Skip to main content

KLRB Receptor Family and Human Early Activation Antigen (CD69)

  • Chapter
  • First Online:
Animal Lectins: Form, Function and Clinical Applications
  • 1501 Accesses

Abstract

Natural killer cells are important component of the innate immune system, providing protection against intracellular infection particularly viruses and also neoplasia through direct cytotoxic mechanisms and the secretion of cytokines. They mediate their effects through direct cytolysis, release of cytokines and regulation of subsequent adaptive immune responses. They are called ‘natural’ killers because, unlike cytotoxic T cells, they do not require a previous challenge and preactivation to become active. NK cells can be activated by a range of soluble factors, including type I interferons, IL-2, IL-12, IL-15 and IL-18, but also by direct cell to cell contact between NK cell receptors and target cell ligands. NK cells possess an elaborate array of receptors, which regulate NK cytotoxic and secretory functions upon interaction with target cell MHC class I proteins. Determination of structures of NK cell receptors and their ligand complexes has led to a fast growth in our understanding of the activation and ligand recognition by these receptors as well as their function in innate immunity. B and T cells significantly and differentially influence the homeostasis and the phenotype of NK cells. The function of NK cell is tightly regulated by a fine balance of inhibitory and activating signals that are delivered by a diverse array of cell surface receptors. A prerequisite for a NK cell attack is the presence on target cells of ligands for activating receptors and low level or absence of ligands for inhibitory receptors. It was believed that NK self-tolerance was achieved by expression on each NK cell of at least one self-MHC specific inhibitory receptor. However, this dogma has been challenged after identification of a NK cell population in normal mice that lack inhibitory receptors specific for self-MHC class I molecules (Kumar and McNerney 2005; Fernandez et al. 2005). Therefore, it was made clear that some additional surface receptors contribute to NK self-tolerance and to the modulation of NK cell responses. The characterization and the identification of their physiological ligands allow us a comprehensive understanding of NK cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldemir H, Prod’homme V, Dumaurier MJ et al (2005) Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J Immunol 175:7791–7795

    PubMed  CAS  Google Scholar 

  • Anderson SK, Dewar K, Goulet ML et al (2005) Complete elucidation of a minimal class I MHC natural killer cell receptor haplotype. Genes Immun 6:481–492

    Article  PubMed  CAS  Google Scholar 

  • Anderson SK, Ortaldo JR, McVicar DW (2001) The ever-expanding Ly49 gene family: repertoire and signaling. Immunol Rev 181:79–89

    Article  PubMed  CAS  Google Scholar 

  • Anderson SK (2006) Transcriptional regulation of NK cell receptors. Curr Top Microbiol Immunol 298:59–75

    Article  PubMed  CAS  Google Scholar 

  • Arase N, Arase H, Park S et al (1997) Association with FcRγ is essential for activation signal through NKR-P1 (CD161) in natural killer (NK) cells and NK. 1.1+ T cells. J Exp Med 186:1957–1963

    Article  PubMed  CAS  Google Scholar 

  • Averdam A, Kuhl H, Sontag M et al (2007) Genomics and diversity of the common marmoset monkey NK complex. J Immunol 178:7151–7161

    PubMed  CAS  Google Scholar 

  • Azzoni L, Zatsepina O, Abebe B et al (1998) Differential transcriptional regulation of CD161 and a novel gene, 197/15a, by IL-2, IL-15, and IL-12 in NK and T cells. J Immunol 161:3493–3500

    PubMed  CAS  Google Scholar 

  • Bajorath J, Aruffo A (1994) Molecular model of the extracellular lectin-like domain in CD69. J Biol Chem 269:32457–32463

    PubMed  CAS  Google Scholar 

  • Bezouska K, Sklenár J, Dvoráková J et al (1997) NKR-P1A protein, an activating receptor of rat natural killer cells, binds to the chitobiose core of uncompletely glycosylated N-linked glycans, and to linear chitooligomers. Biochem Biophys Res Commun 238:149–153

    Article  PubMed  CAS  Google Scholar 

  • Bezouska K, Yuen CT, O’Brien J et al (1994) Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature 372(6502):150–157

