Skip to main content
  • 1486 Accesses

Abstract

The annexins or lipocortins are a multigene family of proteins that bind to acidic phospholipids and biological membranes in a Ca2+-dependent manner (Gerke and Moss 2002; Gerke et al. 2005; Raynal and Pollard 1994; Swairjo and Seaton 1994). Annexins are ubiquitous and characterized by an ability to bind to anionic phospholipids at membrane surfaces in response to elevated Ca2+. Annexins are amphipathic and distinct from soluble and integral membrane proteins, but share features of both (Kojima et al. 1994; Brisson et al. 1991). Annexins have molecular weights ranging between 30 and 40 kDa (only annexin 6 is 66 kDa) and possess striking structural features. The characteristic annexin structural motif is a 70-amino-acid repeat, called the annexin repeat. Four annexin repeats packed into an α-helical disk are contained within the C-terminal polypeptide core (Gerke and Moss 2002). While all annexins share this core region, aminoterminal domains of annexins are diverse in sequence and length (ranging from 11 to 196) on each annexin member. It is this diversity of N-terminal amino-acid sequence that gives the individual annexins their functional differences and biological activities and appears to differentiate the cellular function and location (Gerke and Moss 2002; Gerke et al. 2005; Raynal and Pollard 1994). Cysteine 198 is relatively conserved in annexins, and three of four cysteines (198, 242, and 315) in annexin A4 are conserved in annexin 3. Phospholipids are suggested to bind via hydrophilic head groups to annexins, and the phospholipid-binding region is proposed to be localized on the convex surface side where calcium-binding sites are located in the crystal structure of annexin 5 (Huber et al. 1990). The calcium- and phospholipid-binding sites are located in the carboxy terminal domains. Some of the annexins bind to glycosaminoglycans (GAGs) in a Ca2+- dependent manner. While annexin 2 has specific and high-affinity heparin-binding activity (Kassam et al. 1997), annexin A4 binds to heparin, heparan sulfate and chondroitin sulfate (CS) columns in a Ca2+- dependent manner, annexin 5 to heparin and heparan sulfate columns in a Ca2+-dependent manner and annexin 6 to heparin and heparan sulfate columns in a Ca2+-independent manner and to CS columns in a Ca2+-dependent manner (Ishitsuka et al. 1998) (see Table 21.1). Reports suggest that some annexin species may function as recognition elements for L-α-dipalmitoylphosphatidylethanolamine (PE)-derivatized GAGs under some conditions. The crystal structure of several of the annexins has been reported (Favier-Perron et al. 1996; Luecke et al. 1995; Swairjo et al. 1995). It has been established that the annexins are composed of two distinct sides. The convex side faces the biological membrane and contains the Ca2+- and phospholipid-binding sites. The concave side faces the cytosol and contains the N and C termini. Although the annexins have been studied mostly as calcium-dependent phospholipid-binding proteins mediating membrane-membrane and membrane-cytoskeleton interactions, annexins A4, A5 and A6 bind also to carbohydrate structures suggesting that these annexin possess lectin-like domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babiychuk EB, Palstra RJ, Schaller J et al (1999) Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J Biol Chem 274:35191–35195

    Article  PubMed  CAS  Google Scholar 

  • Barwise JL, Walker JH (1996) Annexins II, IV, V and VI relocate in response to rises in intracellular calcium in human foreskin fibroblasts. J Cell Sci 109:247–255

    PubMed  CAS  Google Scholar 

  • Becker T, Weber K, Johnsson N (1990) Protein-protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. EMBO J 9:4207–4213

    PubMed  CAS  Google Scholar 

  • Benz J, Bergner A, Hofmann A et al (1996) The structure of recombinant human annexin VI in crystals and membrane-bound. J Mol Biol 260:638–643

    Article  PubMed  CAS  Google Scholar 

  • Bianchi R, Giambanco I, Ceccarelli P et al (1992) Membrane-bound annexin V isoforms (CaBP33 and CaBP37) and annexin VI in bovine tissues behave like integral membrane proteins. FEBS Lett 296:158–162

    Article  PubMed  CAS  Google Scholar 

  • Blackwell GJ, Carnuccio R, DiRosa M et al (1980) Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature 287:147–149

