  • R. Pyke, H.B. Seed, and C.K. Chan. Settlement of sands under multidirectional shaking. Journal of the Geotechnical Engineering Division, ASCE, 101(GT4):379–398, 1975.

    Google Scholar 

  • X. Qian, D.H. Gray, and R.D. Woods. Voids and granulometry: effects on shear modulus of unsaturated sands. Journal of Geotechnical Engineering, ASCE, 119(2):295–314, 1993.

    Google Scholar 

  • W. Ramberg and W.R. Osgood. Description of stress-strain curves by three parameters. Technical Note 902, National Advisory Committee for Aeronautics, Washington, D.C., 1943.

    Google Scholar 

  • F.E. Jr. Richart, J.R. Jr. Hall, and R.D. Woods. Vibrations of Soils and Foundations. Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

    Google Scholar 

  • M.F. Riemer and R.B. Seed. Factors affecting apparent position of the steady state line. Journal of the Geotechnical Engineering Division, ASCE, 105(2):281–288, 1997.

    Google Scholar 

  • P.K. Robertson and R.G. Campanella. Interpretation of cone penetration tests — Part I (sand). Canadian Geotechnical Journal, 20:718–733, 1983.

    Google Scholar 

  • P.K. Robertson and R.G. Campanella. Liquefaction potential of sands using the cone penetration test. Journal of Geotechnical Engineering, ASCE, 22(3):384–403, 1985.

    Google Scholar 

  • P.K. Robertson and C.E. Fear. Liquefaction of sands and its evaluation. keynote lecture. In K. Ishihara, editor, IS Tokyo’95, Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering. Balkema, 1995.

    Google Scholar 

  • P.K. Robertson and C.E. Wride. Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35:442–459, 1998.

    Google Scholar 

  • P.K. Robertson, D.J. Woeller, and W.D.L. Finn. Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Canadian Geotechnical Journal, 29:686–695, 1992.

    Google Scholar 

  • S.K. Roesler. Anisotropic shear modulus due to stress anisotropy. Journal of the Geotechnical Engineering Division, ASCE, 105(GT7):871–880, 1979.

    Google Scholar 

  • K.M. Rollins and H.B. Seed. Influence of buildings on potential liquefaction damage. Journal of Geotechnical Engineering, ASCE, 116(GT2):165–185, 1990.

    Google Scholar 

  • A. Sawicki and W. Świdziński. Compaction curve as one of basic characteristics of granular soils. In E. Flavigny and D. Cordary, editors, 4th Colloque Franco-Polonais de Mechanique des Sols Appliquee, volume 1, pages 103–115, 1987. Grenoble.

    Google Scholar 

  • A. Sawicki and W. Świdziński. Mechanics of a sandy subsoil subjected to cyclic loadings. Int. J. Numer. Anal. Meth. Geomech., 13:511–529, 1989.

    Google Scholar 

  • H.B. Seed. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. Journal of the Geotechnical Engineering Division, ASCE, 105(GT2):201–255, 1979.

    Google Scholar 

  • H.B. Seed. Design problems in soil liquefaction. Journal of Geotechnical Engineering, ASCE, 113(8):827–845, 1987.

    Google Scholar 

  • H.B. Seed and P. de Alba. Use of SPT and CPT tests for evaluating the liquefaction resistance of sands. In S.P. Clemence, editor, Use of in situ tests in geotechnical engineering, volume Geotechnical Special Publication 6, pages 281–302, 1986.

    Google Scholar 

  • H.B. Seed and I.M. Idriss. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM9):1249–1273, 1971.

    Google Scholar 

  • H.B. Seed and I.M. Idriss. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, University of California, Berkeley, Monograph series, ISBN 0-943198-24-0, page 110ff, 1982.

    Google Scholar 

  • H.B. Seed and K.L. Lee. Liquefaction of saturated sands during cyclic loading. Journal of the Soil Mechanics and Foundations Division, ASCE, 92(SM6):105–134, 1966.