    Article  PubMed  CAS  Google Scholar 

  • Bojarová P, Krenek K, Wetjen K et al (2009) Synthesis of LacdiNAc-terminated glycoconjugates by mutant galactosyltransferase–a way to new glycodrugs and materials. Glycobiology 19:509–519

    Article  PubMed  CAS  Google Scholar 

  • Boles KS, Barten R, Kumaresan PR et al (1999) Cloning of a new lectin-like receptor expressed on human NK cells. Immunogenetics 50:1–7

    Article  PubMed  CAS  Google Scholar 

  • Borrego F, Kabat J, Kim D-K et al (2001) Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol 38:637–660

    Article  Google Scholar 

  • Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890

    Article  PubMed  CAS  Google Scholar 

  • Brissette-Storkus C, Kaufman CL, Pasewicz L et al (1994) Characterization and function of the NKR-P1dim/T cell receptor-α β+ subset of rat T cells. J Immunol 152:388–396

    PubMed  CAS  Google Scholar 

  • Brissette-Storkus CS, Kettel JC, Whitham TF et al (2002) Flt-3 ligand (FL) drives differentiation of rat bone marrow-derived dendritic cells expressing OX62 and/or CD161 (NKR-P1). J Leukoc Biol 71:941–949

    PubMed  CAS  Google Scholar 

  • Campbell KS, Giorda R (1997) The cytoplamic domain of rat NKR-P1 receptor interacts with the N-terminal domain of p56lck via cysteine residues. Eur J Immunol 27:72–77

    Article  PubMed  CAS  Google Scholar 

  • Campillo JA, Martínez-Escribano JA, Muro M et al (2006) HLA class I and class II frequencies in patients with cutaneous malignat melanoma from southeastern Spain: the role of HLA-C in disease prognosis. Immunogenetics 57:926–933

    Article  PubMed  CAS  Google Scholar 

  • Carlyle J, Mesci A, Ljutic B et al (2006) Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J Immunol 176:7511–7524

    PubMed  CAS  Google Scholar 

  • Carlyle J, Martin A, Mehra A et al (1999) Mouse NKR-P1B, a novel NK1.1 antigen with inhibitory function. J Immunol 162:5917–5923

    PubMed  CAS  Google Scholar 

  • Carlyle JR, Jamieson AM, Gasser S et al (2004) Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc Natl Acad Sci USA 101:3527–3532

    Article  PubMed  CAS  Google Scholar 

  • Carlyle JR, Mesci A, Fine JH (2008) Evolution of the Ly49 and Nkrp1 recognition systems. Semin Immunol 20:321–330

    Article  PubMed  CAS  Google Scholar 

  • Cerný J, Fiserová A, Horváth O et al (1997) Association of human NK cell surface receptors NKR-P1 and CD94 with Src-family protein kinases. Immunogenetics 46:231–236

    Article  PubMed  Google Scholar 

  • Chambers WH, Bozik ME, Brissette-Storkus SC et al (1996) NKR-P1+ cells localize selectively in Rat 9 L gliosarcomas but have reduced cytolytic function. Cancer Res 56:3516–3525

    PubMed  CAS  Google Scholar 

  • Chambers WH, Brumfield AM, Hanley-Yanez K et al (1992) Functional heterogeneity between NKR-P1bright/Lycopersicon esculentum lectin (L.E.)bright and NKR-P1bright/L.E.dim subpopulations of rat natural killer cells. J Immunol 148:3658–3665

    PubMed  CAS  Google Scholar 

  • Christiansen D, Mouhtouris E, Milland J et al (2006) Recognition of a carbohydrate xenoepitope by human NKRP1A (CD161). Xenotransplantation 13:440–446

    Article  PubMed  Google Scholar 

  • Dam J, Baber J, Grishaev A et al (2006) Variable dimerization of the Ly49A natural killer cell receptor results in differential engagement of its MHC class I ligand. J Mol Biol 362:102–113

    Article  PubMed  CAS  Google Scholar 

  • Dam J, Guan R, Natarajan K et al (2003) Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2Kb. Nat Immunol 4:1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Cho S, Malchiodi EL et al (2008) Molecular architecture of the major histocompatibility complex class I-binding site of Ly49 natural killer cell receptors. J Biol Chem 283:16840–16849