    Article  PubMed  CAS  Google Scholar 

  • Blanchard S, Barwise JL et al (1996) Annexins in the human neuroblastoma SH-SY5Y: demonstration of relocation of annexins II and V to membranes in response to elevation of intracellular calcium by membrane depolarisation and by the calcium ionophore A23187. J Neurochem 67:805–813

    Article  PubMed  CAS  Google Scholar 

  • Brachvogel B, Dikschas J, Moch H et al (2003) Annexin A5 is not essential for skeletal development. Mol Cell Biol 23:2907–2913

    Article  PubMed  CAS  Google Scholar 

  • Brisson A, Mosser G, Huber R (1991) Structure of soluble and membrane-bound human annexin V. J Mol Biol 220:199–203

    Article  PubMed  CAS  Google Scholar 

  • Brownstein C, Falcone DJ, Jacovina A, Hajjar KA (2001) A mediator of cell surface-specific plasmin generation. Ann NY Acad Sci 947:143–155

    Article  PubMed  CAS  Google Scholar 

  • Butsushita K, Fukuoka S, Ida K, Arii Y (2009) Crystal structures of sodium-bound annexin A4. Biosci Biotechnol Biochem 73:2274–2280

    Article  PubMed  CAS  Google Scholar 

  • Cardin AD, Weintraub HJ (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9:21–32

    Article  PubMed  CAS  Google Scholar 

  • Cederholm A, Frostegård J (2007) Annexin A5 as a novel player in prevention of atherothrombosis in SLE and in the general population. Ann N Y Acad Sci 1108:96–103

    Article  PubMed  CAS  Google Scholar 

  • Cesarman GM, Guevara CA, Hajjar KA (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem 269:21198–21203

    PubMed  CAS  Google Scholar 

  • Chan HC, Kaetzel MA, Gotter AL et al (1994) Annexin IVinhibits calmodulin-dependent protein kinase II-activated chloride conductance. A novel mechanism for ion channel regulation. J Biol Chem 269:32464–32468

    PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Sun P, Wang P et al (2003) Fusion of lamellar body with plasma membrane is driven by the dual action of annexin II tetramer and arachidonic acid. J Biol Chem 278:39675–39683

    Article  PubMed  CAS  Google Scholar 

  • Chen JM, Sheldon A, Pincus MR (1993) Structure-function correlations of calcium binding and calcium channel activities based on 3-dimensional models of human annexins I, II, III, V and VII. J Biomol Struct Dyn 10:1067–1089

    Article  PubMed  CAS  Google Scholar 

  • Chung CY, Erickson HP (1994) Cell surface annexin II is a high affinity receptor for the alternatively spliced segment of tenascin-C. J Cell Biol 126:539–548

    Article  PubMed  CAS  Google Scholar 

  • Chung CY, Murphy-Ullrich JE, Erickson HP (1996) Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. Mol Biol Cell 7:883–892

    PubMed  CAS  Google Scholar 

  • Concha NO, Head JF, Kaetzel MA et al (1992) Annexin V forms calcium-dependent trimeric units on phospholipid vesicles. FEBS Lett 314:159–162

    Article  PubMed  CAS  Google Scholar 

  • Creutz CE (1992) The annexins and exocytosis. Science 258:924–931

    Article  PubMed  CAS  Google Scholar 

  • Crompton MR, Moss SE, Crumpton MJ (1988) Diversity in the lipocortin/calpactin family. Cell 55:1–3

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM, Gomes AV, Barnes JA, Dice JF (2000) Selective degradation of annexins by chaperone-mediated autophagy. J Biol Chem 275:33329–33335

    Article  PubMed  CAS  Google Scholar 

  • Demange P, Voges D, Benz J et al (1994) Annexin V: the key to understanding ion selectivity and voltage regulation? Trends Biochem Sci 19:272–276

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Carpenter B, Main LC et al (2008) Characterisation and protein expression profiling of annexins in colorectal cancer. Br J Cancer 98:426–433

    Article  PubMed  CAS  Google Scholar 

  • Eberhard DA, Karns LR, VandenBerg SR, Creutz CE (2001) Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci 114:3155–3166

    PubMed  CAS  Google Scholar 

  • Favier-Perron B, Lewit-Bentley A, Russo-Marie F (1996) The high-resolution crystal structure of human annexin III shows subtle differences with annexin V. Biochemistry 35:1740–1744

