Skip to main content

NKG2D Activating Receptor

  • Chapter
  • First Online:
Animal Lectins: Form, Function and Clinical Applications
  • 1488 Accesses

Abstract

Information on receptor ligand systems used by NK cells to specifically detect transformed cells has been accumulating rapidly. Killer cell lectin-like receptor subfamily K, member 1, also known as KLRK1, is the product of human gene. The KLRK1 has been designated as CD314 and contains a C-type lectin-like domain (CTLD). KLRK1 is also known as: KLR; NKG2D; NKG2-D; FLJ17759; FLJ75772; D12S2489E. Human NKG2D was originally identified in 1991 as an orphan receptor on NK cells (Houchins et al. 1991). Although genetically mapping near the C-type lectin receptors CD94 and NKG2A-E, the NKG2D activating NK cell receptor has little sequence homology with these receptors and is expressed as a homodimer that signals through DAP10 rather than CD94 (Chap. 30). NKG2D binds to two distinct families of ligands, the MHC class I chain-related peptides (MICA and MICB) and the UL-16 binding proteins (ULBP). These ligands are upregulated in cells that have undergone neoplastic transformation, and NK cytotoxicity on tumor cells correlates with tumor expression of MICA and ULBP. The NKG2D differs from other members of the NKG2 family in significant ways. They do not form heterodimers with CD94 on the cell surface. Instead, they are expressed as homodimers, and each homodimer associates noncovalently with a homodimer of the adaptor protein DAP-10. The cytoplasmic tail of DAP-10 carries a YxxM motif, which can recruit the regulatory subunit p85 of phosphatidylinositol-3 kinase and Grb2 (see also Chap. 30).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander AAZ, Maniar A, Cummings J-S et al (2008) Isopentenyl pyrophosphate activated CD56+ γδ T lymphocytes display potent anti-tumor activity towards human squamous cell carcinoma. Clin Cancer Res 14:4232–4240

    Article  PubMed  CAS  Google Scholar 

  • Armeanu S, Krusch M, Baltz KM et al (2008) Direct and natural killer cell-mediated antitumor effects of low-dose bortezomib in hepatocellular carcinoma. Clin Cancer Res 14:3520–3528

    Article  PubMed  CAS  Google Scholar 

  • Azimi N, Jacobson S, Tanaka Y et al (2006) Immunostimulation by induced expression of NKG2D and its MIC ligands in HTLV-1-associated neurologic disease. Immunogenetics 58:252–258

    Article  PubMed  CAS  Google Scholar 

  • Bacon L, Eagle RA, Meyer M et al (2004) Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol 173:1078–1084

    PubMed  CAS  Google Scholar 

  • Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA 91:6259–6263

    Article  PubMed  CAS  Google Scholar 

  • Bahram S, Inoko H, Shiina T, Radosavljevic M (2005) MIC and other NKG2D ligands: from none to too many. Curr Opin Immunol 17:505–509

    Article  PubMed  CAS  Google Scholar 

  • Barber A, Zhang T, DeMars LR et al (2007) Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer. Cancer Res 67:5003–5008

    Article  PubMed  CAS  Google Scholar 

  • Barber A, Zhang T, Megli CJ et al (2008a) Chimeric NKG2D receptor-expressing T cells as an immunotherapy for multiple myeloma. Exp Hematol 36:1318–1328

    Article  PubMed  CAS  Google Scholar 

  • Barber A, Zhang T, Sentman CL (2008b) Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. J Immunol 180:72–78

    PubMed  CAS  Google Scholar 

  • Barber A, Rynda A, Sentman CL (2009) Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. J Immunol 183:6939–6947

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  PubMed  CAS  Google Scholar 

  • Berg SF, Dissen E, Westgaard IH, Fossum S (1998) Molecular characterization of rat NKR-P2, a lectin-like receptor expressed by NK cells and resting T cells. Int Immunol 10:379–385

    Article  PubMed  CAS  Google Scholar 

  • Bilgi O, Karagoz B, Turken O et al (2008) Peripheral blood γδT cells in advanced-stage cancer patients. Adv Ther 25:218–224

    Article  PubMed  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B et al (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329(6139):506–512

    Article  PubMed  CAS  Google Scholar 

  • Borchers MT, Harris NL, Wesselkamper SC et al (2006) The NKG2D-activating receptor mediates pulmonary clearance of Pseudomonas aeruginosa. Infect Immun 74:2578–2586