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Mariuzza RA (2006) Structural basis for recognition of MHC and MHC-like ligands by natural killer cell receptors. Semin Immunol 18:159–166

    Article  PubMed  CAS  Google Scholar 

  • Dimasi N, Biassoni R (2005) Structural and functional aspects of the Ly49 natural killer cell receptors. Immunol Cell Biol 83:1–8

    Article  PubMed  CAS  Google Scholar 

  • Dimasi N, Moretta L, Biassoni R (2004) Structure of the Ly49 family of natural killer (NK) cell receptors and their interaction with MHC class I molecules. Immunol Res 30:95–104

    Article  PubMed  CAS  Google Scholar 

  • Dimasi N, Sawicki MW, Reineck LA et al (2002) Crystal structure of the Ly49I natural killer cell receptor reveals variability in dimerization mode within the Ly49 family. J Mol Biol 320:573–585

    Article  PubMed  CAS  Google Scholar 

  • Dissen E, Ryan JC, Seaman WE, Fossum S (1996) An autosomal dominant locus, Nka, mapping to the Ly-49 region of a rat natural killer (NK) gene complex, controls NK cell lysis of allogeneic lymphocytes. J Exp Med 183:2197–2207

    Article  PubMed  CAS  Google Scholar 

  • Durante-Mangoni E, Wang R, Shaulov A et al (2004) Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells. J Immunol 173:2159–2166

    PubMed  CAS  Google Scholar 

  • Eichler W, Ruschpler P, Wobus M, Drossler K (2001) Differentially induced expression of C-type lectins in activated lymphocytes. J Cell Biochem 81:201–208

    Article  Google Scholar 

  • Etogo AO, Nunez J, Lin CY et al (2008) NK but not CD1-restricted NKT cells facilitate systemic inflammation during polymicrobial intra-abdominal sepsis. J Immunol 180:6334–6345

    PubMed  CAS  Google Scholar 

  • Exley M, Porcelli S, Furman M et al (1998) CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant Vα 24 Jα Q T cell receptor αchains. J Exp Med 188:867–876

    Article  PubMed  CAS  Google Scholar 

  • Exley MA, He Q, Cheng O et al (2002) Cutting edge: compartmentalization of Th1-like noninvariant CD1d-reactive T cells in hepatitis C virus-infected liver. J Immunol 168:1519–1523

    PubMed  CAS  Google Scholar 

  • Fernandez NC, Treiner E, Vance RE et al (2005) A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105:4416–4423

    Article  PubMed  CAS  Google Scholar 

  • French AR, Yokoyama WM (2004) Natural killer cells and autoimmunity. Arthritis Res Ther 6:8–14

    Article  PubMed  CAS  Google Scholar 

  • Friese MA, Wischhusen J, Wick W et al (2004) RNA interference targeting transforming growth factor-ß enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603

    Article  PubMed  CAS  Google Scholar 

  • Gange CT, Quinn JM, Zhou H et al (2004) Characterization of sugar binding by osteoclast inhibitory lectin. J Biol Chem 279:29043–29049

    Article  PubMed  CAS  Google Scholar 

  • Giorda R, Weisberg EP, Ip TK, Trucco M (1992) Genomic structure and strain-specific expression of the natural killer cell receptor NKR-P1. J Immunol 149:1957–1963

    PubMed  CAS  Google Scholar 

  • Glimcher L, Shen FW, Cantor H (1977) Identification of a cell-surface antigen selectively expressed on the natural killer cell. J Exp Med 145:1–9

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI, MacDonald HR, Kronenberg M et al (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379–1388

    PubMed  CAS  Google Scholar 

  • González-Hernández Y, Pedraza-Sánchez S, Blandón-Vijil V et al (2007) Peripheral blood CD161+ T cells from asthmatic patients are activated during asthma attack and predominantly produce IFN-γ. Scand J Immunol 65:368–375

    Article  PubMed  CAS  Google Scholar 

  • Govaerts MM, Goddeeris BM (2001) Homologues of natural killer cell receptors NKG2-D and NKR-P1 expressed in cattle. Vet Immunol Immunopathol 80:339–344

    Article  PubMed  CAS  Google Scholar 

  • Hammond KJ, Pellicci DG, Poulton LD et al (2001) CD1d-restricted NKT cells: an interstrain comparison. J Immunol 167:1164–1173