    Google Scholar 

  • H.B. Seed, I. Arango, and C.K. Chan. Evaluation of soil liquefaction potential during earthquakes. Technical Report EERC 75-28, Earthquake Engineering Research Center, University of California, 1975a.

    Google Scholar 

  • H.B. Seed, I.M. Idriss, F. Makdisi, and N. Banerjee. Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analyses. Technical Report EERC 75-29, Univ. of California, Berkeley, Calif, 1975b.

    Google Scholar 

  • H.B. Seed, K. Mori, and C.K. Chan. Influence of seismic history on liquefaction of sands. Journal of the Geotechnical Engineering Division, ASCE, 103(GT4):257–270, 1977.

    Google Scholar 

  • H.B. Seed, K. Tokimatsu, L.F. Harder, and R.M. Chung. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, ASCE, 111(12):1425–1445, 1985.

    Google Scholar 

  • H.B. Seed, R.T. Wong, I.M. Idriss, and K. Tokimatsu. Moduli and damping factors for dynamic analyses of cohesionless soil. Journal of Geotechnical Engineering, ASCE, 112(11):1016–1032, 1986.

    Google Scholar 

  • R.B. Seed and L.F. Harder. SPT-based analysis of cyclic pore pressure generation and undrained residual strength. In Proceedings of the B. Seed Memorial Symposium, volume 2, pages 351–376, 1990.

    Google Scholar 

  • R.B. Seed, S.R. Lee, and H.-L. Jong. Penetration and liquefaction resistances: prior seismic history effects. Journal of Geotechnical Engineering, ASCE, 114(6):691–697, 1988.

    Google Scholar 

  • S. Seki, S. Mori, and H. Tachibana. Study on liquefaction and ageing effects in archaeological sites at Yuhigahama of Kamakura (in Japanese). In Proc. 47th Ann. Conv. JSCE, volume 3, 1992.

    Google Scholar 

  • M.J. Shenton. Deformation of Railway Ballast under repeated loading conditions. Railroad track mechanics and technology. Pergamon Press, pages 405–425, 1978.

    Google Scholar 

  • T. Shibata and W. Teparaksa. Evaluation of liquefaction potential of soils using cone penetration tests. Soils and Foundations, 28(2):49–60, 1988.

    Google Scholar 

  • M.L. Silver and H.B. Seed. Volume changes in sands during cyclic loading. Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM9):1171–1182, 1971a.

    Google Scholar 

  • M.L. Silver and H.B. Seed. Deformation characteristics of sands under cyclic loading. Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM8):1081–1098, 1971b.

    Google Scholar 

  • S. Singh, H.B. Seed, and C.K. Chan. Undisturbed sampling of saturated sands by freezing. Journal of the Geotechnical Engineering Division, ASCE, 108(2):247–264, 1982.

    Google Scholar 

  • S. Sivathayalan and Y.P. Vaid. Ultimate state of reconstituted and intact samples of deltaic sand: Discussion (of the paper by J.M. Konrad and N. Pouliot, CGJ 34:737–748. Canadian Geotechnical Journal, 36:173–175, 1999.

    Google Scholar 

  • J.A. Sladen and K.J. Hewitt. Influence of placement method of the in situ density of hydraulic and fills. Canadian Geotechnical Journal, 26:453–466, 1989.

    Google Scholar 

  • T.D. Stark and S.M. Olson. Liquefaction resistance using CPT and field case histories. Journal of Geotechnical Engineering, ASCE, 121(12):856–869, 1995.

    Google Scholar 

  • J.D. Stedman. Effects of confining pressure and static shear on liquefaction resistance of fraser rivers sand. Master’s thesis, University of British Columbia, Vancouver, 1997.

    Google Scholar 

  • K.H. Stokoe and J.C. Santamarina. Seismic-wave-based testing in geotechnical engineering. In Proc. GeoEng 2000: An International Conference on Goetechnical and Geological Engineering, Melbourne, volume 1, pages 1490–1536, 2000.