    Article  PubMed  CAS  Google Scholar 

  • Boyington JC, Riaz AN, Patamawenu A, Coligan JE, Brooks AG, Sun PD et al (1999) Structure of CD94 reveals a novel C-type lectin fold: implications for the NK cellassociated CD94/NKG2 receptors. Immunity 10:75–82

    Article  PubMed  CAS  Google Scholar 

  • Burgess SJ, Marusina AI, Pathmanathan I et al (2006) IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 176:1490–1497

    PubMed  CAS  Google Scholar 

  • Busche A, Goldmann T, Naumann U, Steinle A, Brandau S (2006) Natural killer cell-mediated rejection of experimental human lung cancer by genetic overexpression of major histocompatibility complex class I chain-related gene A. Hum Gene Ther 171:35–46

    Google Scholar 

  • Cao W, He W (2004) UL16 binding proteins. Immunobiology 209:283–290

    Article  PubMed  CAS  Google Scholar 

  • Cao W, Xi X, Hao Z et al (2007) RAET1E2, a soluble isoform of the UL16-binding protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK cytotoxicity. J Biol Chem 282:18922–18928

    Article  PubMed  CAS  Google Scholar 

  • Caraux A, Kim N, Bell SE et al (2006) Phospholipase C-γ2 is essential for NK cell cytotoxicity and innate immunity to malignant and virally infected cells. Blood 107:994–1002

    Article  PubMed  CAS  Google Scholar 

  • Carayannopoulos LN, Naidenko OV, Fremont DV, Yokoyama WM (2002) Cutting Edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 169:4079–4083

    PubMed  CAS  Google Scholar 

  • Carlsten M, Björkström NK, Norell H et al (2007) DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 67:1317–1325

    Article  PubMed  CAS  Google Scholar 

  • Cerboni C, Zingoni A, Cippitelli M et al (2007) Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK- cell lysis. Blood 110:606–615

    Article  PubMed  CAS  Google Scholar 

  • Cerwenka A (2009) New twist on the regulation of NKG2D ligand expression. J Exp Med 206:265–268

    Article  PubMed  CAS  Google Scholar 

  • Cerwenka A, Bakker AB, McClanahan T (2000) Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12:721–727

    Article  PubMed  CAS  Google Scholar 

  • Cerwenka A, Baron JL, Lewis L, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521–11526

    Article  PubMed  CAS  Google Scholar 

  • Chalupny NJ, Sutherland CL, Lawrence WA et al (2003) ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun 305:129–135

    Article  PubMed  CAS  Google Scholar 

  • Champsaur M, Lanier LL (2010) Effect of NKG2D ligand expression on host immune responses. Immunol Rev 235:267–285

    PubMed  CAS  Google Scholar 

  • Chan CW, Crafton E, Fan HN et al (2006) Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 12:207–213

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Trivedi PP, Ge B et al (2007) Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci USA 104:6329–6334

    Article  PubMed  CAS  Google Scholar 

  • Clayton A, Mitchell JP, Court J et al (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249–7258

    PubMed  CAS  Google Scholar 

  • Cosman D, Mullberg J, Sutherland CL et al (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133

    Article  PubMed  CAS  Google Scholar 

  • Coudert JD, Held W (2006) The role of the NKG2D receptor for tumor immunity. Semin Cancer Biol 16:333–343

    Article  PubMed  CAS  Google Scholar 

  • Coudert JD, Scarpellino L, Gros F et al (2008) Sustained NKG2D engagement induces cross tolerance of multiple distinct NK cell activation pathways. Blood 11:3571–3578

    Article  CAS  Google Scholar 

  • Coudert JD, Zimmer J, Tomasello E et al (2005) Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 106:1711–1717

    Article  PubMed  CAS  Google Scholar 

  • Dandekar AA, O’Malley K, Perlman S (2005) Important roles for γ interferon and NKG2D in γδ T-cell-induced demyelination in T-cell receptor β-deficient mice infected with a coronavirus. J Virol 79:9388–9396

    Article  PubMed  CAS  Google Scholar 

  • Dann SM, Wang HC, Gambarin KJ et al (2005) Interleukin-15 activates human natural killer cells to clear the intestinal protozoan cryptosporidium. J Infect Dis 192:1294–1302