    PubMed  CAS  Google Scholar 

  • Head JR, Kresge CK, Young JD, Hiserodt JC (1994) NKR-P1+ cells in the rat uterus: granulated metrial gland cells are of the natural killer cell lineage. Biol Reprod 51:509–523

    Article  PubMed  CAS  Google Scholar 

  • Ho MK, Wong YH (2001) Gz signaling: emerging divergence from Gi signaling. Oncogene 20:1615–1625

    Article  PubMed  CAS  Google Scholar 

  • Hu YS, Zhou H, Myers D et al (2004) Isolation of a human homolog of osteoclast inhibitory lectin that inhibits the formation and function of osteoclasts. J Bone Miner Res 19:89–99

    Article  PubMed  CAS  Google Scholar 

  • Iiai T, Watanabe H, Suda T et al (2002) CD161+ T (NT) cells exist predominantly in human intestinal epithelium as well as in liver. Clin Exp Immunol 129:92–98

    Article  PubMed  CAS  Google Scholar 

  • Iizuka K, Naidenko OV, Plougastel BFM et al (2003) Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol 4:801–807

    Article  PubMed  CAS  Google Scholar 

  • Ilhan F, Kandi B, Akbulut H et al (2007) Atopic dermatitis and Vα24+ natural killer T cells. Skinmed 6:218–220

    Article  PubMed  Google Scholar 

  • Iliopoulou EG, Karamouzis MV, Missitzis I et al (2006) Increased frequency of CD4+ cells expressing CD161 in cancer patients. Clin Cancer Res 12:6901–6909

    Article  PubMed  CAS  Google Scholar 

  • Ishihara S, Nieda M, Kitayama J et al (1999) CD8+NKR-P1A + T cells preferentially accumulate in human liver. Eur J Immunol 29:2406–2413

    Article  PubMed  CAS  Google Scholar 

  • Jacobs R, Weber K, Wendt K et al (2004) Altered coexpression of lectin-like receptors CD94 and CD161 on NK and T cells in HIV patients. J Clin Immunol 24:281–286

    Article  PubMed  CAS  Google Scholar 

  • Khalturin K, Becker M, Rinkevich B, Bosch TC (2003) Urochordates and the origin of natural killer cells: identification of a CD94/NKR-P1-related receptor in blood cells of Botryllus. Proc Natl Acad Sci USA 100:622–627

    Article  PubMed  CAS  Google Scholar 

  • Kis J, Engelmann P, Farkas K et al (2007) Reduced CD4+ subset and Th1 bias of the human iNKT cells in Type 1 diabetes mellitus. J Leukoc Biol 81:654–662

    Article  PubMed  CAS  Google Scholar 

  • Kitaichi N, Kotake S, Morohashi T et al (2002) Diminution of experimental autoimmune uveoretinitis (EAU) in mice depleted of NK cells. J Leukoc Biol 72:1117–1121

    PubMed  CAS  Google Scholar 

  • Kiyomoto T, Ito T, Uchikoshi F et al (2005) The potent role of graft-derived NKR-P1+TCRαβ+ T (NKT) cells in the spontaneous acceptance of rat liver allografts. Transplantation 80:1749–1755

    Article  PubMed  CAS  Google Scholar 

  • Kogelberg H, Frenkiel TA, Birdsall B et al (2002) Binding of sucrose octasulphate to the C-type lectin-like domain of the recombinant natural killer cell receptor NKR-P1A observed by NMR spectroscopy. Chembiochem 3:1072–1077

    Article  PubMed  CAS  Google Scholar 

  • Konjević G, Mirjacić Martinović K, Vuletić A et al (2007) Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clin Exp Metastasis 24:1–11

    Article  PubMed  CAS  Google Scholar 

  • Koo GC, Peppard JR (1984) Establishment of monoclonal anti-NK-1.1 antibody. Hybridoma 3:301–303

    Article  PubMed  CAS  Google Scholar 

  • Krist P, Herkommerová-Rajnochová E, Rauvolfová J et al (2001) Toward an optimal oligosaccharide ligand for rat natural killer cell activation receptor NKR-P1. Biochem Biophys Res Commun 287:11–20