    Article  PubMed  CAS  Google Scholar 

  • Fernández MP, Morgan RO, Fernández MR, Carcedo MT (1994) The gene encoding human annexin V has a TATA-less promoter with a high G + C content. Gene 149:253–260

    Article  PubMed  Google Scholar 

  • Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461

    Article  PubMed  CAS  Google Scholar 

  • Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    PubMed  CAS  Google Scholar 

  • Gerner C, Frohwein U, Gotzmann J et al (2000) The Fas-induced apoptosis analyzed by high throughput proteome analysis. J Biol Chem 275:39018–39026

    Article  PubMed  CAS  Google Scholar 

  • Gotoh M, Takamoto Y, Kurosaka K et al (2005) Annexins I and IV inhibit Staphylococcus aureus attachment to human macrophages. Immunol Lett 98:297–302

    Article  PubMed  CAS  Google Scholar 

  • Hajjar KA, Jacovina AT, Chacko J (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem 269:21191–21197

    PubMed  CAS  Google Scholar 

  • Hamre KM, Chepenik KP, Goldowitz D (1995) The annexins: specific markers of midline structures and sensory neurons in the developing murine central nervous system. J Comp Neurol 352:421–435

    Article  PubMed  CAS  Google Scholar 

  • Hayes MJ, Moss SE (2004) Annexins and disease. Biochem Biophys Res Commun 322:1166–1170

    Article  PubMed  CAS  Google Scholar 

  • Herr C, Smyth N, Ullrich S et al (2001) Loss of annexin A7 leads to alterations in frequency-induced shortening of isolated murine cardiomyocytes. Mol Cell Biol 21:4119–4128

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Kaetzel MA, Kishore BK et al (2003) Annexin A4 reduces water and proton permeability of model membranes but does not alter aquaporin 2-mediated water transport in isolated endosomes. J Gen Physiol 121:413–425

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Meyers S, von Bodungen M et al (2008) Studies on localization and function of annexin A4a within urinary bladder epithelium using a mouse knockout model. Am J Physiol Renal Physiol 294:F919–F927

    Article  PubMed  CAS  Google Scholar 

  • Hubaishy I, Jones PG, Bjorge J et al (1995) Modulation of annexin II tetramer by tyrosine phosphorylation. Biochemistry 34:14527–14534

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Berendes R, Burger A et al (1992) Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J Mol Biol 223:683–704

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Römisch J, Paques EP (1990) The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J 9:3867–3874

    PubMed  CAS  Google Scholar 

  • Ishitsuka R, Kojima K, Utsumi H et al (1998) Glycosaminoglycan binding properties of annexin IV, V, and VI. J Biol Chem 273:9935–9941

    Article  PubMed  CAS  Google Scholar 

  • Jans SW, van Bilsen M, Reutelingsperger CP et al (1995) Annexin V in the adult rat heart: isolation, localization and quantitation. J Mol Cell Cardiol 27:335–348

    Article  PubMed  CAS  Google Scholar 

  • Kaetzel MA, Mo YD, Mealy TR et al (2001) Phosphorylation mutants elucidate the mechanism of annexin IV-mediated membrane aggregation. Biochemistry 40:4192–4199

    Article  PubMed  CAS  Google Scholar 

  • Kao LC, Tulac S, Lobo S et al (2002) Global gene profiling in human endometrium during the window of implantation. Endocrinology 143:2119–2138

    Article  PubMed  CAS  Google Scholar 

  • Kassam G, Manro A, Braat CE et al (1997) Characterization of the heparin binding properties of annexin II tetramer. J Biol Chem 272:16093–16100

    Article  Google Scholar 

  • Katoh N (2000) Detection of annexins I and IV in bronchoalveolar lavage fluids from calves inoculated with bovine herpes virus-1. J Vet Med Sci 62:37–41

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Avila-Sakar A, Creutz CE et al (1996) The crystal structure of annexin VI indicates relative rotation of the two lobes upon membrane binding. Biochim Biophys Acta 1313:277–282

    Article  PubMed  Google Scholar 

  • Kim A, Enomoto T, Serada S et al (2009) Enhanced expression of annexin A4 in clear cell carcinoma of the ovary and its association with chemoresistance to carboplatin. Int J Cancer 125:2316–2322