    Google Scholar 

  • K.H. Stokoe II, E.M. Rathje, B.R. Cox, and W.J. Chan. Using large hydraulic shakers to induce liquefaction in the field. In Th. Triantafyllidis, editor, Cyclic Behaviour of Soils and Liquefaction Phenomena, Proc. of CBS04, Bochum, pages 313–320. CRC Press, Taylor & Francis Group, London, 2004.

    Google Scholar 

  • T. Suzuki and S. Toki. Effects of preshearing on liquefaction characteristics of saturated sand subjected to cyclic loading. Soils and Foundations, 24(2):16–28, 1984.

    Google Scholar 

  • Y. Suzuki, K. Tokimatsu, K. Koyamada, Y. Taya, and Y. Kubota. Field correlation of soil liquefaction based on CPT data. In Proceedings of the International Symposium on Cone Penetration Testing, CPT’95, Linkoping, Sweden, volume 2, pages 583–588, 1995.

    Google Scholar 

  • Y. Tanaka, K. Kokusho, K. Kudo, and Y. Yoshida. Dynamic strength of gravelly soils and its relation to the penetration resistance. In Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, volume 1, pages 399–406, 1991.

    Google Scholar 

  • F. Tatsuoka, T. Iwasaki, S. Yoshida, S. Fukushima, and H. Sudo. Shear modulus and damping by drained tests on clean sand specimen reconstituted by various methods. Soils and Foundations, 19(1):39–54, 1979.

    Google Scholar 

  • F. Tatsuoka, T. Iwasaki, K.-I. Tokida, S. Yasuda, M. Hirose, T. Imai, and M. Kon-No. Standard penetration tests and soil liquefaction potential evaluation. Soils and Foundations, 20(4):95–111, 1980.

    Google Scholar 

  • F. Tatsuoka, S. Maeda, K. Ochi, and S. Fujii. Prediction of cyclic undrained strength of sand subjected to irregular loadings. Soils and Foundations, 26(2):73–89, 1986a.

    Google Scholar 

  • F. Tatsuoka, K. Ochi, S. Fujii, and M. Okamoto. Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soils and Foundations, 26(3):23–41, 1986b.

    Google Scholar 

  • F. Tatsuoka, H. Kimura, and T.B.S. Pradhan. Liquefaction strength of sands subjected to sustained pressure. Soils and Foundations, 28(1):119–131, 1988.

    Google Scholar 

  • S. Teachavorasinskun, F. Tatsuoka, and D.C.F. Lo Presti. Effects of cyclic prestraining on dilatancy characteristics and liquefaction of sand. In Shibuya, Mitachi, and Miura, editors, Pre-failure deformation of geomaterials, pages 75–80, 1994.

    Google Scholar 

  • S. Toki, S. Shibuya, and S. Yamashita. Standardization of laboratory test methods to determine the cyclic deformation properties of geomaterials in Japan. In S. Shibuya, T. Mitachi, and S. Miura, editors, Pre-failure Deformations of Geomaterials, volume 2, pages 741–784, 1995.

    Google Scholar 

  • K. Tokimatsu. Penetration tests for dynamic problems. In Proc. of the First International Symposium of Penetration Testing, ISOPT-1, pages 117–136, 1988.

    Google Scholar 

  • K. Tokimatsu. System compliance correction from pore pressure response in undrained triaxial tests. Soils and Foundations, 30(2):14–22, 1990.

    Google Scholar 

  • K. Tokimatsu and Y. Hosaka. Effects of sample disturbance on dynamic properties of sand. Soils and Foundations, 26(1):53–64, 1986.

    Google Scholar 

  • K. Tokimatsu and K. Nakamura. A liquefaction test without membrane penetration effects. Soils and Foundations, 26(4):127–138, 1986.

    Google Scholar 

  • K. Tokimatsu and K. Nakamura. A simplified correction for membrane compliance in liquefaction tests. Soils and Foundations, 27(4):111–122, 1987.

    Google Scholar 

  • K. Tokimatsu and A. Uchida. Correlation between liquefaction resistance and shear wave velocity. Soils and Foundations, 30(2):33–42, 1990.

    Google Scholar 

  • I. Towhata. Geotechnical Earthquake Engineering. Springer, 2008.

