Skip to main content

Pulmonary SP-A: Forms and Functions

  • Chapter
  • First Online:
Animal Lectins: Form, Function and Clinical Applications

Abstract

Pulmonary surfactant is a complex mixture of lipids and proteins, and is synthesized and secreted by alveolar type II epithelial cells and bronchiolar Clara cells. It acts to keep alveoli from collapsing during the expiratory phase of the respiratory cycle. After its secretion, lung surfactant forms a lattice structure on the alveolar surface, known as tubular myelin. Surfactant proteins (SP)-A, B, C and D make up to 10% of the total surfactant. SP-B and SPC are relatively small hydrophobic proteins, and are involved in the reduction of surface-tension at the air-liquid interface. SP-A and SP-D, on the other hand, are large oligomeric, hydrophilic proteins that belong to the collagenous Ca2+- dependent C-type lectin family (known as “Collectins”), and play an important role in host defense and in the recycling and transport of lung surfactant. There is increasing evidence that surfactant-associated proteins A and -D (SP-A and SP-D, respectively) contribute to the host defense against inhaled microorganisms. Based on their ability to recognize pathogens and to regulate the host defense, SP-A and SP-D have been recently categorized as “Secretory Pathogen Recognition Receptors”. In nut-shell, the four lung-specific surfactant-associated proteins: SP-A, SP-B, SP-C, and SP-D serve a number of different roles, including enhancement of surface-active properties of surfactant glycerophospholipids, surfactant phospholipid reutilization, and immune defense within the alveolus. Surfactant proteins, SP-A and SP-D contribute significantly to surfactant homeostasis and pulmonary immunity. Their basic structures include a triple-helical collagen region and a C-terminal homotrimeric lectin or CRD. The trimeric CRDs can recognize carbohydrate or charge patterns on microbes, allergens and dying cells, while the collagen region can interact with receptor molecules present on a variety of immune cells in order to initiate clearance mechanisms. Gene knock-out mice models of lung hypersensitivity and infection, and functional characterization of cell surface receptors have revealed the diverse roles of SP-A and SP-D in control of lung inflammation (Kishore et al. 2006)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcorn JF, Wright JR (2004) Surfactant protein A inhibits alveolar macrophage cytokine production by CD14-independent pathway. Am J Physiol Lung Cell Mol Physiol 286:L129–L137

    Article  PubMed  CAS  Google Scholar 

  • Arbibe L, Koumanov K, Vial D et al (1998) Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. J Clin Invest 102:1152–1160

    Article  PubMed  CAS  Google Scholar 

  • Arbibe L, Vial D, Rosinski-Chupin I et al (1997) Endotoxin induces expression of type II phospholipase A2 in macrophages during acute lung injury in guinea pigs: involvement of TNF-alpha in lipopolysaccharide-induced type II phospholipase A2 synthesis. J Immunol 159:391–400

    PubMed  CAS  Google Scholar 

  • Arias-Diaz J, Garcia-Verdugo I, Casals C et al (2000) Effect of surfactant protein A (SP-A) on the production of cytokines by human pulmonary macrophages. Shock 14:300–307

    Article  PubMed  CAS  Google Scholar 

  • Bailey TC, Da Silva KA, Lewis JF et al (2004) Physiological and inflammatory response to instillation of an oxidized surfactant in a rat model of surfactant deficiency. J Appl Physiol 96:1674–1680

    Article  PubMed  CAS  Google Scholar 

  • Bates SR, Kazi AS, Tao JQ et al (2008) Role of P63 (CKAP4) in binding of surfactant protein-A to type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 295:L658–L669

    Article  PubMed  CAS  Google Scholar 

  • Beharka AA, Gaynor CD, Kang BK et al (2002) Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J Immunol 169:3565–3573

    PubMed  CAS  Google Scholar 

  • Blau H, Riklis S, Van Iwaarden JF et al (1997) Nitric oxide production by rat alveolar macrophages can be modulated in vitro by surfactant protein A. Am J Physiol 272:L1198–L1204

    PubMed  CAS  Google Scholar 

  • Boggaram V, Mendelson CR (1988) Transcriptional regulation of the gene encoding the major surfactant protein (SP-A) in rabbit fetal lung. J Biol Chem 263:19060–19065

    PubMed  CAS  Google Scholar 

  • Boggaram V, Smith ME, Mendelson CR (1991) Posttranscriptional regulation of surfactant protein-A messenger RNA in human fetal lung in vitro by glucocorticoids. Mol Endocrinol 5:414–423

    Article  PubMed  CAS  Google Scholar 

  • Borron PJ, Crouch EC, Lewis JF et al (1998a) Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production. J Immunol 161:4599–4603

    PubMed  CAS  Google Scholar 

  • Borron P, McCormack FX, Elhalwagi BM et al (1998b) Surfactant protein A inhibits T cell proliferation via its collagen-like tail and a 210-kDa receptor. Am J Physiol 275:L679–L687

    PubMed  CAS  Google Scholar 

  • Borron P, McIntosh JC, Korfhagen TR et al (2000) Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide production in vivo. Am J Physiol Lung Cell Mol Physiol 278:L840–L847

    PubMed  CAS  Google Scholar 

  • Brinker KG, Garner H, Wright JR (2003) Surfactant protein A modulates the differentiation of murine bone marrow-derived dendritic cells. Am J Physiol Lung Cell Mol Physiol 284:L232–L241

    PubMed  CAS  Google Scholar 

  • Brinker KG, Martin E, Borron P et al (2001) Surfactant protein D enhances bacterial antigen presentation by bone marrow–derived dendritic cells. Am J Physiol Lung Cell Mol Physiol 281:L1453–L1463

    PubMed  CAS  Google Scholar 

  • Brown-Augsburger PK, Hartshorn K, Chang D et al (1996) Site-directed mutagenesis of Cys-15 and Cys-20 of pulmonary surfactant protein D: expression of a trimeric protein with altered anti-viral properties. J Biol Chem 271:13724–13730

    Article  PubMed  CAS  Google Scholar 

  • Chabot S, Koumanov K, Lambeau G et al (2003a) Inhibitory effects of surfactant protein A on surfactant phospholipid hydrolysis by secreted phospholipases A2. J Immunol 171:995–1000

    PubMed  CAS  Google Scholar 

  • Chabot S, Salez L, McCormack FX et al (2003b) Surfactant protein A inhibits lipopolysaccharide-induced in vivo production of interleukin-10 by mononuclear phagocytes during lung inflammation. Am J Respir Cell Mol Biol 28:347–353

    Article  PubMed  CAS  Google Scholar 

  • Chander A, Sen N (1993) Inhibition of phosphatidylcholine secretion by stilbene disulfonates in alveolar type II cells. Biochem Pharmacol 45:1905–1912