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta S, Bhattacharya-Chatterjee M et al (2005) Inhibition of NK cell activity through TGF-β1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol 175:5541–5550

    PubMed  CAS  Google Scholar 

  • Dayanc BE, Beachy SH, Ostberg JR, Repasky EA (2008) Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperthermia 24:41–56

    Article  PubMed  CAS  Google Scholar 

  • de Rham C, Ferrari-Lacraz S, Jendly S et al (2007) The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res Ther 9:R125

    Article  PubMed  CAS  Google Scholar 

  • Deb C, Howe CL (2008) NKG2D contributes to efficient clearance of picornavirus from the acutely infected murine brain. J Neurovirol 14:261–266

    Article  PubMed  CAS  Google Scholar 

  • Della Chiesa M, Carlomagno S, Frumento G et al (2006) The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108:4118–4125

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Mariuzza RA (2006) Structural basis for recognition of MHC and MHC-like ligands by natural killer cell receptors. Semin Immunol 18:159–166

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach A, Hsia JK, Hsiung MY, Raulet DH (2003) A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol 33:381–391

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH (2000) Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1:119–126

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach A, Jensen ER, Jamieson AM et al (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach A, Tomasello E, Lucas M et al (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3:1142–1149

    Article  PubMed  CAS  Google Scholar 

  • Diermayr S, Himmelreich H, Durovic B et al (2008) NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood 111:1428–1436

    Article  PubMed  CAS  Google Scholar 

  • Eagle RA, Traherne JA, Ashiru O, Wills MR, Trowsdale J (2006) Regulation of NKG2D ligand gene expression. Hum Immunol 67:159–169

    Article  PubMed  CAS  Google Scholar 

  • Eagle RA, Trowsdale J (2007) Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7:737–744

    Article  PubMed  CAS  Google Scholar 

  • Ebihara T, Masuda H, Akazawa T et al (2007) Induction of NKG2D ligands on human dendritic cells by TLR ligand stimulation and RNA virus infection. Int Immunol 19:1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich LI, Ogasawara K, Hamerman JA et al (2005) Engagement of NKG2D by cognate ligand or antibody alone is insufficient to mediate costimulation of human and mouse CD8+ T cells. J Immunol 174:1922–1931

    PubMed  CAS  Google Scholar 

  • El-Sherbiny YM, Meade JL, Holmes TD et al (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67:8444–8449

    Article  PubMed  CAS  Google Scholar 

  • Epling-Burnette PK, Bai F, Painter JS et al (2007) Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 109:4816–4824

    Article  PubMed  CAS  Google Scholar 

  • Fan YY, Yang BY, Wu CY (2008) Phenotypic and functional heterogeneity of natural killer cells from umbilical cord blood mononuclear cells. Immunol Invest 37:79–96

    Article  PubMed  CAS  Google Scholar 

  • Fuertes MB, Girart MV, Molinero LL, Domaica CI, Rossi LE, Barrio MM, Mordoh J, Rabinovich GA, Zwirner NW (2008) Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity. J Immunol 180:4606–4614

    PubMed  CAS  Google Scholar 

  • Furue H, Matsuo K, Kumimoto H et al (2008) Decreased risk of colorectal cancer with the high natural killer cell activity NKG2D genotype in Japanese. Carcinogenesis 29:316–322

    Article  PubMed  CAS  Google Scholar 

  • Garrity D, Call ME, Feng J, Wucherpfennig KW (2005) The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci USA 102:7641–7646

    Article  PubMed  CAS  Google Scholar 

  • Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436(7054):1186–1190

    Article  PubMed  CAS  Google Scholar 

  • Ghiringhelli F, Ménard C, Terme M et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J Exp Med 202:1075–1085

    Article  PubMed  CAS  Google Scholar 

  • Girardi M, Oppenheim DE, Steele CR et al (2001) Regulation of cutaneous malignancy by γδ T cells. Science 294(5542):605–609

    Article  PubMed  CAS  Google Scholar 

  • Giurisato E, Cella M, Takai T (2007) Phosphatidylinositol 3-kinase activation is required to form the NKG2D immunological synapse. Mol Cell Biol 27:8583–8599

    Article  PubMed  CAS  Google Scholar 

  • Gorgoulis VG et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Bahram S, Bauer S et al (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93:12445–12450

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Brühl A, El-Gabalawy H et al (2003) Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 100:9452–9457