    Article  PubMed  CAS  Google Scholar 

  • Kronenberg M, Gapin L (2002) The unconventional life style of NKT cells. Nat Rev Immunol 2:557–568

    PubMed  CAS  Google Scholar 

  • Kumar V, McNerney ME (2005) A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 5:363–374

    Article  PubMed  CAS  Google Scholar 

  • Kung SKP, Su R-C, Shannon J, Miller RG (1999) The NKR-P1B gene product is an inhibitory receptor on SJL/J NK cells. J Immunol 162:5876–5887

    PubMed  CAS  Google Scholar 

  • Kveberg L, Bäck CJ, Dai KZ et al (2006) The novel inhibitory NKR-P1C receptor and Ly49s3 identify two complementary, functionally distinct NK cell subsets in rats. J Immunol 176:4133–4140

    PubMed  CAS  Google Scholar 

  • Kveberg L, Dai KZ, Westgaard IH et al (2009) Two major groups of rat NKR-P1 receptors can be distinguished based on chromosomal localization, phylogenetic analysis and Clr ligand binding. Eur J Immunol 39:541–551

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  PubMed  CAS  Google Scholar 

  • Lauzurica P, Sancho D, Torres M et al (2000) Phenotypic and functional characteristics of hematopoietic cell lineages in CD69-deficient mice. Blood 95:2312–2320

    PubMed  CAS  Google Scholar 

  • Lebbink RJ, Meyaard L (2007) Non-MHC ligands for inhibitory immune receptors: novel insights and implications for immune regulation. Mol Immunol 44:2153–2164

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Zafer A, de Repentigny Y et al (2003) Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J Exp Med 197:515–526

    Article  PubMed  CAS  Google Scholar 

  • Levik G, Vaage JT, Rolstad B, Naper C (2001) The effect of in vivo depletion of NKR-P1+ or CD8+ lymphocytes on the acute rejection of allogeneic lymphocytes (ALC) in the rat. Scand J Immunol 54:341–347

    Article  Google Scholar 

  • Li J, Rabinovich BA, Hurren R et al (2003) Expression cloning and function of the rat NK activating and inhibitory receptors NKR-P1A and -P1B. Int Immunol 15:411–416

    Article  PubMed  CAS  Google Scholar 

  • Ljutic B, Carlyle JR, Filipp D et al (2005) Functional requirements for signaling through the stimulatory and inhibitory mouse NKR-P1 (CD161) NK cell receptors. J Immunol 174:4789–4796

    PubMed  CAS  Google Scholar 

  • Ljutic B, Carlyle JR, Zúñiga-Pflücker JC (2003) Identification of upstream cis-acting regulatory elements controlling lineage-specific expression of the mouse NK cell activation receptor, NKR-P1C. J Biol Chem 278:31909–31919

    Article  PubMed  CAS  Google Scholar 

  • Llera AS, Viedma F, Sánchez-Madrid F, Tormo J (2001) Crystal structure of the C-type lectin-like domain from the human hematopoietic cell receptor CD69. J Biol Chem 276:7312–7319

    Article  PubMed  CAS  Google Scholar 

  • López-Cabrera M, Muñoz E, Blázquez MV et al (1995) Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements. J Biol Chem 270:21545–21551

    Article  PubMed  Google Scholar 

  • Lopez-Cabrera M, Santis AG, Fernandez-Ruiz E et al (1993) Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. J Exp Med 178:537–547

    Article  PubMed  CAS  Google Scholar 

  • Loza MJ, Metelitsa LS, Perussia B (2002) NKT and T cells: coordinate regulation of NK-like phenotype and cytokine production. Eur J Immunol 32:3453–3462

    Article  PubMed  CAS  Google Scholar 

  • Lozupone F, Pende D, Burgio VL et al (2004) Effect of human natural killer and γδT-cells on the growth of human autologous melanoma xenografts in SCID mice. Cancer Res 64:378–385

    Article  PubMed  CAS  Google Scholar 

  • Mager DL, McQueen KL, Wee V, Freeman JD (2001) Evolution of natural killer cell receptors: coexistence of functional Ly49 and KIR genes in baboons. Curr Biol 11:626–630