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Bates SR, Fisher AB (1996) Secretagogues increase the expression of surfactant protein A receptors on lung type II cells. J Biol Chem 271:25277–25283

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Boggaram V, Mendelson CR (1992) Rabbit lung surfactant protein A gene: identification of a lung-specific DNase I hypersensitive site. Am J Physiol 262:L662–L671

    PubMed  CAS  Google Scholar 

  • Cheng G, Ueda T, Nakajima H et al (2000) Surfactant protein A exhibits inhibitory effect on eosinophils IL-8 production. Biochem Biophys Res Commun 270:831–835

    Article  PubMed  CAS  Google Scholar 

  • Cheng G, Ueda T, Nakajima H et al (1998) Suppressive effects of SP-A on ionomycin-induced IL-8 production and release by eosinophils. Int Arch Allergy Immunol 117(Suppl 1):59–62

    Article  PubMed  CAS  Google Scholar 

  • Chiba H, Sano H, Saitoh M et al (1999) Introduction of mannose binding protein-type phosphatidylinositol recognition into pulmonary surfactant protein A. Biochemistry 38:7321–7331

    Article  PubMed  CAS  Google Scholar 

  • Childs RA, Wright JR, Ross GF et al (1992) Specificity of lung surfactant protein SP-A for both the carbohydrate and the lipid moieties of certain neutral glycolipids. J Biol Chem 267:9972–9979

    PubMed  CAS  Google Scholar 

  • Cho K, Matsuda T, Okajima S et al (1999) Factors influencing pulmonary surfactant protein A levels in cord blood, maternal blood and amniotic fluid. Biol Neonate 75:104–110

    Article  PubMed  CAS  Google Scholar 

  • Chroneos ZC, Abdolrasulnia R, Whitsett JA et al (1996) Purification of a cell-surface receptor for surfactant protein A. J Biol Chem 271:16375–16383

    Article  PubMed  CAS  Google Scholar 

  • Chung J, Yu SH, Whitsett JA et al (1989) Effect of surfactant-associated protein-A (SP-A) on the activity of lipid extract surfactant. Biochim Biophys Acta 1002:348–358

    Article  PubMed  CAS  Google Scholar 

  • Cockshutt AM, Weitz J, Possmayer F (1990) Pulmonary surfactant-associated protein A enhances the surface activity of lipid extract surfactant and reverses inhibition by blood proteins in vitro. Biochemistry 29:8424–8429

    Article  PubMed  CAS  Google Scholar 

  • Condon JC, Jeyasuria P, Faust JM et al (2004) Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc Natl Acad Sci USA 101:4978–4983

    Article  PubMed  CAS  Google Scholar 

  • Corbet A, Bedi H, Owens M, Taeusch W (1992) Surfactant protein-A inhibits lavage-induced surfactant secretion in newborn rabbits. Am J Med Sci 304:246–251

    Article  PubMed  CAS  Google Scholar 

  • Crouch EC (1998a) Structure, biologic properties, and expression of surfactant protein D (SP-D). Biochim Biophys Acta 1408:278–289

    Article  PubMed  CAS  Google Scholar 

  • Crouch EC (1998b) Collectins and pulmonary host defense. Am J Respir Cell Mol Biol 19:177–201

    PubMed  CAS  Google Scholar 

  • Crouch EC, Persson A, Chang D, Heuser J (1994) Molecular structure of pulmonary surfactant protein D (SP-D). J Biol Chem 269:17311–17319

    PubMed  CAS  Google Scholar 

  • Crowther JE, Kutala VK, Kuppusamy P et al (2004) Pulmonary surfactant protein A inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. J Immunol 172:6866–6874

    PubMed  CAS  Google Scholar 

  • Dhar V, Hallman M, Lappalainen U, Bry K (1997) Interleukin-1α upregulates the expression of surfactant protein-A in rabbit lung explants. Biol Neonate 71:46–52

    Article  PubMed  CAS  Google Scholar 

  • Dobbie JW (1996) Surfactant protein A and lamellar bodies: a homologous secretory function of peritoneum, synovium, and lung. Perit Dial Int 16:574–581

    PubMed  CAS  Google Scholar 

  • Drickamer K (1992) Engineering galactose-binding activity into a C-type mannose-binding protein. Nature 360:183–186

    Article  PubMed  CAS  Google Scholar 

  • Elhalwagi BM, Damodarasamy M, McCormack FX (1997) Alternate amino terminal processing of surfactant protein A results in cysteinyl isoforms required for multimer formation. Biochemistry 36:7018–7025

    Article  PubMed  CAS  Google Scholar 

  • Fisher AB, Dodia C, Chander A (1994) Inhibition of lung calcium-independent phospholipase A2 by surfactant protein A. Am J Physiol 267:L335–L341

    PubMed  CAS  Google Scholar 

  • Fisher JH, Kao FT, Jones C et al (1987) The coding sequence for the 32,000-dalton pulmonary surfactant-associated protein A is located on chromosome 10 and identifies two separate restriction-fragment-length polymorphisms. Am J Hum Genet 40:503–511

    PubMed  CAS  Google Scholar 

  • Fisher JH, Larson J, Cool C, Dow SW (2002) Lymphocyte activation in the lungs of SP-D null mice. Am J Respir Cell Mol Biol 27:24–33

    PubMed  CAS  Google Scholar 

  • Floros J, Hoover RR (1998) Genetics of the hydrophilic surfactant proteins A and D. Biochim Biophys Acta 1408:312–322

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Verdugo I, Leiber D, Robin P et al (2007) Direct interaction of surfactant protein A with myometrial binding sites: signaling and modulation by bacterial lipopolysaccharide. Biol Reprod 76:681–691

    Article  PubMed  CAS  Google Scholar 

  • García-Verdugo I, Sánchez-Barbero F, Bosch FU et al (2003) Effect of hydroxylation and N187-linked glycosylation on molecular and functional properties of recombinant human surfactant protein A. Biochemistry 42:9532–9542

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Verdugo I, Synguelakis M, Degrouard J et al (2008a) The concentration of surfactant protein-A in amniotic fluid decreases in spontaneous human parturition at term. J Matern Fetal Neonatal Med 21:652–659

    Article  CAS  Google Scholar 

  • Garcia-Verdugo I, Tanfin Z, Dallot E et al (2008b) Surfactant protein A signaling pathways in human uterine smooth muscle cells. Biol Reprod 79:348–355

    Article  PubMed  CAS  Google Scholar 

  • García-Verdugo I, Wang G, Floros J (2002) Casals C Structural analysis and lipid-binding properties of recombinant human surfactant protein a derived from one or both genes. Biochemistry 41:14041–14053

    Article  PubMed  CAS  Google Scholar 

  • Gardai SJ, Xiao YQ, Dickinson M et al (2003) By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115:13–23