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R, Randolph-Habecker J et al (2001) Co-stimulation of CD8 αβT cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R, Secrist H et al (1999) Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279:1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  PubMed  CAS  Google Scholar 

  • Gross O, Grupp C, Steinberg C et al (2008) Multiple ITAM-coupled NK cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-κB and MAPK activation to selectively control cytokine production. Blood 112(6):2421–2428

    Article  PubMed  CAS  Google Scholar 

  • Guan H, Moretto M, Bzik DJ, Gigley J, Khan IA (2007) NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway. J Immunol 179:590–596

    PubMed  CAS  Google Scholar 

  • Guerra N, Tan YX, Joncker NT et al (2008) NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28:571–580

    Article  PubMed  CAS  Google Scholar 

  • Gumá M, Angulo A, López-Botet M (2006) NK cell receptors involved in the response to human cytomegalovirus infection. Curr Top Microbiol Immunol 298:207–222

    Article  PubMed  Google Scholar 

  • Hanson MG, Ozenci V, Carlsten MC et al (2007) A short-term dietary supplementation with high doses of vitamin E increases NK cell cytolytic activity in advanced colorectal cancer patients. Cancer Immunol Immunother 56:973–984

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Smyth MJ (2006a) Innate immune recognition and suppression of tumors. Adv Cancer Res 95:293–322

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Smyth MJ (2006b) NKG2D and cytotoxic effector function in tumor immune surveillance. Semin Immunol 18:176–185

    Article  PubMed  CAS  Google Scholar 

  • Hidano S, Sasanuma H, Ohshima K et al (2008) Distinct regulatory functions of SLP-76 and MIST in NK cell cytotoxicity and IFN-γ production. Int Immunol 20:345–352

    Article  PubMed  CAS  Google Scholar 

  • Ho EL, Heusel JW, Brown MG et al (1998) Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc Natl Acad Sci USA 95:6320–6325

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann SC, Schellack C, Textor S et al (2007) Identification of CLEC12B, an inhibitory receptor on myeloid cells. J Biol Chem 282:22370–22375

    Article  PubMed  CAS  Google Scholar 

  • Houchins JP, Yabe T, McSherry C, Bach FH (1991) DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173:1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Huntington ND, Xu Y, Nutt SL, Tarlinton DM (2005) A requirement for CD45 distinguishes Ly49D-mediated cytokine and chemokine production from killing in primary natural killer cells. J Exp Med 201:1421–1433

    Article  PubMed  CAS  Google Scholar 

  • Hyka-Nouspikel N, Phillips JH (2006) Physiological roles of murine DAP10 adapter protein in tumor immunity and autoimmunity. Immunol Rev 214:106–117

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Ida H, Huang M et al (2006) Characterization of peripheral natural killer cells in primary Sjögren’s syndrome: impaired NK cell activity and low NK cell number. J Lab Clin Med 147:242–249

    Article  PubMed  CAS  Google Scholar 

  • Jacobs R, Hintzen G, Kemper A et al (2001) CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 31:3121–3127

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Cao TM, Baker JA et al (2005) Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8+ T cells and NK cells. J Immunol 175:7819–7828

    PubMed  CAS  Google Scholar 

  • Katou F, Ohtani H, Watanabe Y et al (2007) Differing phenotypes between intraepithelial and stromal lymphocytes in early-stage tongue cancer. Cancer Res 67:11195–11201

    Article  PubMed  CAS  Google Scholar 

  • Khurana D, Arneson LN, Schoon RA et al (2007) Differential regulation of human NK cell-mediated cytotoxicity by the tyrosine kinase Itk. J Immunol 178:3575–3582

    PubMed  CAS  Google Scholar 

  • Kim J, Chang CK, Hayden T et al (2007) The activating immunoreceptor NKG2D and its ligands are involved in allograft transplant rejection. J Immunol 179:6416–6422

    PubMed  CAS  Google Scholar 

  • Kim JY, Son YO, Park SW et al (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38:474–484

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Han MK, Broxmeyer HE (2008) 4-1BB regulates NKG2D costimulation in human cord blood CD8+ T cells. Blood 111:1378–1386

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Cao W, Xi, X et al (2009) The NKG2D ligand ULBP4 binds to TCRγ9/δ2 and induces cytotoxicity to tumor cells through both TCRγδ and NKG2D. Blood 114:310–317