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Kirsch T (2008) Collagen/Annexin V interactions regulate chondrocyte mineralization. J Biol Chem 283:10310–10317

    Article  PubMed  CAS  Google Scholar 

  • Kirsch T, Pfaffle M (1992) Selective binding of annexin V(annexin V) to type II and X collagen and to chondrocalcin (C-propeptide of type II collagen). Implications for anchoring function between matrix vesicles and matrix proteins. FEBS Lett 310:143–147

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Utsumi H, Ogawa H, Matsumoto I (1994) Highly polarized expression of carbohydrate-binding protein p33/41 (annexin IV) on the apical plasma membrane of epithelial cells in renal proximal tubules. FEBS Lett 342:313–318

    Article  PubMed  CAS  Google Scholar 

  • Kojima K, Yamamoto K, Irimura T et al (1996) Characterization of carbohydrate-binding protein p33/41: relation with annexin IV, molecular basis of the doublet forms (p33 and p41), and modulation of the carbohydrate binding activity by phospholipids. Biol Chem 271:7679–7685

    Article  CAS  Google Scholar 

  • Konishi H, Namikawa K, Kiyama H (2006) Annexin III implicated in the microglial response to motor nerve injury. Glia 53:723–732

    Article  PubMed  Google Scholar 

  • Koopman G, Reutelingsperger CP, Kuijten GAM et al (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

  • Larsson M, Majeed M, Stendahl O et al (1995) Mobilization of annexin V during the uptake of DNP-albumin by human dendritic cells. APMIS 103:855–861

    Article  PubMed  CAS  Google Scholar 

  • Law A-L, Ling Q, Hajjar KA et al (2009) Annexin A2 regulates phagocytosis of photoreceptor outer segments in the mouse retina. Mol Biol Cell 20:3896–3904

    Article  PubMed  CAS  Google Scholar 

  • Learmonth MP, Howell SA, Harris AC et al (1992) Novel isoforms of CaBP 33/37 (annexin V) from mammalian brain: structural and phosphorylation differences that suggest distinct biological roles. Biochim Biophys Acta 1160L:76–83

    Article  Google Scholar 

  • Leon C, Nandan D, Lopez M, Moeenrezakhanlou A, Reine NE (2006) Annexin V associates with the IFN-γ receptor and regulates IFN-γ Signaling. J Immunol 176:5934–5942

    PubMed  CAS  Google Scholar 

  • Li B, Dedman JR, Kaetzel MA (2003) Intron disruption of the annexin IV gene reveals novel transcripts. J Biol Chem 278:43276–43283

    Article  PubMed  CAS  Google Scholar 

  • Liemann S, Huber R (1997) Three-dimensional structure of annexins. Cell Mol Life Sci 53:516–521

    Article  PubMed  CAS  Google Scholar 

  • Liemann S, Lewit-Bentley A (1995) Annexins: a novel family of calcium- and membrane-binding proteins in search of a function. Structure 3:233–237

    Article  PubMed  CAS  Google Scholar 

  • Lim LH, Pervaiz S (2007) Annexin 1: the new face of an old molecule. FASEB J 21:968–975

    Article  PubMed  CAS  Google Scholar 

  • Ling Q, Jacovina AT, Deora A et al (2004) Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J Clin Invest 113:38–48

    PubMed  CAS  Google Scholar 

  • Liu L, Wang M, Fisher AB et al (1996) Involvement of annexin II in exocytosis of lamellar bodies from alveolar epithelial type II cells. Am J Physiol 270:L668–L676

    PubMed  CAS  Google Scholar 

  • Locate S, Colyer J, Gawler DJ, Walker JH (2008) Annexin A6 at the cardiac myocyte sarcolemma - evidence for self-association and binding to actin. Cell Biol Int 32:1388–1396

    Article  PubMed  CAS  Google Scholar 

  • Luecke H, Chang BT, Mailliard WS et al (1995) Crystal structure of the annexin XII hexamer and implications for bilayer insertion. Nature 378:512–515

    Article  PubMed  CAS  Google Scholar 

  • Marina C-V, Wadih A, Renata P (2003) αvβ5 integrin-dependent programmed cell death triggered by a peptide mimic of annexin V. Mol Cell 11:1151–1162