    Article  PubMed  CAS  Google Scholar 

  • Geertsma MF, Nibbering PH, Haagsman HP et al (1994) Binding of surfactant protein A to C1q receptors mediates phagocytosis of Staphylococcus aureus by monocytes. Am J Physiol 267:L578–L584

    PubMed  CAS  Google Scholar 

  • George CL, Goss KL, Meyerholz DK, Lamb FS, Snyder JM (2008) Surfactant-associated protein A provides critical immunoprotection in neonatal mice. Infect Immun 76:380–390

    Article  PubMed  CAS  Google Scholar 

  • Gorrini M, Lupi A, Iadarola P et al (2005) SP-A binds alpha1-antitrypsin in vitro and reduces the association rate constant for neutrophil elastase. Respir Res 6:147

    Article  CAS  Google Scholar 

  • Greene KE, Wright JR, Steinberg KP et al (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med 160:1843–1850

    PubMed  CAS  Google Scholar 

  • Greis KD, Zhu S, Matalon S (1996) Identification of nitration sites on surfactant protein A by tandem electrospray mass spectrometry. Arch Biochem Biophys 335:396–402

    Article  PubMed  CAS  Google Scholar 

  • Guillot L, Balloy V, McCormack FX et al (2002) Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves toll-like receptor 4. J Immunol 168:5989–5992

    PubMed  CAS  Google Scholar 

  • Gupta N, Manevich Y, Kazi AS et al (2006) Identification and characterization of p63 (CKAP4/ERGIC-63/CLIMP-63), a surfactant protein A binding protein, on type II pneumocytes. Am J Physiol Lung Cell Mol Physiol 291:L436–L447

    Article  PubMed  CAS  Google Scholar 

  • Gurel O, Ikegami M, Chroneos ZC, Jobe AH (2001) Macrophage and type II cell catabolism of SP-A and saturated phosphatidylcholine in mouse lungs. Am J Physiol Lung Cell Mol Physiol 280:L1266–L1272

    PubMed  CAS  Google Scholar 

  • Haagsman HP, Elfring RH, van Buel BL, Voorhout WF (1991) The lung lectin surfactant protein A aggregates phospholipid vesicles via a novel mechanism. Biochem J 275:273–277

    PubMed  CAS  Google Scholar 

  • Haagsman HP, Hawgood S, Sargeant T et al (1987) The major lung surfactant protein, SP 28-36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem 262:13877–13880

    PubMed  CAS  Google Scholar 

  • Haagsman HP, Sargeant T, Hauschka PV et al (1990) Binding of calcium to SP-A, a surfactant-associated protein. Biochemistry 29:8894–8900

    Article  PubMed  CAS  Google Scholar 

  • Haagsman HP, White RT, Schilling J et al (1989) Studies of the structure of lung surfactant protein SP-A. Am J Physiol 257:L421–L429

    PubMed  CAS  Google Scholar 

  • Haagsman HP (1998) Interactions of surfactant protein A with pathogens. Biochim Biophys Acta 1408:264–277

    Article  PubMed  CAS  Google Scholar 

  • Haddad IY, Crow JP, Hu P et al (1994) Concurrent generation of nitric oxide and superoxide damages surfactant protein A. Am J Physiol 267:L242–L249

    PubMed  CAS  Google Scholar 

  • Haddad IY, Zhu S, Ischiropoulos H, Matalon S (1996) Nitration of surfactant protein A results in decreased ability to aggregate lipids. Am J Physiol 270:L281–L288

    PubMed  CAS  Google Scholar 

  • Haller EM, Shelley SA, Montgomery MR, Balis JU (1992) Immunocytochemical localization of lysozyme and surfactant protein A in rat type II cells and extracellular surfactant forms. J Histochem Cytochem 40:1491–1500

    Article  PubMed  CAS  Google Scholar 

  • Han YM, Romero R, Kim YM et al (2007) Surfactant protein-A mRNA expression by human fetal membranes is increased in histological chorioamnionitis but not in spontaneous labour at term. J Pathol 211:489–496

    Article  PubMed  CAS  Google Scholar 

  • Hansen S, Lo B, Evans K et al (2007) Surfactant protein D augments bacterial association but attenuates major histocompatibility complex class II presentation of bacterial antigens. Am J Respir Cell Mol Biol 36:94–102

    Article  PubMed  CAS  Google Scholar 

  • Haque R, Umstead TM, Ponnuru P et al (2007) Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice. Toxicol Appl Pharmacol 220:72–82

    Article  PubMed  CAS  Google Scholar 

  • Hartshorn KL, Crouch E, White MR et al (1998) Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Physiol 274:L958–L969

    PubMed  CAS  Google Scholar 

  • Haurum JS, Thiel S, Haagsman HP et al (1993) Studies on the carbohydrate-binding characteristics of human pulmonary surfactant-associated protein A and comparison with two other collectins: mannan-binding protein and conglutinin. Biochem J 293:873–878

    PubMed  CAS  Google Scholar 

  • Hawgood S, Poulain FR (2001) The pulmonary collectins and surfactant metabolism. Annu Rev Physiol 63:495–519

    Article  PubMed  CAS  Google Scholar 

  • Head JF, Mealy TR, McCormack FX, Seaton BA (2003) Crystal structure of trimeric carbohydrate recognition and neck domains of surfactant protein A. J Biol Chem 278:43254–43260

    Article  PubMed  CAS  Google Scholar 

  • Henning LN, Azad AK, Parsa KV et al (2008) Pulmonary surfactant protein A regulates TLR expression and activity in human macrophages. J Immunol 180:7847–7858

    PubMed  CAS  Google Scholar 

  • Hermans C, Dong P, Robin M et al (2003) Determinants of serum levels of surfactant proteins A and B and Clara cell protein CC16. Biomarkers 8:461–471

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Libotte V, Robin M et al (2001) Maternal tobacco smoking and lung epithelium-specific proteins in amniotic fluid. Pediatr Res 50:487–494

    Article  PubMed  CAS  Google Scholar 

  • Holmskov U, Lawson P, Teisner B et al (1997) Isolation and characterization of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfactant protein-D binding molecule. J Biol Chem 272:13743–10

    Article  PubMed  CAS  Google Scholar 

  • Honma T, Kuroki Y, Tsunezawa W et al (1997) The mannose-binding protein A region of glutamic acid185-alanine221 can functionally replace the surfactant protein A region of glutamic acid195-phenylalanine228 without loss of interaction with lipids and alveolar type II cells. Biochemistry 36:7176–7184

    Article  PubMed  CAS  Google Scholar 

  • Hospes R, Hospes BI, Reiss I et al (2002) Molecular biological characterization of equine surfactant protein A. J Vet Med A Physiol Pathol Clin Med 49:497–498