    Article  PubMed  CAS  Google Scholar 

  • Maghazachi AA, Al-Aoukaty A, Naper C et al (1996) Preferential involvement of Go and Gz proteins in mediating rat natural killer cell lysis of allogeneic and tumor target cells. J Immunol 157:5308–5314

    PubMed  CAS  Google Scholar 

  • Mathew PA, Chuang SS, Vaidya SV et al (2004) The LLT1 receptor induces IFN-γ production by human natural killer cells. Mol Immunol 40:1157–1163

    Article  PubMed  CAS  Google Scholar 

  • Mesci A, Ljutic B, Makrigiannis AP, Carlyle JR (2006) NKR-P1 biology: from prototype to missing self. Immunol Res 35:13–26

    Article  PubMed  CAS  Google Scholar 

  • Mitsuo A, Morimoto S, Nakiri Y et al (2006) Decreased CD161+CD8+ T cells in the peripheral blood of patients suffering from rheumatic diseases. Rheumatology (Oxford) 45:1477–1484

    Article  CAS  Google Scholar 

  • Moretta L, Moretta A (2004) Killer immunoglobulin-like receptors. Curr Opin Immunol 16:626–633

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Dimasi N, Wang J et al (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol 20:853–885

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Sawicki MW, Margulies DH, Mariuzza RA (2000) Crystal structure of human CD69: a C-type lectin-like activation marker of hematopoietic cells. Biochemistry 39:14779–14786

    Article  PubMed  CAS  Google Scholar 

  • Northfield JW, Kasprowicz V, Lucas M et al (2008) CD161 expression on hepatitis C virus-specific CD8+ T cells suggests a distinct pathway of T cell differentiation. Hepatology 47:396–406

    Article  PubMed  CAS  Google Scholar 

  • O’Keeffe J, Doherty DG, Kenna T et al (2004) Diverse populations of T cells with NK cell receptors accumulate in the human intestine in health and in colorectal cancer. Eur J Immunol 34:2110–2119

    Article  PubMed  CAS  Google Scholar 

  • Ortaldo JR, Young HA (2003) Expression of IFN-γ upon triggering of activating Ly49D NK receptors in vitro and in vivo: costimulation with IL-12 or IL-18 overrides inhibitory receptors. J Immunol 170:1763–1769

    PubMed  CAS  Google Scholar 

  • Ortaldo JR, Young HA (2005) Mouse Ly49 NK receptors: balancing activation and inhibition. Mol Immunol 42:445–450

    Article  PubMed  CAS  Google Scholar 

  • Pavlícek J, Kavan D, Pompach P et al (2004) Lymphocyte activation receptors: new structural paradigms in group V of C-type animal lectins. Biochem Soc Trans 32:1124–1126

    Article  PubMed  Google Scholar 

  • Pisegna S, Zingoni A, Pirozzi G et al (2002) Src-dependent Syk activation controls CD69-mediated signaling and function on human NK cells. J Immunol 169:68–74

    PubMed  CAS  Google Scholar 

  • Pleshkan VV, Zinov’eva MV, Vinogradova TV, Sverdlov ED (2007) Transcription of the KLRB1 gene is suppressed in human cancer tissues. Mol Gen Mikrobiol Virusol 4:3–7, Article in Russian

    PubMed  Google Scholar 

  • Plougastel B, Dubbelde C, Yokoyama WM (2001a) Cloning of Clr, a new family of lectin-like genes localized between mouse Nkrp1a and Cd69. Immunogenetics 53:209–214

    Article  PubMed  CAS  Google Scholar 

  • Plougastel B, Matsumoto K, Dubbelde C, Yokoyama WM (2001b) Analysis of a 1-Mb BAC contig overlapping the mouse Nkrp1 cluster of genes: cloning of three new Nkrp1 members, Nkrp1d, Nkrp1e, and Nkrp1f. Immunogenetics 53:592–598

    Article  PubMed  CAS  Google Scholar 

  • Plougastel BF, Yokoyama WM (2006) Extending missing-self? Functional interactions between lectin-like NKrp1 receptors on NK cells with lectin-like ligands. Curr Top Microbiol Immunol 298:77–89

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Zocchi MR, Costa P et al (1999) IL-12-mediated NKRP1A up-regulation and consequent enhancement of endothelial transmigration of Vδ2+ TCR γδ+ T lymphocytes from healthy donors and multiple sclerosis patients. J Immunol 162:4349–4354