    Article  PubMed  CAS  Google Scholar 

  • Konjević G, Jović V, Vuletić A et al (2007) CD69 on CD56+ NK cells and response to chemoimmunotherapy in metastatic melanoma. Eur J Clin Invest 37:887–896

    Article  PubMed  CAS  Google Scholar 

  • Kopcow HD, Allan DS, Chen X et al (2005) Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci USA 102:15563–15568

    Article  PubMed  CAS  Google Scholar 

  • Kraetzel K, Stoelcker B, Eissner G et al (2008) NKG2D-dependent effector function of bronchial epithelium activated alloreactive T cells. Eur Respir J 32:563–570

    Article  PubMed  CAS  Google Scholar 

  • Krockenberger M, Dombrowski Y, Weidler C et al (2008) Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J Immunol 180:7338–7348

    PubMed  CAS  Google Scholar 

  • Kubin M, Cassiano L, Chalupny J et al (2001) ULBP1, 2, 3: novel MHC class I-related molecules that bind to human cytomegalovirus glycoprotein UL16, activate NK cells. Eur J Immunol 31:1428–1437

    Article  PubMed  CAS  Google Scholar 

  • Kusumi M, Yamashita T, Fujii T et al (2006) Expression patterns of lectin-like natural killer receptors, inhibitory CD94/NKG2A, and activating CD94/NKG2C on decidual CD56bright natural killer cells differ from those on peripheral CD56dim natural killer cells. J Reprod Immunol 70:33–42

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (2009) DAP10- and DAP12-associated receptors in innate immunity. Immunol Rev 227:150–160

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9:495–502

    Article  PubMed  CAS  Google Scholar 

  • Le Maux Chansac B, Missé D et al (2008) Potentiation of NK cell-mediated cytotoxicity in human lung adenocarcinoma: role of NKG2D-dependent pathway. Int Immunol 20:801–810

    Article  PubMed  CAS  Google Scholar 

  • Lee JC, Lee KM, Kim DW, Heo DS (2004) Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340

    PubMed  CAS  Google Scholar 

  • Levin SD, Brandt CS, Yi EC et al (2009) Identification of a cell surface ligand for NKp30. J Immunol 182:134.20

    Google Scholar 

  • Li A, He M, Wang H et al (2007) All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92. Biochem Biophys Res Commun 352:42–47

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ge B, Nicotra M, Stern JN et al (2008) JNK MAP kinase activation is required for MTOC and granule polarization in NKG2D-mediated NK cell cytotoxicity. Proc Natl Acad Sci USA 105:3017–3022

    Article  PubMed  CAS  Google Scholar 

  • Li P, McDermott G, Strong RK (2002) Crystal structures of RAE-1β and its complex with the activating immunoreceptor NKG2D. Immunity 16:77–86

    Article  PubMed  CAS  Google Scholar 

  • Li P, Morris DL, Willcox BE et al (2001) Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol 2:443–451

    PubMed  CAS  Google Scholar 

  • Maasho K, Opoku-Anane J, Marusina AI et al (2005) NKG2D is a costimulatory receptor for human naive CD8+ T cells. J Immunol 174:4480–4484

    PubMed  CAS  Google Scholar 

  • MacFarlane AW 4th, Campbell KS (2006) Signal transduction in natural killer cells. Curr Top Microbiol Immunol 298:23–57

    Article  PubMed  Google Scholar 

  • Malarkannan S (2006) The balancing act: inhibitory Ly49 regulate NKG2D-mediated NK cell functions. Semin Immunol 18:186–192

    Article  PubMed  CAS  Google Scholar 

  • Mans J, Natarajan K, Balbo A et al (2007) Cellular expression and crystal structure of the murine cytomegalovirus major histocompatibility complex class I-like glycoprotein, m153. J Biol Chem 282:35247–35258

    Article  PubMed  CAS  Google Scholar 

  • Call ME, Wucherpfennig K, Chou JJ (2010) The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Melum E, Buch S, Schafmayer C et al (2008) Investigation of cholangiocarcinoma associated NKG2D polymorphisms in colorectal carcinoma. Int J Cancer 123:241–242

    Article  PubMed  CAS  Google Scholar 

  • Mincheva-Nilsson L, Nagaeva O et al (2006) Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: a possible novel immune escape mechanism for fetal survival. J Immunol 176:3585–3592