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Wang G, Phelps DS et al (2002) Combined SP-A-bleomycin effect on cytokines by THP-1 cells: impact of surfactant lipids on this effect. Am J Physiol Lung Cell Mol Physiol 283:L94–L102

    PubMed  CAS  Google Scholar 

  • Huang W, Wang G, Phelps DS et al (2004) Human SP-A genetic variants and bleomycin-induced cytokine production by THP-1 cells: effect of ozone-induced SP-A oxidation. Am J Physiol Lung Cell Mol Physiol 286:L546–L553

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Wright JR, Martin WJ 2nd (2003) Surfactant protein A decreases nitric oxide production by macrophages in a tumor necrosis factor-alpha-dependent mechanism. Am J Respir Cell Mol Biol 28:520–527

    Article  PubMed  CAS  Google Scholar 

  • Hynsjö L, Granberg L, Haurum J, Thiel S, Larson G (1995) Use of factorial experimental design to delineate the strong calcium- and pH-dependent changes in binding of human surfactant protein-A to neutral glycosphingolipids–a model for studies of protein-carbohydrate interactions. Anal Biochem 225:305–314

    Article  PubMed  Google Scholar 

  • Ikegami M, Elhalwagi BM, Palaniyar N et al (2001) The collagen-like region of surfactant protein A (SP-A) is required for correction of surfactant structural and functional defects in the SP-A null mouse. J Biol Chem 276:38542–38548

    Article  PubMed  CAS  Google Scholar 

  • Ikegami M, Korfhagen TR, Whitsett JA et al (1998) Characteristics of surfactant from SP-A-deficient mice. Am J Physiol 275:L247–L254

    PubMed  CAS  Google Scholar 

  • Ikegami M, Whitsett JA, Chroneos ZC et al (2000) IL-4 increases surfactant and regulates metabolism in vivo. Am J Physiol Lung Cell Mol Physiol 278:L75–L80

    PubMed  CAS  Google Scholar 

  • Jahnsen FL, Moloney ED, Hogan T, Upham JW, Burke CM, Holt PG (2001) Rapid dendritic cell recruitment to the bronchial mucosa of patients with atopic asthma in response to local allergen challenge. Thorax 56:823–827

    Article  PubMed  CAS  Google Scholar 

  • Jain D, Dodia C, Bates SR et al (2003) SP-A is necessary for increased clearance of alveolar DPPC with hyperventilation or secretagogues. Am J Physiol Lung Cell Mol Physiol 284:L759–L765

    PubMed  CAS  Google Scholar 

  • Jain D, Dodia C, Fisher AB, Bates SR (2005) Pathways for clearance of surfactant protein A from the lung. Am J Physiol Lung Cell Mol Physiol 289:L1011–L1018

    Article  PubMed  CAS  Google Scholar 

  • Janssen WJ, McPhillips KA, Dickinson MG et al (2008) Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am J Respir Crit Care Med 178:158–167

    Article  PubMed  CAS  Google Scholar 

  • Kalina M, Blau H, Riklis S, Kravtsov V (1995) Interaction of surfactant protein A with bacterial lipopolysaccharide may affect some biological functions. Am J Physiol 268:L144–L151

    PubMed  CAS  Google Scholar 

  • Kang W, Nielsen O, Fenger C et al (2002) The scavenger receptor, cysteine-rich domain-containing molecule gp-340 is differentially regulated in epithelial cell lines by phorbol ester. Clin Exp Immunol 130:449–458

    Article  PubMed  CAS  Google Scholar 

  • Katyal SL, Singh G, Locker J (1992) Characterization of a second human surfactant-associated protein SP-A gene. Am J Respir Cell Mol Biol 8:445–452

    Google Scholar 

  • Kneyber MCJ, Plötz FB, Kimpen JLL (2005) Bench-to-bedside review: paediatric viral lower respiratory tract disease necessitating mechanical ventilation – should we use exogenous surfactant? Crit Care 9:550–555

    Article  PubMed  Google Scholar 

  • King RJ, Simon D, Horowitz PM (1989) Aspects of secondary and quaternary structure of surfactant protein A from canine lung. Biochim Biophys Acta 1001:294–301

    Article  PubMed  CAS  Google Scholar 

  • Kishore U, Bernal AL, Kamran MF et al (2005) Surfactant proteins SP-A and SP-D in human health and disease. Arch Immunol Ther Exp 53:399–417

    CAS  Google Scholar 

  • Korfhagen TR, Bruno MD, Ross GF et al (1996) Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acad Sci USA 93:9594–9599

    Article  PubMed  CAS  Google Scholar 

  • Kremlev SG, Umstead TM, Phelps DS (1997) Surfactant protein A regulates cytokine production in the monocytic cell line THP-1. Am J Physiol 272:L996–L1004

    PubMed  CAS  Google Scholar 

  • Kresch MJ, Christian C, Lu H (1998) Isolation and partial characterization of a receptor to surfactant protein A expressed by rat type II pneumocytes. Am J Respir Cell Mol Biol 19: 216–225

    PubMed  CAS  Google Scholar 

  • Kresch MJ, Christian C (1998) Developmental regulation of the effects of surfactant protein A on phospholipid uptake by fetal rat type II pneumocytes. Lung 176:45–61

    Article  PubMed  CAS  Google Scholar 

  • Kunzmann S, Wright JR, Steinhilber W et al (2006) TGF-β1 in SP-A preparations influence immune suppressive properties of SP-A on human CD4+ T lymphocytes. Am J Physiol Lung Cell Mol Physiol 291:L747–L757

    Article  PubMed  CAS  Google Scholar 

  • Kuroki Y, Akino T (1991) Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidyl choline. J Biol Chem 266:3068–3073

    PubMed  CAS  Google Scholar 

  • Kuroki Y, Gasa S, Ogasawara Y et al (1992) Binding of pulmonary surfactant protein A to galactosylceramide and asialo-GM2. Arch Biochem Biophys 299:261–267

    Article  PubMed  CAS  Google Scholar 

  • Kuroki Y, Mason RJ, Voelker DR (1988a) Alveolar type II cells express a high-affinity receptor for pulmonary surfactant protein A. Proc Natl Acad Sci USA 85:5566–5570

    Article  PubMed  CAS  Google Scholar 

  • Kuroki Y, Mason RJ, Voelker DR (1988b) Chemical modification of surfactant protein A alters high affinity binding to rat alveolar type II cells and regulation of phospholipid secretion. J Biol Chem 263:17596–17602

    PubMed  CAS  Google Scholar 

  • Kuroki Y, McCormack FX, Ogasawara Y et al (1994) Epitope mapping for monoclonal antibodies identifies functional domains of pulmonary surfactant protein A that interact with lipids. J Biol Chem 269:29793–29800