    PubMed  CAS  Google Scholar 

  • Poggi A, Costa P, Zocchi MR, Moretta L (1997a) NKRP1A molecule is involved in transendothelial migration of CD4+ human T lymphocytes. Immunol Lett 57:121–123

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Rubartelli A, Moretta L, Zocchi MR (1997b) Expression and function of NKRPIA molecule on human monocytes and dendritic cells. Eur J Immunol 27:2965–2970

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Zocchi MR, Carosio R et al (2002) Transendothelial migratory pathways of V δ1+TCR γδ+ and V δ2+TCR γδ+ T lymphocytes from healthy donors and multiple sclerosis patients: involvement of phosphatidylinositol 3 kinase and calcium calmodulin-dependent kinase II. J Immunol 168:6071–6077

    PubMed  CAS  Google Scholar 

  • Pozo D, Valés-Gómez M, Mavaddat N et al (2006) CD161 (Human NKR-P1A) signaling in NK cells involves the activation of acid sphingomyelinase. J Immunol 176:2397–2406

    PubMed  CAS  Google Scholar 

  • Radaev S, Sun PD (2003) Structure and function of natural killer cell surface receptors. Annu Rev Biophys Biomol Struct 32:93–114

    Article  PubMed  CAS  Google Scholar 

  • Raulet DH, Vance RE, McMahon CW (2001) Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19:291–330

    Article  PubMed  CAS  Google Scholar 

  • Renedo M, Arce I, Montgomery K et al (2000) A sequence-ready physical map of the region containing the human natural killer gene complex on chromosome 12p12.3-p13.2. Genomics 65:129–136

    Article  PubMed  CAS  Google Scholar 

  • Rogers SL, Göbel TW, Viertlboeck BC et al (2005) Characterization of the chicken C-type lectin-like receptors B-NK and B-lec suggests that the NK complex and the MHC share a common ancestral region. J Immunol 174:3475–3483

    PubMed  CAS  Google Scholar 

  • Rogers SL, Kaufman J (2008) High allelic polymorphism, moderate sequence diversity and diversifying selection for B-NK but not B-lec, the pair of lectin-like receptor genes in the chicken MHC. Immunogenetics 60:461–475

    Article  PubMed  CAS  Google Scholar 

  • Rosen DB, Bettadapura J, Alsharifi M et al (2005) Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol 175:7796–7799

    PubMed  CAS  Google Scholar 

  • Rosen DB, Cao W, Avery DT et al (2008) Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells. J Immunol 180:6508–6519

    PubMed  CAS  Google Scholar 

  • Roth P, Aulwurm S, Gekel I et al (2006) Regeneration and tolerance factor: a novel mediator of glioblastoma-associated immunosuppression. Cancer Res 66:3852–3858

    Article  PubMed  CAS  Google Scholar 

  • Roth P, Mittelbronn M, Wick W et al (2007) Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res 67:3540–3544

    Article  PubMed  CAS  Google Scholar 

  • Ryan JC, Niemi EC, Nakamura MC et al (1995) NKR-P1A is a target-specific receptor that activates natural killer cell cytotoxicity. J Exp Med 18:1911–1915

    Article  Google Scholar 

  • Ryan JC, Seaman WE (1997) Divergent functions of lectin-like receptors on NK cells. Immunol Rev 155:79–89

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Mateos P, Cebrián M, Acevedo A et al (1989) Expression of a gp33/27,000 MW activation inducer molecule (AIM) on human lymphoid tissues. Induction of cell proliferation on thymocytes and B lymphocytes by anti-AIM antibodies. Immunology 68:72–79

    PubMed  Google Scholar 

  • Santis AG, López-Cabrera M, Hamann J et al (1994) Structure of the gene coding for the human early lymphocyte activation antigen CD69: a C-type lectin receptor evolutionarily related with the gene families of natural killer cell-specific receptors. Eur J Immunol 24:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Sawicki MW, Dimasi N, Natarajan K et al (2001) Structural basis of MHC class I recognition by natural killer cell receptors. Immunol Rev 181:52–65