    PubMed  CAS  Google Scholar 

  • Natarajan K, Sawicki MW, Margulies DH, Mariuzza RA (2000) Crystal structure of human CD69: a C-type lectin-like activation marker of hematopoietic cells. Biochemistry 39:14779–14786

    Article  PubMed  CAS  Google Scholar 

  • Nitahara A, Shimura H, Ito A et al (2006) NKG2D ligation without T cell receptor engagement triggers both cytotoxicity and cytokine production in dendritic epidermal T cells. J Invest Dermatol 126:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • Nomura M, Zou Z, Joh T et al (1996) Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J Biochem 120:987–995

    Article  PubMed  CAS  Google Scholar 

  • Ntrivalas EI, Bowser CR, Kwak-Kim J, Beaman KD, Gilman-Sachs A (2005) Expression of killer immunoglobulin-like receptors on peripheral blood NK cell subsets of women with recurrent spontaneous abortions or implantation failures. Am J Reprod Immunol 53:215–221

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara K, Hamerman JA, Ehrlich LR et al (2004) NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20:757–767, Comment in: Immunity. 2004; 21: 303–4

    Article  PubMed  CAS  Google Scholar 

  • Ogasawara K, Lanier LL (2005) NKG2D in NK and T cell-mediated immunity. J Clin Immunol 25:534–540

    Article  PubMed  CAS  Google Scholar 

  • Ortaldo JR, Winkler-Pickett R, Wigginton J et al (2006) Regulation of ITAM-positive receptors: role of IL-12 and IL-18. Blood 107:1468–1475

    Article  PubMed  CAS  Google Scholar 

  • Osaki T, Saito H, Fukumoto Y et al (2009) Inverse correlation between NKG2D expression on CD8+ T cells and the frequency of CD4 + CD25+ regulatory T cells in patients with esophageal cancer. Dis Esophagus 22:49–54

    Article  PubMed  CAS  Google Scholar 

  • Osaki T, Saito H, Tetal Y (2007) Decreased NKG2D expression on CD8+ T cell is involved in immune evasion in patient with gastric cancer. Clin Cancer Res 13:382–387

    Article  PubMed  CAS  Google Scholar 

  • Pessino A, Sivori S, Bottino C et al (1998) Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med 188:953–960

    Article  PubMed  CAS  Google Scholar 

  • Pilla L, Squarcina P, Coppa J et al (2005) Natural killer and NK-Like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96. Cancer Res 65:3942–3949

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Prevosto C et al (2007) NKG2D and natural cytotoxicity receptors are involved in natural killer cell interaction with self-antigen presenting cells and stromal cells. Ann N Y Acad Sci 1109:47–57

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Prevosto C, Massaro AM et al (2005) Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J Immunol 175:6352–6360

    PubMed  CAS  Google Scholar 

  • Rabinovich B, Li J, Wolfson M et al (2006) NKG2D splice variants: a reexamination of adaptor molecule associations. Immunogenetics 58:81–88

    Article  PubMed  CAS  Google Scholar 

  • Radaev S, Rostro B, Brooks AG, Colonna M, Sun PD (2001) Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Immunity 15:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Radosavljevic M, Cuillerier B, Wilson MJ et al (2002) A cluster of ten novel MHC class I related genes on human chromosome 6q24.2-q25.3. Genomics 79:114–123

    Article  PubMed  CAS  Google Scholar 

  • Regunathan J, Chen Y, Kutlesa S et al (2006) Differential and nonredundant roles of phospholipase Cγ2 and phospholipase Cγ1 in the terminal maturation of NK cells. J Immunol 177:5365–5376

    PubMed  CAS  Google Scholar 

  • Regunathan J, Chen Y, Wang D et al (2005) NKG2D receptor-mediated NK cell function is regulated by inhibitory Ly49 receptors. Blood 105:233–240

    Article  PubMed  CAS  Google Scholar 

  • Rincon-Orozco B, Kunzmann V, Wrobel P et al (2005) Activation of Vγ 9Vδ 2 T cells by NKG2D. J Immunol 175:2144–2151

    PubMed  CAS  Google Scholar 

  • Rohner A, Langenkamp U, Siegler U et al (2007) Differentiation -promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res 3:1393–1402

    Article  CAS  Google Scholar 

  • Romero AI, Thorén FB, Brune M, Hellstrand K (2006) NKp46 and NKG2D receptor expression in NK cells with CD56dim and CD56bright phenotype: regulation by histamine and reactive oxygen species. Br J Haematol 132:91–98