    PubMed  CAS  Google Scholar 

  • Kuroki Y, Shiratori M, Ogasawara Y et al (1996) Interaction of phospholipid liposomes with plasma membrane isolated from alveolar type II cells: effect of pulmonary surfactant protein A. Biochim Biophys Acta 1281:53–59

    Article  PubMed  Google Scholar 

  • Kuzmenko AI, Wu H, Bridges JP, McCormack FX (2004) Surfactant lipid peroxidation damages surfactant protein A and inhibits interactions with phospholipid vesicles. J Lipid Res 45: 1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Lang CJ, Postle AD, Orgeig S et al (2008) Surfactant protein-A plays an important role in lung surfactant clearance: evidence using the surfactant protein-A gene-targeted mouse. Am J Physiol Lung Cell Mol Physiol 294:L325–L333

    Article  CAS  Google Scholar 

  • LeVine AM, Bruno MD, Huelsman KM et al (1997) Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 158:4336–4340

    PubMed  CAS  Google Scholar 

  • Lim DJ, Chun YM, Lee HY et al (2000) Cell biology of tubotympanum in relation to pathogenesis of otitis media – a review. Vaccine 19(Suppl 1):S17–S25

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, deMello D, Phelps DS, Koltun WA et al (2001) Both human SP-A1 and SP-A2 genes are expressed in small and large intestine. Pediatr Pathol Mol Med 20:367–387

    Article  PubMed  CAS  Google Scholar 

  • Lipscomb MF, Masten BJ (2002) Dendritic cells: immune regulators in health and disease. Physiol Rev 82:97–130

    PubMed  CAS  Google Scholar 

  • MacNeill C, Umstead TM, Phelps DS et al (2004) Surfactant protein A, an innate immune factor, is expressed in the vaginal mucosa and is present in vaginal lavage fluid. Immunology 111:91–99

    Article  PubMed  CAS  Google Scholar 

  • Madsen J, Tornoe I, Nielsen O et al (2003a) Expression and localization of lung surfactant protein A in human tissues. Am J Respir Cell Mol Biol 29:591–597

    Article  PubMed  CAS  Google Scholar 

  • Malhotra R, Haurum J, Thiel S, Sim RB (1992) Interaction of C1q receptor with lung surfactant protein A. Eur J Immunol 22: 1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Malhotra R, Laursen SB, Willis AC, Sim RB (1993) Localization of the receptor-binding site in the collectin family of proteins. Biochem J 293:15–19

    PubMed  CAS  Google Scholar 

  • Malhotra R, Thiel S, Reid KB, Sim RB (1990) Human leukocyte C1q receptor binds other soluble proteins with collagen domains. J Exp Med 172:955–959

    Article  PubMed  CAS  Google Scholar 

  • Mason RJ, Greene K, Voelker DR (1998) Surfactant protein A and surfactant protein D in health and disease. Am J Physiol 275:L1–L13

    PubMed  CAS  Google Scholar 

  • McCormack FX, Calvert HM, Watson Pa et al (1994) The structure and function of surfactant protein A. Hydroxyproline- and carbohydrate-deficient mutant proteins. J Biol Chem 269:5833–41

    CAS  Google Scholar 

  • McCormack FX, Damodarasamy M, Elhalwagi BM (1999) Deletion mapping of N-terminal domains of surfactant protein A. The N-terminal segment is required for phospholipid aggregation and specific inhibition of surfactant secretion. J Biol Chem 274: 3173–3181

    Article  PubMed  CAS  Google Scholar 

  • McCormack FX, Festa AL, Andrews RP et al (1997a) The carbohydrate recognition domain of surfactant protein A mediates binding to the major surface glycoprotein of Pneumocystis carinii. Biochemistry 36:8092–8099

    Article  PubMed  CAS  Google Scholar 

  • McCormack FX, Pattanajitvilai S, Stewart J et al (1997b) The Cys6 intermolecular disulfide bond and the collagen-like region of rat SP-A play critical roles in interactions with alveolar type II cells and surfactant lipids. J Biol Chem 272:27971–27979

    Article  PubMed  CAS  Google Scholar 

  • McCormack FX, Stewart J, Voelker DR et al (1997c) Alanine mutagenesis of surfactant protein A reveals that lipid binding and pH-dependent liposome aggregation are mediated by the carbohydrate recognition domain. Biochemistry 36:13963–13971

    Article  PubMed  CAS  Google Scholar 

  • McCormack FX, Whitsett JA (2002) The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J Clin Invest 109:707–712

    PubMed  CAS  Google Scholar 

  • McCormack FX (1998) Structure, processing and properties of surfactant protein A. Biochim Biophys Acta 1408:109–131

    Article  PubMed  CAS  Google Scholar 

  • Mendelson CR, Condon JC (2005) New insights into the molecular endocrinology of parturition. J Steroid Biochem Mol Biol 93:113–119

    Article  PubMed  CAS  Google Scholar 

  • Meyboom A, Maretzki D, Stevens PA, Hofmann KP (1999) Interaction of pulmonary surfactant protein A with phospholipid liposomes: a kinetic study on head group and fatty acid specificity. Biochim Biophys Acta 1441:23–35

    Article  PubMed  CAS  Google Scholar 

  • Michelis D, Kounnas MZ, Argraves WS et al (1994) Interaction of surfactant protein A with cellular myosin. Am J Respir Cell Mol Biol 11:692–700

    PubMed  CAS  Google Scholar 

  • Murakami S, Iwaki D, Mitsuzawa H et al (2002) Surfactant protein A inhibits peptidoglycan-induced tumor necrosis factor-alpha secretion in U937 cells and alveolar macrophages by direct interaction with toll-like receptor 2. J Biol Chem 277:6830–6837

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Kuroki Y, Akino T (1993) Role of the C-terminal domain of pulmonary surfactant protein A in binding to alveolar type II cells and regulation of phospholipid secretion. Biochem J 291:71–77

    PubMed  CAS  Google Scholar 

  • McIntosh JC, Mervin-Blake S, Conner E, Wright JR (1996) Surfactant protein A protects growing cells and reduces TNF-alpha activity from LPS-stimulated macrophages. Am J Physiol 271:L310–L319

    PubMed  CAS  Google Scholar 

  • Nag K, Munro JG, Hearn SA, Ridsdale RA, Palaniyar N, Holterman CE, Inchley K, Possmayer F, Harauz G (1999) Cation-mediated conformational variants of surfactant protein A. Biochim Biophys Acta 1453:23–34

    Article  Google Scholar 

  • Nag K, Rodriguez-Capote K, Panda AK et al (2004) Disparate effects of two phosphatidylcholine binding proteins, C-reactive protein and surfactant protein A, on pulmonary surfactant structure and function. Am J Physiol Lung Cell Mol Physiol 287:L1145–L1153