    Google Scholar 

  • Th. Triantafyllidis and B. Prange. Dynamic subsoil-coupling between rigid rectangular foundations. Soil Dyn. Earthquake Eng.., 1987.

    Google Scholar 

  • M. Uthayakumar and Y.P. Vaid. Liquefaction of sands under multiaxial stresses. Canadian Geotechnical Journal, 35:273–283, 1998.

    Google Scholar 

  • Y. Vaid and W.D.L. Finn. Static shear and liquefaction potential. Journal of the Geotechnical Engineering Division, ASCE, 105(GT10):1233–1246, 1979.

    Google Scholar 

  • Y.P. Vaid and J.C. Chern. Cyclic and monotonic undrained response of sands. In Proceedings of Advances in the Art of Testing Soils under Cyclic Loading Conditions, Detroit, pages 120–147, 1985.

    Google Scholar 

  • Y.P. Vaid and A. Eliadorani. Instability and liquefaction of granular soils under undrained and partially drained states. Canadian Geotechnical Journal, 35:1053–1062, 1998.

    Google Scholar 

  • Y.P. Vaid and S. Sivathayalan. Fundamental factors affecting liquefaction susceptibility of sands. Canadian Geotechnical Journal, 37:592–606, 2000.

    Google Scholar 

  • Y.P. Vaid and J. Thomas. Post liquefaction behaviour of sand. In Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, volume 1, pages 1303–1310, 1994.

    Google Scholar 

  • Y.P. Vaid and J. Thomas. Liquefaction and postliquefaction behavior of sand. Journal of Geotechnical Engineering, ASCE, 121(2):163–173, 1995.

    Google Scholar 

  • Y.P. Vaid, P.M. Byrne, and J.M.O. Hughes. Dilation angle and liquefaction potential. Journal of the Geotechnical Engineering Division, ASCE, 107(GT7):1003–1008, 1981.

    Google Scholar 

  • Y.P. Vaid, E.K.F. Chung, and R.H. Kuerbis. Preshearing and undrained response of sands. Soils and Foundations, 29(4):49–61, 1989.

    Google Scholar 

  • Y.P. Vaid, E.K.F. Chung, and R.H. Kuerbis. Stress path and steady state. Canadian Geotechnical Journal, 27:1–7, 1990a.

    Google Scholar 

  • Y.P. Vaid, J.M. Fisher, R.H. Kuerbis, and D. Negussey. Particle gradation and liquefaction. Journal of Geotechnical Engineering, ASCE, 116(4):698–703, 1990b.

    Google Scholar 

  • Y.P. Vaid, M. Uthayakumar, S. Sivathayalan, P.K. Robertson, and B. Hofmann. Laboratory testing of Syncrude sand. In Proceedings of the 48th Canadian Geotechnical Conference, Vancouver, volume 1, pages 223–232, 1995.

    Google Scholar 

  • Y.P. Vaid, S. Sivathayalan, A. Eliadorani, and M. Uthayakumar. Characterisation of static and dynamic liquefaction of sands. Laboratory testing at U.B.C. Technical Report 04/96, CANLEX, 1996.

    Google Scholar 

  • Y.P. Vaid, S. Sivathayalan, and D. Stedman. Influence of specimen-reconstituting method on the undrained response of sand. Geotechnical Testing Journal, ASTM, 22(3):187–195, 1999.

    Google Scholar 

  • R. Verdugo and K. Ishihara. The steady state of sandy soils. Soils and Foundations, 36(2):81–91, 1996.

    Google Scholar 

  • P.-A. von Wolffersdorff. A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1:251–271, 1996.

    Google Scholar 

  • R.V. Whitman. Resistance of soil to liquefaction and settlement. Soils and Foundations, 11(4):59–68, 1971.

    Google Scholar 

  • T. Wichtmann. Explicit accumulation model for non-cohesive soils under cyclic loading. PhD thesis, Publications of the Institute for Soil Mechanics and Foundation Engineering, Ruhr-University Bochum, Issue No. 38, available from www.rz.uni-karlsruhe.de/~gn97/, 2005.