    Article  PubMed  CAS  Google Scholar 

  • Rosen DB, Araki M, Hamerman JA et al (2004) A structural basis for the association of DAP12 with mouse, but not human, NKG2D. J Immunol 173:2470–2478

    PubMed  CAS  Google Scholar 

  • Roy S, Barnes PF, Garg A, Wu S, Cosman D, Vankayalapati R (2008) NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J Immunol 180:1729–1736

    PubMed  CAS  Google Scholar 

  • Saez-Borderias A, Guma M, Angulo A et al (2006) Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur J Immunol 36:3198–3206

    Article  PubMed  CAS  Google Scholar 

  • Savithri B, Khar A (2006) A transmembrane-anchored rat RAE-1-like transcript as a ligand for NKR-P2, the rat ortholog of human and mouse NKG2D. Eur J Immunol 36:107–117

    Article  PubMed  CAS  Google Scholar 

  • Schepis D, Gunnarsson I, Eloranta ML et al (2009) Increased proportion of CD56bright natural killer cells in active and inactive systemic lupus erythematosus. Immunology 126:140–146

    Article  PubMed  CAS  Google Scholar 

  • Schrama D, Terheyden P, Otto K et al (2006) Expression of the NKG2D ligand UL16 binding protein-1 (ULBP-1) on dendritic cells. Eur J Immunol 36:65–72

    Article  PubMed  CAS  Google Scholar 

  • Schrambach S, Ardizzone M, Leymarie V et al (2007) In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS One 2:e518

    Article  PubMed  CAS  Google Scholar 

  • Smith KM, Wu J, Bakker AB et al (1998) Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. Immunol 161:7–10

    CAS  Google Scholar 

  • Smyth MJ, Teng MW, Swann J et al (2006) CD4+CD25; T regulatory cells suppress NK cell mediated immunotherapy of cancer. J Immunol 176:1582–1587

    PubMed  CAS  Google Scholar 

  • Song H, Hur DY, Kim KE et al (2006) IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-β in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Cell Immunol 242:39–45

    Article  PubMed  CAS  Google Scholar 

  • Srivastava RM, Varalakshmi C, Khar A (2008) The ischemia-responsive protein 94 (Irp94) activates dendritic cells through NK cell receptor protein-2/NK group 2 member D (NKR-P2/NKG2D) leading to their maturation. J Immunol 180:1117–1130

    PubMed  CAS  Google Scholar 

  • Srivastava RM, Varalakshmi Ch, Khar A (2007) Cross-linking a mAb to NKR-P2/NKG2D on dendritic cells induces their activation and maturation leading to enhanced anti-tumor immune response. Int Immunol 19:591–607

    Article  PubMed  CAS  Google Scholar 

  • Steinle A, Li P, Morris DL et al (2001) Interactions of human NKG2D with its ligands MIC-A, MIC-B, and homologs of the mouse RAE-1 protein family. Immunogenetics 53:279–287

    Article  PubMed  CAS  Google Scholar 

  • Stephan G, David HR (2006) Activation and self-tolerance of natural killer cells. Immunol Rev 214:130–142

    Article  Google Scholar 

  • Strid J, Roberts SJ, Filler RB et al (2008) Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat Immunol 9:146–154

    Article  PubMed  CAS  Google Scholar 

  • Strong RK, McFarland BJ (2004) NKG2D and related immunoreceptors. Adv Protein Chem 68:281–312

    Article  PubMed  CAS  Google Scholar 

  • Sundström Y, Nilsson C, Lilja G et al (2007) The expression of human natural killer cell receptors in early life. Scand J Immunol 66:335–344

    Article  PubMed  CAS  Google Scholar 

  • Sutherland CL, Chalupny NJ, Schooley K et al (2002) UL16-binding proteins, novel MHC class I-related proteins, bind to NKG2D and activate multiple signaling pathways in primary NK cells. J Immunol 168:671–679

    PubMed  CAS  Google Scholar 

  • Sutherland CL, Rabinovich B, Chalupny NJ, Brawand P, Miller R, Cosman D (2006) ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood 108:1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Takaki R, Hayakawa Y, Nelson A, Sivakumar PV, Hughes S, Smyth MJ, Lanier LL (2005) IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 175:2167–2173