    Article  PubMed  CAS  Google Scholar 

  • Nepomuceno RR, Ruiz S, Park M, Tenner AJ (1999) C1qRP is a heavily O-glycosylated cell surface protein involved in the regulation of phagocytic activity. J Immunol 162:3583–3589

    PubMed  CAS  Google Scholar 

  • Ochs M, Johnen G, Müller KM et al (2002) Intracellular and intraalveolar localization of surfactant protein A (SP-A) in the parenchymal region of the human lung. Am J Respir Cell Mol Biol 26:91–98

    PubMed  CAS  Google Scholar 

  • Ogasawara Y, Kuroki Y, Akino T (1992) Pulmonary surfactant protein D specifically binds to phosphatidylinositol. J Biol Chem 267:21244–21249

    PubMed  CAS  Google Scholar 

  • Palaniyar N, Ikegami M, Korfhagen T et al (2001) Domains of surfactant protein A that affect protein oligomerization, lipid structure and surface tension. Comp Biochem Physiol A Mol Integr Physiol 129:109–127

    Article  PubMed  CAS  Google Scholar 

  • Palaniyar N, Nadesalingam J, Clark HW et al (2004) Nucleic acid is a novel ligand for innate immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin. J Biol Chem 279:32728–32736

    Article  PubMed  CAS  Google Scholar 

  • Palaniyar N, McCormack FX, Possmayer F, Harauz G (2000) Three-dimensional structure of rat surfactant protein A trimers in association with phospholipid monolayers. Biochemistry 39: 6310–6317

    Article  PubMed  CAS  Google Scholar 

  • Palaniyar N, Ridsdale RA, Hearn SA et al (1999) Formation of membrane lattice structures and their specific interactions with surfactant protein A. Am J Physiol 276:L642–L649

    PubMed  CAS  Google Scholar 

  • Palaniyar N, Ridsdale RA, Holterman CE et al (1998a) Structural changes of surfactant protein A induced by cations reorient the protein on lipid bilayers. J Struct Biol 122:297–310

    Article  PubMed  CAS  Google Scholar 

  • Palaniyar N, Ridsdale RA, Possmayer F, Harauz G (1998b) Surfactant protein A (SP-A) forms a novel supraquaternary structure in the form of fibers. Biochem Biophys Res Commun 250:131–137

    Article  PubMed  CAS  Google Scholar 

  • Pastva AM, Wright JR, Williams KL (2007) Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proc Am Thor Soc 4:252–257

    Article  CAS  Google Scholar 

  • Pattanajitvilai S, Kuroki Y, Tsunezawa W et al (1998) Mutational analysis of Arg197 of rat surfactant protein A. His197 creates specific lipid uptake defects. J Biol Chem 273:5702–5707

    Article  PubMed  CAS  Google Scholar 

  • Persson AV, Gibbons BJ, Shoemaker JD et al (1992) The major glycolipid recognized by SP-D in surfactant is phosphatidylinositol. Biochemistry 31:12183–12189

    Article  PubMed  CAS  Google Scholar 

  • Pietschmann SM, Pison U (2000) cDNA cloning of ovine pulmonary SP-A, SP-B, and SP-C: isolation of two different sequences for SP-B. Am J Physiol Lung Cell Mol Physiol 278:L765–78

    PubMed  CAS  Google Scholar 

  • Plaga S, Plattner H, Schlepper-Schaefer J (1998) SP-A binding sites on bovine alveolar macrophages. Exp Cell Res 245:116–122

    Article  PubMed  CAS  Google Scholar 

  • Quintero OA, Korfhagen TR, Wright JR (2002) Surfactant protein A regulates surfactant phospholipid clearance after LPS-induced injury in vivo. Am J Physiol Lung Cell Mol Physiol 283:L76–L85

    PubMed  CAS  Google Scholar 

  • Reidy MF, Wright JR (2003) Surfactant protein A enhances apoptotic cell uptake and TGF-β1 release by inflammatory alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 285:L854–L861

    PubMed  CAS  Google Scholar 

  • Reilly KE, Mautone AJ, Mendelsohn R (1989) Fourier-transform infrared spectroscopy studies of lipid/protein interaction in pulmonary surfactant. Biochemistry 28:7368–7373

    Article  PubMed  CAS  Google Scholar 

  • Ridsdale RA, Palaniyar N, Holterman CE et al (1999) Cation-mediated conformational variants of surfactant protein A. Biochim Biophys Acta 1453:I23–34

    Article  Google Scholar 

  • Ridsdale RA, Palaniyar N, Possmayer F, Harauz G (2001) Formation of folds and vesicles by dipalmitoylphosphatidylcholine monolayers spread in excess. J Membr Biol 180:21–32

    Article  PubMed  CAS  Google Scholar 

  • Ross GF, Sawyer J, O’Connor T, Whitsett JA (1991) Intermolecular cross-links mediate aggregation of phospholipid vesicles by pulmonary surfactant protein SP-A. Biochemistry 30:858–865

    Article  PubMed  CAS  Google Scholar 

  • Ruano ML, García-Verdugo I, Miguel E et al (2000) Self-aggregation of surfactant protein A. Biochemistry 39:6529–6537

    Article  PubMed  CAS  Google Scholar 

  • Ruano ML, Pérez-Gil J, Casals C (1998) Effect of acidic pH on the structure and lipid binding properties of porcine surfactant protein A. Potential role of acidification along its exocytic pathway. J Biol Chem 273:15183–15191

    Article  PubMed  CAS  Google Scholar 

  • Rubio S, Lacaze-Masmonteil T, Chailley-Heu B et al (1995) Pulmonary surfactant protein A (SP-A) is expressed by epithelial cells of small and large intestine. J Biol Chem 270:12162–12169

    Article  PubMed  CAS  Google Scholar 

  • Sahly H, Ofek I, Podschun R et al (2002) Surfactant protein D binds selectively to Klebsiella pneumoniae lipopolysaccharides containing mannose-rich O-antigens. J Immunol 169:3267–3274

    PubMed  CAS  Google Scholar 

  • Salez L, Balloy V, van Rooijen N et al (2001) Surfactant protein A suppresses lipopolysaccharide-induced IL-10 production by murine macrophages. J Immunol 166:6376–6382

    PubMed  CAS  Google Scholar 

  • Sánchez-Barbero F, Rivas G, Steinhilber W, Casals C (2007) Structural and functional differences among human surfactant proteins SP-A1, SP-A2 and co-expressed SP-A1/SP-A2: role of supratrimeric oligomerization. Biochem J 406:479–489

    Article  PubMed  Google Scholar 

  • Sánchez-Barbero F, Strassner J, García-Cañero R et al (2005) Role of the degree of oligomerization in the structure and function of human surfactant protein A. J Biol Chem 280:7659–7670