    Article  Google Scholar 

  • Masuda J, Takayama E, Satoh A et al (2004) Levels of annexin IV and V in the plasma of pregnant and postpartum women. Thromb Haemost 91:1129–1136

    PubMed  CAS  Google Scholar 

  • Matteo RG, Moravec CS (2000) Immunolocalization of annexins IV, V and VI in the failing and non-failing human heart. Cardiovasc Res 45:961–970

    Article  PubMed  CAS  Google Scholar 

  • Mirkin S, Arslan M, Churikov D et al (2005) In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum Reprod 20:2104–2117

    Article  PubMed  CAS  Google Scholar 

  • Mohiti J, Caswell AM, Walker JH (1995) Calcium-induced relocation of annexins IV and V in the human osteosarcoma cell line MG-63. Mol Membr Biol 12:321–329

    Article  PubMed  CAS  Google Scholar 

  • Morgan RO, Fernandez MP (1997) Distinct annexin subfamilies in plants and protists diverged prior to animal annexins and from a common ancestor. J Mol Evol 44:178–188

    Article  PubMed  CAS  Google Scholar 

  • Morgan RO, Jenkins NA, Gilbert DJ et al (1999) Novel human and mouse annexin A10 are linked to the genome duplications during early chordate evolution. Genomics 60:40–46

    Article  PubMed  CAS  Google Scholar 

  • Moss SE, Morgan RO (2004) The annexins. Genome Biol 5:219

    Article  PubMed  Google Scholar 

  • Murphy-Ullrich JE (2001) The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 107:785–790

    Article  PubMed  CAS  Google Scholar 

  • Naciff JM, Kaetzel MA, Behbehani MM, Dedman JR (1996) Differential expression of annexins I-VI in the rat dorsal root ganglia and spinal cord. J Comp Neurol 368:356–370

    Article  PubMed  CAS  Google Scholar 

  • Otto M, Gunther A, Fan H et al (1994) Identification of annexin 33 kDa in cultured cells as a binding protein of influenza viruses. FEBS Lett 356:125–129

    Article  PubMed  CAS  Google Scholar 

  • Ponnampalam AP, Rogers PA (2006) Cyclic changes and hormonal regulation of annexin IV mRNA and protein in human endometrium. Mol Hum Reprod 12:661–669

    Article  PubMed  CAS  Google Scholar 

  • Ponnampalam AP, Weston GC, Trajstman AC et al (2004) Molecular classification of human endometrial cycle stages by transcriptional profiling. Mol Hum Reprod 10:879–893

    Article  PubMed  CAS  Google Scholar 

  • Pula G, Bianchi R, Ceccarelli P et al (1990) Characterization of mammalian heart annexins with special reference to CaBP33 (annexin V). FEBS Lett 277:53–58

    Article  PubMed  CAS  Google Scholar 

  • Rahman MM, Iida H, Shibata Y (1997) Expression and localization of annexin V and annexin VI during limb bud formation in the rat fetus. Anat Embryol (Berl) 195:31–39

    Article  CAS  Google Scholar 

  • Rand JH, Wu X-X, Quinn AS, Taatjes DJ (2010) The annexin A5-mediated pathogenic mechanism in the antiphospholipid syndrome: role in pregnancy losses and thrombosis. Lupus 19:460–469

    Article  PubMed  CAS  Google Scholar 

  • Rand JH (2000) The annexinopathies: a new category of diseases. Biochim Biophys Acta 1498:169–173

    Article  PubMed  CAS  Google Scholar 

  • Raynal P, Kuijpers G, Rojas E, Pollard HB (1996) A rise in nuclear calcium translocates annexins IV and V to the nuclear envelope. FEBS Lett 392:263–268

    Article  PubMed  CAS  Google Scholar 

  • Raynal P, Pollard HB, Srivastava M (1997) Cell cycle and post-transcriptional regulation of annexin expression in IMR-90 human fibroblasts. Biochem J 322:365–371

    PubMed  CAS  Google Scholar 

  • Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1197:63–93

    Article  PubMed  CAS  Google Scholar 

  • Rescher U, Gerke V (2004) Annexins – unique membrane binding proteins with diverse functions. J Cell Sci 117:2631–2639

    Article  PubMed  CAS  Google Scholar 

  • Riesewijk A, Martin J, van Os R et al (2003) Gene expression profiling of human endometrial receptivity on days LH + 2 versus LH + 7 by microarray technology. Mol Hum Reprod 9:253–264