    PubMed  CAS  Google Scholar 

  • Tomasello E, Vivier E (2005) KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. Eur J Immunol 35:1670–1677

    Article  PubMed  CAS  Google Scholar 

  • Tormo J, Natarajan K, Margulies DH et al (1999) Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402:623–631

    Article  PubMed  CAS  Google Scholar 

  • Trichet V, Benezech C, Dousset C, Gesnel MC, Bonneville M, Breathnach R (2006) Complex interplay of activating and inhibitory signals received by Vγ9Vδ2 T cells revealed by target cell β2-microglobulin knockdown. J Immunol 177:6129–6136

    PubMed  CAS  Google Scholar 

  • Upshaw JL, Arneson LN, Schoon RA et al (2006) NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nat Immunol 7:524–532

    Article  PubMed  CAS  Google Scholar 

  • Upshaw JL, Leibson PJ (2006) NKG2D-mediated activation of cytotoxic lymphocytes: unique signaling pathways and distinct functional outcomes. Semin Immunol 18:167–175

    Article  PubMed  CAS  Google Scholar 

  • Upshaw JL, Schoon RA, Dick CJ et al (2005) The isoforms of phospholipase C-γ are differentially used by distinct human NK activating receptors. J Immunol 175:213–218

    PubMed  CAS  Google Scholar 

  • Vankayalapati R, Garg A, Porgador A et al (2005) Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol 175:4611–4617

    PubMed  CAS  Google Scholar 

  • Varla-Leftherioti M, Spyropoulou-Vlachou M, Niokou D et al (2003) Natural killer (NK) cell receptors’ repertoire in couples with recurrent spontaneous abortions. Am J Reprod Immunol 49:183–191

    Article  PubMed  Google Scholar 

  • Verhoeven DH, de Hooge AS, Mooiman EC et al (2008) NK cells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways. Mol Immunol 45(15):3917–3925

    Article  PubMed  CAS  Google Scholar 

  • Vivier E, Nunès JA, Vély F (2004) Natural killer cell signaling pathways. Science 306(5701):1517–1519

    Article  PubMed  CAS  Google Scholar 

  • von Strandmann EP, Hansen HP, Reiners KS et al (2006) A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo. Blood 107:1955–1962

    Article  CAS  Google Scholar 

  • Walsh KB, Lodoen MB, Edwards RA, Lanier LL, Lane TE (2008) Evidence for differential roles for NKG2D receptor signaling in innate host defense against coronavirus-induced neurological and liver disease. J Virol 82:3021–3030

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xu H, Zheng X et al (2007) High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity. Cell Mol Immunol 4:377–382

    PubMed  CAS  Google Scholar 

  • Weis WI, Kahn R, Fourme R, Drickamer K, Hendrickson WA (1991) Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254:1608–1615

    Article  PubMed  CAS  Google Scholar 

  • Wolan DW, Teyton L, Rudolph MG et al (2001) Crystal structure of the murine NK cell-activating receptor NKG2D at 1.95 A. Nat Immunol 2:248–254

    Article  PubMed  CAS  Google Scholar 

  • Wrobel P, Shojaei H, Schittek B et al (2007) Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand J Immunol 66:320–328

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Song Y, Bakker AB, Bauer S et al (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732

    Article  PubMed  CAS  Google Scholar 

  • Yim D, Jie HB, Sotiriadis J et al (2001) Molecular cloning and characterization of pig immunoreceptor DAP10 and NKG2D. Immunogenetics 53:243–249

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang J, Niu J et al (2008a) Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Hum Immunol 69:490–500

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang J, Niu J, Zhang J, Tian Z (2008b) Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine 42:128–136

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang J, Wei H, Tian Z (2005) Imbalance of NKG2D and its inhibitory counterparts: how does tumor escape from innate immunity? Int Immunopharmacol 5:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Barber A, Sentman CL (2007) Chimeric NKG2D modified T cells inhibit systemic T-cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways. Cancer Res 67:11029–11036

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Stastny P (2006) MIC-A antigens stimulate T cell proliferation and cell-mediated cytotoxicity. Hum Immunol 67: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Nomura M, Takihara Y, Yasunaga T et al (1996) Isolation and characterization of retinoic acid-inducible cDNA. J Biochem 119:319–328

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, R.K., Gupta, G.S. (2012). NKG2D Activating Receptor. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_31

Download citation

Publish with us

Policies and ethics