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Kuronuma K, Kudo K et al (2006) Regulation of inflammation and bacterial clearance by lung collectins. Respirology 11(Suppl):S46–S50

    Article  PubMed  Google Scholar 

  • Sano H, Sohma H, Muta T et al (1999) Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD14. J Immunol 163:387–395

    PubMed  CAS  Google Scholar 

  • Sato M, Sano H, Iwaki D et al (2003) Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 171:417–425

    PubMed  CAS  Google Scholar 

  • Schagat TL, Wofford JA, Greene KE, Wright JR (2003) Surfactant protein A differentially regulates peripheral and inflammatory neutrophil chemotaxis. Am J Physiol Lung Cell Mol Physiol 284:L140–L147

    PubMed  CAS  Google Scholar 

  • Schlosser A, Thomsen T, Shipley JM et al (2006) Microfibril-associated protein 4 binds to surfactant protein A (SP-A) and colocalizes with SP-A in the extracellular matrix of the lung. Scand J Immunol 64:104–117

    Article  PubMed  CAS  Google Scholar 

  • Smith CI, Rosenberg E, Reisher SR et al (1995) Sequence of rat surfactant protein A gene and functional mapping of its upstream region. Am J Physiol 269:L603–L612

    PubMed  CAS  Google Scholar 

  • Sohma H, Hattori A, Kuroki Y, Akino T (1993) Calcium and dithiothreitol dependent conformational changes in beta-sheet structure of collagenase resistant fragment of human surfactant protein A. Biochem Mol Biol Int 30:329–336

    PubMed  CAS  Google Scholar 

  • Sohma H, Matsushima N, Watanabe T et al (1995) Ca2+-dependent binding of annexin IV to surfactant protein A and lamellar bodies in alveolar type II cells. Biochem J 312:175–181

    PubMed  CAS  Google Scholar 

  • Song M, Phelps DS (2000a) Comparison of SP-A and LPS effects on the THP-1 monocytic cell line. Am J Physiol Lung Cell Mol Physiol 279:L110–L117

    PubMed  CAS  Google Scholar 

  • Song M, Phelps DS (2000b) Interaction of surfactant protein A with lipopolysaccharide and regulation of inflammatory cytokines in the THP-1 monocytic cell line. Infect Immun 68:6611–6617

    Article  PubMed  CAS  Google Scholar 

  • Spissinger T, Schäfer KP, Voss T (1991) Assembly of the surfactant protein SP-A. Deletions in the globular domain interfere with the correct folding of the molecule. Eur J Biochem 199:65–71

    Article  PubMed  CAS  Google Scholar 

  • Stamme C, Müller M, Hamann L et al (2002) Surfactant protein A inhibits lipopolysaccharide-induced immune cell activation by preventing the interaction of lipopolysaccharide with lipopolysaccharide-binding protein. Am J Respir Cell Mol Biol 27:353–360

    PubMed  CAS  Google Scholar 

  • Stamme C, Walsh E, Wright JR (2000) Surfactant protein A differentially regulates IFN-γ- and LPS-induced nitrite production by rat alveolar macrophages. Am J Respir Cell Mol Biol 23: 772–779

    PubMed  CAS  Google Scholar 

  • Strayer DS, Hoek JB, Thomas AP, White MK (1999) Cellular activation by Ca2+ release from stores in the endoplasmic reticulum but not by increased free Ca2+ in the cytosol. Biochem J 344:39–47

    Article  PubMed  CAS  Google Scholar 

  • Strayer DS, Yang S, Jerng HH (1993) Surfactant protein A-binding proteins. Characterization and structures. J Biol Chem 268:18679–18684

    PubMed  CAS  Google Scholar 

  • Sun K, Brockman D, Campos B et al (2006) Induction of surfactant protein A expression by cortisol facilitates prostaglandin synthesis in human chorionic trophoblasts. J Clin Endocrinol Metab 91:4988–4994

    Article  PubMed  CAS  Google Scholar 

  • Tanfin Z (2008) Interaction of surfactant protein A with the intermediate filaments desmin and vimentin. Biochemistry 47:5127–5138

    Article  PubMed  CAS  Google Scholar 

  • Tenner AJ, Robinson SL, Borchelt J, Wright JR (1989) Human pulmonary surfactant protein (SP-A), a protein structurally homologous to C1q, can enhance FcR- and CR1-mediated phagocytosis. J Biol Chem 264:13923–13928

    PubMed  CAS  Google Scholar 

  • Tenner AJ (1998) C1q receptors: regulating specific functions of phagocytic cells. Immunobiology 199:250–264

    Article  PubMed  CAS  Google Scholar 

  • Terrasa AM, Guajardo MH, de Armas SE, Catalá A (2005) Pulmonary surfactant protein A inhibits the lipid peroxidation stimulated by linoleic acid hydroperoxide of rat lung mitochondria and microsomes. Biochim Biophys Acta 1735:101–110

    Article  PubMed  CAS  Google Scholar 

  • Tino MJ, Wright JR (1998) Interactions of surfactant protein A with epithelial cells and phagocytes. Biochim Biophys Acta 1408:241–263

    Article  PubMed  CAS  Google Scholar 

  • Tsunezawa W, Sano H, Sohma H, McCormack FX, Voelker DR, Kuroki Y (1998) Site-directed mutagenesis of surfactant protein A reveals dissociation of lipid aggregation and lipid uptake by alveolar type II cells. Biochim Biophys Acta 1387:433–447

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki A, Kuroki Y, Akino T (1993) Pulmonary surfactant protein A-mediated uptake of phosphatidylcholine by alveolar type II cells. Am J Physiol 265:L193–L199

    PubMed  CAS  Google Scholar 

  • Uemura T, Sano H, Katoh T et al (2006) Surfactant protein A without the interruption of Gly-X-Y repeats loses a kink of oligomeric structure and exhibits impaired phospholipid liposome aggregation ability. Biochemistry 45:14543–14551

    Article  PubMed  CAS  Google Scholar 

  • van Eijk M, de Haan NA, Rogel-Gaillard C et al (2001) Assignment of surfactant protein A (SFTPA) and surfactant protein D (SFTPD) to pig chromosome band 14q25—>q26 by in situ hybridization. Cytogenet Cell Genet 95:114–115

    Article  PubMed  Google Scholar 

  • Väyrynen O, Glumoff V, Hallman M (2002) Regulation of surfactant proteins by LPS and proinflammatory cytokines in fetal and newborn lung. Am J Physiol Lung Cell Mol Physiol 282:L803–L810

    PubMed  Google Scholar 

  • Vazquez de Lara LG, Umstead TM et al (2003) Surfactant protein A increases matrix metalloproteinase-9 production by THP-1 cells. Am J Physiol Lung Cell Mol Physiol 285:L899–L907

    PubMed  CAS  Google Scholar 

  • Veldhuizen EJ, Haagsman HP (2000) Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta 1467:255–270