    Google Scholar 

  • T. Wichtmann and T. Triantafyllidis. Dynamic stiffness and damping of sand at small strains (in German). Bautechnik, 82(4):236–246, 2005a.

    Google Scholar 

  • T. Wichtmann and T. Triantafyllidis. On the influence of the grain size distribution curve on dynamic and cumulative behaviour of non-cohesive soils (in German). Bautechnik, 82(6):378–386, 2005b.

    Google Scholar 

  • T. Wichtmann and T. Triantafyllidis. On the influence of the grain size distribution curve of quartz sand on the small strain shear modulus Gmax. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 10:1404–1418, 2009a.

    Google Scholar 

  • T. Wichtmann and Th. Triantafyllidis. Reply to the discussion of T. Benz and P.A. Vermeer on “On the correlation of oedometric and “dynamic” stiffness of non-cohesive soils” (Bautechnik 83, No. 7, 2006) (in German). Bautechnik, 84(5):364–366, 2007.

    Google Scholar 

  • T. Wichtmann and Th. Triantafyllidis. On the correlation of “static” and “dynamic” stiffness moduli of non-cohesive soils. Bautechnik, Special Issue “Geotechnical Engineering”, July 2009, pages 28–39, 2009b.

    Google Scholar 

  • T. Wichtmann and Th. Triantafyllidis. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part I cyclic and dynamic torsional prestraining. Soil Dynamics and Earthquake Engineering, 24(2):127–147, 2004a.

    Google Scholar 

  • T. Wichtmann and Th. Triantafyllidis. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part II: cyclic axial preloading. Soil Dynamics and Earthquake Engineering, 24(11):789–803, 2004b.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Strain accumulation in sand due to cyclic loading: drained triaxial tests. Soil Dynamics and Earthquake Engineering, 25(12):967–979, 2005a.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and T. Triantafyllidis. FE prediction of settlements of shallow foundations on sand subjected to cyclic loading (in German). Bautechnik, 82(12):902–911, 2005b.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, T. Triantafyllidis, and M. Poblete. Correlation of cyclic preloading with the liquefaction resistance. Soil Dynamics and Earthquake Engineering, 25(12):923–932, 2005c.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Experimental evidence of a unique flow rule of non-cohesive soils under high-cyclic loading. Acta Geotechnica, 1(1):59–73, 2006a.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Is Miner’s rule applicable to sand? (in German). Bautechnik, 83(5):341–350, 2006b.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and T. Triantafyllidis. On the influence of the polarization and the shape of the strain loop on strain accumulation in sand under high-cyclic loading. Soil Dynamics and Earthquake Engineering, 27(1):14–28, 2007a.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Differential settlements due to cyclic loading and their effect on the lifetime of structures. In F. Stangenberg, O.T. Bruhns, D. Hartmann, and G. Meschke, editors, Proc. of 3rd Intern. Conf. on Lifetime-oriented Design Concepts, Bochum, 12–14 November, pages 357–364. Aedificatio, 2007b.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and Th. Triantafyllidis. Prediction of longterm deformations for monopile foundations of offshore wind power plants. In 11th Baltic Sea Geotechnical Conference: “Geotechnics in Maritime Engineering”, Gdańsk, Poland, 15–18 September 2008, pages 785–792, 2008.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and T. Triantafyllidis. Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands. Soils and Foundations, 49(10):711–728, 2009.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and T. Triantafyllidis. On the determination of a set of material constants for a high-cycle accumulation model for non-cohesive soils. Int. J. Numer. Anal. Meth. Geomech., 34(4):409–440, 2010a.

    Google Scholar 

  • T. Wichtmann, A. Niemunis, and T. Triantafyllidis. On the “elastic” stiffness in a high-cycle accumulation model for sand: a comparison of drained and undrained cyclic triaxial tests. Canadian Geotechnical Journal, 47(7):791–805, 2010b.