    Article  PubMed  CAS  Google Scholar 

  • Semenuk T, Krist P, PavlÃcek J, Bezouska K, Kuzma M, Novák P, Kren V (2001) Synthesis of chitooligomer-based glycoconjugates and their binding to the rat natural killer cell activation receptor. NKR-P1. Glycoconj J 18:817–826

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto M, Ueno Y, Tanaka S et al (2007) Selective decrease in colonic CD56+ T and CD161+ T cells in the inflamed mucosa of patients with ulcerative colitis. World J Gastroenterol 13:5995–6002

    Article  PubMed  Google Scholar 

  • Sobanov Y, Glienke J, Brostjan C et al (1999) Linkage of the NKG2 and CD94 receptor genes to D12S77 in the human natural killer gene complex. Immunogenetics 49:99–105

    Article  PubMed  CAS  Google Scholar 

  • Sun B, Li HL, Wang JH, Wang GY et al (2007) Passive transfer of experimental autoimmune neuritis by IL-12 and IL-18 synergistically potentiated lymphoid cells is regulated by NKR-P1+ cells. Scand J Immunol 65:412–420

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Dejbakhsh-Jones S, Strober S (2006) Expression of CD161 (NKR-P1A) defines subsets of human CD4 and CD8 T cells with different functional activities. J Immunol 176:211–216

    PubMed  CAS  Google Scholar 

  • Taniguchi M, Harada M, Kojo S et al (2003) The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21:483–513

    Article  PubMed  CAS  Google Scholar 

  • Tormo J, Natarajan K, Margulies DH, Mariuzza RA (1999) Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402:623–631

    Article  PubMed  CAS  Google Scholar 

  • Vetter CS, Straten PT, Terheyden P et al (2000) Expression of CD94/NKG2 subtypes on tumor-infiltrating lymphocytes in primary and metastatic melanoma. J Invest Dermatol 114:941–947

    Article  PubMed  CAS  Google Scholar 

  • Voigt S, Mesci A, Ettinger J et al (2007) Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity 26:617–627

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Nakamura Y, Matsuzuka F et al (2008) Decrease of intrathyroidal CD161+Vα24+Vβ11+ NKT cells in Graves’ disease. Endocr J 55:199–203

    Article  PubMed  Google Scholar 

  • Webster GA, Bowles MJ, Karim MS et al (1994) Activation antigen expression on peripheral blood neutrophils following rat small bowel transplantation. NKR-P1 is a novel antigen preferentially expressed during allograft rejection. Transplantation 58:707–712

    PubMed  CAS  Google Scholar 

  • Werwitzke S, Tiede A, Drescher BE et al (2003) CD8 β/CD28 expression defines functionally distinct populations of peripheral blood T lymphocytes. Clin Exp Immunol 133:334–343

    Article  PubMed  CAS  Google Scholar 

  • Westgaard IH, Berg SF, Ørstavik S et al (1998) Identification of a human member of the Ly-49 multigene family. Eur J Immunol 28:1839–1846

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Imanishi S, Yamada K et al (2005) Strain and age-related changes in the localization of intestinal CD161+ natural killer cells and CD8+ intraepithelial lymphocytes along the longitudinal crypt axis in inbred rats. Biosci Biotechnol Biochem 69:567–574

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Flint MS, Webb KM, Chambers WH (2006) CD161B:ClrB interactions mediate activation of enhanced lysis of tumor target cells following NK cell:DC co-culture. Immunol Res 36:43–50

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama WM, Plougastel BFM (2003) Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 3:304–316

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Zhu Y, Chen Z et al (2002) Initiation and development of experimental autoimmune neuritis in Lewis rats is independent of the cytotoxic capacity of NKR-P1A+ cells. J Neurosci Res 67:823–828

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Kartsogiannis V, Hu YS et al (2001) A novel osteoblast-derived C-type lectin that inhibits osteoclast formation. J Biol Chem 276:14916–14923

    Article  PubMed  CAS  Google Scholar 

  • Ziegler SF, Levin SD, Johnson L et al (1994) The mouse CD69 gene. Structure, expression, and mapping to the NK gene complex. J Immunol 152:1228–1236

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, R.K., Gupta, G.S. (2012). KLRB Receptor Family and Human Early Activation Antigen (CD69). In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_29

Download citation

Publish with us

Policies and ethics