    Article  PubMed  CAS  Google Scholar 

  • Veldhuizen RA, Yao LJ, Hearn SA et al (1996) Surfactant-associated protein A is important for maintaining surfactant large-aggregate forms during surface-area cycling. Biochem J 313:835–840

    PubMed  CAS  Google Scholar 

  • Voss T, Eistetter H, Schafer KP, Engel J (1988) Macromolecular organization of natural and recombinant lung surfactant protein SP 28-37. J Mol Biol 201:219–227

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Bates-Kenney SR, Tao JQ et al (2004) Differences in biochemical properties and in biological function between human SP-A1 and SP-A2 variants, and the impact of ozone-induced oxidation. Biochemistry 43:4227–4239

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Guo X, Floros J (2005) Differences in the translation efficiency and mRNA stability mediated by 5′-UTR splice variants of human SP-A1 and SP-A2 genes. Am J Physiol Lung Cell Mol Physiol 289:L497–L508

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Guo X, Floros J (2003) Human SP-A 3′-UTR variants mediate differential gene expression in basal levels and in response to dexamethasone. Am J Physiol Lung Cell Mol Physiol 284:L738–L748

    PubMed  CAS  Google Scholar 

  • Wang G, Myers C, Mikerov A, Floros J (2007) Effect of cysteine 85 on biochemical properties and biological function of human surfactant protein A variants. Biochemistry 46:8425–8435

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Phelps DS, Umstead TM, Floros J (2000) Human SP-A protein variants derived from one or both genes stimulate TNF-α production in the THP-1 cell line. Am J Physiol Lung Cell Mol Physiol 278:L946–L954

    PubMed  CAS  Google Scholar 

  • Wang JY, Shieh CC, You PF et al (1998) Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am J Respir Crit Care Med 158:510–518

    PubMed  CAS  Google Scholar 

  • Watford WT, Ghio AJ, Wright JR (2000) Complement-mediated host defense in the lung. Am J Physiol Lung Cell Mol Physiol 279:L790–L798

    PubMed  CAS  Google Scholar 

  • Watford WT, Wright JR, Hester CG et al (2001) Surfactant protein A regulates complement activation. J Immunol 167:6593–6600

    PubMed  CAS  Google Scholar 

  • Weissbach S, Neuendank A, Pettersson M et al (1994) Surfactant protein A modulates release of reactive oxygen species from alveolar macrophages. Am J Physiol 267:L660–L667

    PubMed  CAS  Google Scholar 

  • White MK, Baireddy V, Strayer DS (2001) Natural protection from apoptosis by surfactant protein A in type II pneumocytes. Exp Cell Res 263:183–192

    Article  PubMed  CAS  Google Scholar 

  • White MK, Strayer DS (2000) Surfactant protein A regulates pulmonary surfactant secretion via activation of phosphatidylinositol 3-kinase in type II alveolar cells. Exp Cell Res 255:67–77

    Article  PubMed  CAS  Google Scholar 

  • White MK, Strayer DS (2002) Survival signaling in type II pneumocytes activated by surfactant protein-A. Exp Cell Res 280:270–279

    Article  PubMed  CAS  Google Scholar 

  • Wright JR, Youmans DC (1993) Pulmonary surfactant protein A stimulates chemotaxis of alveolar macrophage. Am J Physiol 264:L338–L344

    PubMed  CAS  Google Scholar 

  • Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5:58–68

    Article  PubMed  CAS  Google Scholar 

  • Wright JR (1997) Immunomodulatory functions of surfactant. Physiol Rev 77:931–962

    PubMed  CAS  Google Scholar 

  • Wu YZ, Manevich Y, Baldwin JL, Dodia C, Yu K, Feinstein SI, Fisher AB (2006) Interaction of surfactant protein A with peroxiredoxin 6 regulates phospholipase A2 activity. J Biol Chem 281:7515–7525

    Article  PubMed  CAS  Google Scholar 

  • Wu YZ, Medjane S, Chabot S et al (2003) Surfactant protein-A and phosphatidylglycerol suppress type IIA phospholipase A2 synthesis via nuclear factor-kB. Am J Respir Crit Care Med 168: 692–699

    Article  PubMed  Google Scholar 

  • Yamada C, Sano H, Shimizu T et al (2006) Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization. J Biol Chem 281:21771–21780

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Szeliga J, Jordan J et al (2005) Identification of the surfactant protein A receptor 210 as the unconventional myosin 18A. J Biol Chem 280:34447–34457

    Article  PubMed  CAS  Google Scholar 

  • Yuan HT, Gowan S, Kelly FJ, Bingle CD (1997) Cloning of guinea pig surfactant protein A defines a distinct cellular distribution pattern within the lung. Am J Physiol 273:L900–6

    PubMed  CAS  Google Scholar 

  • Yu SH, McCormack FX, Voelker DR et al (1999) Interactions of pulmonary surfactant protein SP-A with monolayers of dipalmitoylphosphatidylcholine and cholesterol: roles of SP-A domains. J Lipid Res 40:920–929

    PubMed  CAS  Google Scholar 

  • Yu SH, Possmayer F (1998) Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine and cholesterol at the air/water interface. J Lipid Res 39:555–568

    PubMed  CAS  Google Scholar 

  • Zhang L, Ikegami M, Korfhagen TR et al (2006) Neither SP-A nor NH2-terminal domains of SP-A can substitute for SP-D in regulation of alveolar homeostasis. Am J Physiol Lung Cell Mol Physiol 291:L181–L190

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Damodarasamy M, Elhalwagi BM, McCormack FX (1998) The longer isoform and Cys-1 disulfide bridge of rat surfactant protein A are not essential for phospholipid and type II cell interactions. Biochemistry 37:16481–16488

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Basiouny KF, Crow JP, Matalon S (2000) Carbon dioxide enhances nitration of surfactant protein A by activated alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 278:L1025–L1031

    PubMed  CAS  Google Scholar 

  • Zhu S, Kachel DL, Martin WJ 2nd, Matalon S (1998a) Nitrated SP-A does not enhance adherence of Pneumocystis carinii to alveolar macrophages. Am J Physiol 275:L1031–L1039

    PubMed  CAS  Google Scholar 

  • Zhu S, Manuel M, Tanaka S et al (1998b) Contribution of reactive oxygen and nitrogen species to particulate-induced lung injury. Environ Health Perspect 106(Suppl 5):1157–1163

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Ware LB, Geiser T et al (2001) Increased levels of nitrate and surfactant protein A nitration in the pulmonary edema fluid of patients with acute lung injury. Am J Respir Crit Care Med 163:166–172

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, A., Gupta, R.K. (2012). Pulmonary SP-A: Forms and Functions. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_24

Download citation

Publish with us

Policies and ethics