    Article  PubMed  CAS  Google Scholar 

  • Rojas E, Pollard HB, Haigler HT et al (1990) Calcium-activated endonexin II forms calcium channels across acidic phospholipid bilayer membranes. J Biol Chem 265:21207–21215

    PubMed  CAS  Google Scholar 

  • Romay-Penabad Z, Montiel-Manzano MG, Shilagard T et al (2009) Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo. Blood 114:3074–3083

    Article  PubMed  CAS  Google Scholar 

  • Ross TS, Tait JF, Majerus PW (1990) Identity of inositol 1,2-cyclic phosphate 2-phosphohydrolase with lipocortin III. Science 248(4955):605–607

    Article  PubMed  CAS  Google Scholar 

  • Sage EH, Bornstein P (1991) Extracelluar proteins that modulate cell-matrix interactions: SPARC, tenascin, thrombospondin 1. J Biol Chem 266:14831–14834

    PubMed  CAS  Google Scholar 

  • Sandra L, Fitzpatrick SL, Kassam G et al (2000) Fucoidan-dependent conformational changes in annexin II tetramer. Biochemistry 39:2140–2148

    Article  CAS  Google Scholar 

  • Schlaepfer DD, Haigler HT (1990) Expression of annexins as a function of cellular growth state. J Cell Biol 111:229–238

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer DD, Jones J, Haigler HT (1992) Inhibition of protein kinase C by annexin V. Biochemistry 31:1886–1891

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Peiffer C, Browne CL, Walker JH et al (1998) Activated protein kinase C α associates with annexin VI from skeletal muscle. Biochem J 330:675–681

    PubMed  CAS  Google Scholar 

  • Seville RA, Nijjar S, Barnett MW et al (2002) Annexin IV (Xanx-4) has a functional role in the formation of pronephric tubules. Development 129:1693–1704

    PubMed  CAS  Google Scholar 

  • Shao C, Zhang F, Kemp M et al (2006) Crystallographic analysis of calcium-dependent heparin binding to annexin A2. J Biol Chem 281:31689–31695

    Article  PubMed  CAS  Google Scholar 

  • Smith PD, Davies A, Crumpton MJ, Moss SE (1994) Structure of the human annexin VI gene. Proc Natl Acad Sci USA 91:2713–2717

    Article  PubMed  CAS  Google Scholar 

  • Solito E, Nuti S, Parente L (1994) Dexamethasone-induced translocation of lipocortin (annexin) 1 to the cell membrane of U-937 cells. Br J Pharmacol 112:347–348

    Google Scholar 

  • Srivastava M, Atwater I, Glasman M et al (1999) Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(+/-) knockout mouse. Proc Natl Acad Sci USA 96:13783–13788

    Article  PubMed  CAS  Google Scholar 

  • Swairjo MA, Concha NO, Kaetzel MA et al (1995) Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Biol 2:968–974

    Article  PubMed  CAS  Google Scholar 

  • Swairjo MA, Seaton BA (1994) Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct 23:193–213

    Article  PubMed  CAS  Google Scholar 

  • Swisher JF, Burton N, Bacot SM et al (2010) Annexin A2 tetramer activates human and murine macrophages through TLR4. Blood 115:549–558

    Article  PubMed  CAS  Google Scholar 

  • Tait JF, Gibson D, Fujikawa K (1989) Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. J Biol Chem 264:7944–7946

    PubMed  CAS  Google Scholar 

  • Tait JF, Frankenberry DA, Shiang R et al (1991) Chromosomal localization of the human gene for annexin V (placental anticoagulant protein I) to 4q26–q28. Cytogenet Cell Genet 57:187–192

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Asano Y, Yamakawa N et al (2002) Annexin 6 is a putative cell surface receptor for chondroitin sulfate chains. J Cell Sci 115:3309–3318

    PubMed  CAS  Google Scholar 

  • Tomas A, Moss SE (2003) Calcium- and cell cycle-dependent association of annexin 11 with the nuclear envelope. J Biol Chem 278:20210–20216

    Article  PubMed  CAS  Google Scholar 

  • Tressler RJ, Nicolson GL (1992) Butanol-extractable and detergent-solubilized cell surface components from murine large cell lymphoma cells associated with adhesion to organ microvessel endothelial cells. J Cell Biochem 48:162–171

    Article  PubMed  CAS  Google Scholar 

  • Tressler RJ, Updyke TV, Yeatman T et al (1993) Extracellular annexin II is associated with divalent cation-dependent tumor cell-endothelial cell adhesion of metastatic RAW117 large-cell lymphoma cells. J Cell Biochem 53:265–276

    Article  PubMed  CAS  Google Scholar 

  • Tressler RJ, Yeatman T, Nicolson GL (1994) Extracellular annexin VI expression is associated with divalent cation-dependent endothelial cell adhesion of metastatic RAW117 large-cell lymphoma cells. Exp Cell Res 215:395–400

    Article  PubMed  CAS  Google Scholar 

  • Tsujii-Hayashi Y, Kitahara M, Yamagaki T et al (2002) A potential endogenous ligand of annexin IVin the exocrine pancreas. Carbohydrate structure of GP-2, a glycosylphospha-tidylinositol-anchored glycoprotein of zymogen granule membranes. J Biol Chem 277:47493–47499

    Article  PubMed  CAS  Google Scholar 

  • Ulander VM, Stefanovic V, Masuda J et al (2007) Plasma levels of annexins IV and V in relation to antiphospholipid antibody status in women with a history of recurrent miscarriage. Thromb Res 120:865–870

    Article  PubMed  CAS  Google Scholar 

  • Vermes I, Haanen C, Steffens-Nakken H et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods 184:39–46

    Article  PubMed  CAS  Google Scholar 

  • Voges D, Berendes R, Demange P et al (1995) Structure and function of the ion channel model system annexin V. Adv Enzymol Relat Areas Mol Biol 71:209–239

    PubMed  CAS  Google Scholar 

  • Waisman DM (1995) Annexin II tetramer: structure and function. Mol Cell Biochem 149/150:301–322

    Article  Google Scholar 

  • Wallace JL, de Lima OM, Jr FS (2005) Lipoxins in gastric mucosal health and disease. Prostaglandins Leukot Essent Fatty Acids 73:251–255

    Article  PubMed  CAS  Google Scholar 

  • Wang EC, Lee JM, Ruiz WG et al (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115:2412–2422

    Article  PubMed  CAS  Google Scholar 

  • Wang JL, Gray RM, Haudek KC et al (2004) Nucleocytoplasmic lectins. Biochim Biophys Acta 1673:75–93

    Article  PubMed  CAS  Google Scholar 

  • Wen Y, Edelman JL, Kang T, Sachs G (1999) Lipocortin V may function as a signaling protein for vascular endothelial growth factor receptor-2/Flk-1. Biochem Biophys Res Commun 258:713–721

    Article  PubMed  CAS  Google Scholar 

  • Weng X, Luecke H, Song IS et al (1993) Crystal structure of human annexin I at 2.5 A resolution. Protein Sci 2:448–458

    Article  PubMed  CAS  Google Scholar 

  • Yamagata M, Suzuki S, Akiyama SK et al (1989) Regulation of cell-substrate adhesion by proteoglycans immobilized on extracellular substrates. J Biol Chem 264:8012–8018

    PubMed  CAS  Google Scholar 

  • Yeatman TJ, Updyke TV, Kaetzel MA et al (1993) Expression of annexins on the surfaces of non-metastatic and metastatic human and rodent tumor cells. Clin Exp Metastasis 11:37–44

    Article  PubMed  CAS  Google Scholar 

  • Zanotti G, Malpeli G, Gliubich F et al (1998) Structure of the trigonal crystal form of bovine annexin IV. Biochem J 329:101–106

    PubMed  CAS  Google Scholar 

  • Zimmermann U, Balabanov S, Giebel J et al (2004) Increased expression and altered location of annexin IV in renal clear cell carcinoma: a possible role in tumor dissemination. Cancer Lett 209:111–118

    Article  PubMed  CAS  Google Scholar 

  • Zschörnig O, Opitz F, Müller M (2007) Annexin A4 binding to anionic phospholipid vesicles modulated by pH and calcium. Eur Biophys J 36:415–424

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, G.S. (2012). Annexins (Lipocortins). In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_21

Download citation

Publish with us

Policies and ethics