    Google Scholar 

  • T. Wichtmann, B. Rojas, A. Niemunis, and Th. Triantafyllidis. Stressand strain-controlled undrained cyclic triaxial tests on a fine sand for a high-cycle accumulation model. In Proc. of the Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, USA, 2010c.

    Google Scholar 

  • R.T. Wong, H.B. Seed, and C.K. Chan. Cyclic loading liquefaction of gravelly soils. Journal of the Geotechnical Engineering Division, ASCE, 101(6):571–583, 1975.

    Google Scholar 

  • H.-C. Wu and G.S. Chang. Stress analysis for dummy rod method for sand specimens. Journal of Geotechnical Engineering, ASCE, 108(9):1192–1197, 1982.

    Google Scholar 

  • S. Wu, D.H. Gray, and F.E. Richart Jr. Capillary effects on dynamic modulus of sands and silts. Journal of Geotechnical Engineering, ASCE, 110(9):1188–1203, 1984.

    Google Scholar 

  • W. Wu. Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Veröffentlichungen des Institutes für Boden-und Felsmechanik der Universität Fridericiana in Karlsruhe, Heft Nr. 129, 1992.

    Google Scholar 

  • H. Xia and T. Hu. Effects of saturation and back pressure on sand liquefaction. Journal of Geotechnical Engineering, ASCE, 117(9):1347–1362, 1991.

    Google Scholar 

  • Y. Yamada and K. Ishihara. Yielding of loose sand in three-dimensional stress conditions. Soils and Foundations, 22(3):15–31, 1982.

    Google Scholar 

  • S. Yasuda and M. Soga. Effects of frequency on undrained strength of sands (in Japanese). In Proc. 19th Nat. Conf. Soil Mech. Found. Eng., pages 549–550, 1984.

    Google Scholar 

  • S. Yasuda and I. Yamaguchi. Dynamic shear modulus obtained in the laboratory and in situ (in Japanese). In Proceedings of the Symposium on Evaluation of Deformation and Strength of Sandy Ground, pages 115–118, 1985.

    Google Scholar 

  • K. Yokota and M. Konno. Comparison of soil constants obtained from laboratory tests and in situ tests (in Japanese). In Proceedings of the Symposium on Evaluation of Deformation and Strength of Sandy Ground, pages 111–114, 1985.

    Google Scholar 

  • Y. Yoshimi and H. Oh-Oka. Influence of degree of shear stress reversal on the liquefaction potential of saturated sand. Soils and Foundations, 15(3):27–40, 1975.

    Google Scholar 

  • Y. Yoshimi, K. Tokimatsu, O. Kaneko, and Y. Makihara. Undrained cyclic shear strength of a dense Niigata sand. Soils and Foundations, 24(4): 131–145, 1984.

    Google Scholar 

  • Y. Yoshimi, K. Tokimatsu, and Y. Hosaka. Evaluation of liquefaction resistance of clean sands based on high-quality undisturbed samples. Soils and Foundations, 29:93–104, 1989.

    Google Scholar 

  • T.L. Youd. Compaction of sands by repeated shear straining. Journal of the Soil Mechanics and Foundations Division, ASCE, 98(SM7):709–725, 1972.

    Google Scholar 

  • T.L. Youd, E.L. Harp, D.K. Keefer, and R.C. Wilson. The Borah Peak, Idaho Earthquake of October 28, 1983 — Liquefaction. Earthquake Spectra, 2(1):71–89, 1985.

    Google Scholar 

  • P. Yu and F.E. Richart Jr. Stress ratio effects on shear modulus of dry sands. Journal of Geotechnical Engineering, ASCE, 1103:331–345, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 CISM, Udine

About this chapter

Cite this chapter

Wichtmann, T., Triantafyllidis, T. (2012). Behaviour of Granular Soils Under Environmentally Induced Cyclic Loads. In: Di Prisco, C., Wood, D.M. (eds) Mechanical Behaviour of Soils Under Environmentally Induced Cyclic Loads. CISM Courses and Lectures, vol 534. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1068-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1068-3_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1067-6

  • Online ISBN: 978-3-7091-1068-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics