Skip to main content

Lectins in Quality Control: Calnexin and Calreticulin

  • Chapter
  • First Online:

Abstract

A long-standing enigma has been the role of N-linked glycans attached to many proteins in the endoplasmic reticulum (ER) and their co- and posttranslational remodelling along the secretory pathway. Evidence is accumulating that intracellular animal lectins play important roles in quality control and glycoprotein sorting along the secretory pathway. Calnexin and calreticulin in conjunction with associated chaperones promote correct folding and oligomerization of many glycoproteins in the ER. The discovery that one of these glycan modifications, mannose 6-phosphate, serves as a lysosomal targeting signal that is recognized by mannose 6-phosphate receptors has led to the notion that lectins may play more general roles in exocytotic protein trafficking (Chaps. 36). In present and subsequent chapters we discuss the role of intracellular lectins in quality control and their role in understanding the mechanisms underlying protein traffic in the secretory pathway (Chaps. 37) (Table 2.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afshar N, Black BE, Paschal BM (2005) Retrotranslocation of the chaperone calreticulin from the endoplasmic reticulum lumen to the cytosol. Mol Cell Biol 25:8844–8853

    PubMed  CAS  Google Scholar 

  • Andrin C, Pinkoski MJ, Burns K et al (1998) Interaction between a Ca2 + -binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules. Biochemistry 37:10386–10394

    PubMed  CAS  Google Scholar 

  • Andrin C, Corbett EF, Johnson S et al (2000) Expression and purification of mammalian calreticulin in Pichia pastoris. Protein Expr Purif 20:207–215

    PubMed  CAS  Google Scholar 

  • Arosa FA, de Jesus O, Porto G et al (1999) Calreticulin is expressed on the cell surface of activated human peripheral blood T lymphocytes in association with major histocompatibility complex class I molecules. J Biol Chem 274:16917–16922

    PubMed  CAS  Google Scholar 

  • Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 266:21458–21465

    PubMed  CAS  Google Scholar 

  • Baksh S, Burns K, Andrin C et al (1995a) Interaction of calreticulin with protein disulfide isomerase. J Biol Chem 270:31338–31351

    PubMed  CAS  Google Scholar 

  • Baksh S, Spamer C, Oikawa K et al (1995b) Zn2+ binding to cardiac calsequestrin. Biochem Biophys Res Commun 209:310–315

    PubMed  CAS  Google Scholar 

  • Baksh S, Spamer C, Heilmann C et al (1995c) Identification of the Zn2+ binding region in calreticulin. FEBS Lett 376:53–57

    PubMed  CAS  Google Scholar 

  • Bass J, Chiu G, Argon Y et al (1998) Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. J Cell Biol 141:637–646

    PubMed  CAS  Google Scholar 

  • Bastianutto C, Clementi E, Codazzi F et al (1995) Overexpression of calreticulin increases the Ca2+capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol 130:847–855

    PubMed  CAS  Google Scholar 

  • Basu S, Srivastava PK (1999) Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity. J Exp Med 189:797–802

    PubMed  CAS  Google Scholar 

  • Bedard K, Szabo E, Michalak M, Opas M (2005) Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and ERp57. Int Rev Cytol 245:91–121

    PubMed  CAS  Google Scholar 

  • Bergeron JJ, Brenner MB, Thomas DY et al (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci 19:124–128

    PubMed  CAS  Google Scholar 

  • Brockmeier A, Williams DB (2006) Potent lectin-independent chaperone function of calnexin under conditions prevalent within the lumen of the endoplasmic reticulum. Biochemistry 45:12906–12916

    PubMed  CAS  Google Scholar 

  • Brockmeier A, Brockmeier U, Williams DB (2009) Distinct contributions of the lectin and arm domains of calnexin to its molecular chaperone function. J Biol Chem 284:3433–3451

    PubMed  CAS  Google Scholar 

  • Brondani Da Rocha A, Regner A, Grivicich I et al (2004) Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines. Int J Oncol 25:777–785

    PubMed  CAS  Google Scholar 

  • Burns K, Opas M, Michalak M (1997) Calreticulin inhibits glucocorticoid- but not cAMP-sensitive expression of tyrosine aminotransferase gene in cultured McA-RH7777 hepatocytes. Mol Cell Biochem 171:37–43

    PubMed  CAS  Google Scholar 

  • Camacho P, Lechleiter JD (1995) Calreticulin inhibits repetitive intracellular Ca2+ wave. Cell 82:765–771

    PubMed  CAS  Google Scholar 

  • Caramelo JJ, Parodi AJ (2008) Getting in and out from calnexin/calreticulin cycles. J Biol Chem 283:10221–10225

    PubMed  CAS  Google Scholar 

  • Caramelo JJ, Castro OA, de Prat-Gay G et al (2004) The endoplasmic reticulum glucosyltransferase recognizes nearly native glycoprotein folding intermediates. J Biol Chem 279:46280–46285

    PubMed  CAS  Google Scholar 

  • Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138:1866–1876

    PubMed  CAS  Google Scholar 

  • Chevet E, Wong HN, Gerber D et al (1999) Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes. EMBO J 18:3655–3666

    PubMed  CAS  Google Scholar 

  • Choi BH, Kim JS (2004) Age-related decline in expression of calnexin. Exp Mol Med 36:499–503

    PubMed  CAS  Google Scholar 

  • Coppolino MG, Woodside MJ, Demaurex N et al (1997) Calreticulin is essential for integrin-mediated calcium signaling and cell adhesion. Nature 386(6627):843–847

    PubMed  CAS  Google Scholar 

  • Corbett EF, Oikawa K, Francois P et al (1999) Ca2+ regulation of interactions between endoplasmic reticulum chaperones. J Biol Chem 274:6203–6211

    PubMed  CAS  Google Scholar 

  • Corbett EF, Michalak KM, Johnsoni KOS et al (2000) The conformation of calreticulin is influenced by the endoplasmic reticulum luminal environment. J Biol Chem 275:27177–27185

    PubMed  CAS  Google Scholar 

  • Crossin KL, Tai MH, Krushel LA et al (1997) Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci U S A 94:2687–2692

    PubMed  CAS  Google Scholar 

  • Culina S, Lauvau G, Gubler B et al (2004) Calreticulin promotes folding of functional human leukocyte antigen class I molecules in vitro. J Biol Chem 279:54210–54215

    PubMed  CAS  Google Scholar 

  • Dai E, Stewart M, Ritchie B et al (1997) Calreticulin, a potential vascular regulatory protein, reduces intimal hyperplasia after arterial injury. Arterioscler Thromb Vasc Biol 17:2359–2368

    PubMed  CAS  Google Scholar 

  • David V, Hochstenbach F, Rajagopalan S et al (1993) Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein IP90 (calnexin). J Biol Chem 268:9585–9592

    PubMed  CAS  Google Scholar 

  • Dedhar S (1994) Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem Sci 19:269–271

    PubMed  CAS  Google Scholar 

  • Dedhar S, Rennie PS, Shago M et al (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367(6462):480–483

    PubMed  CAS  Google Scholar 

  • Del Cid N, Jeffery E, Rizvi SM et al (2010) Modes of calreticulin recruitment to the major histocompatibility complex class I assembly pathway. J Biol Chem 285:4520–4535

    PubMed  Google Scholar 

  • Denecke J, Carlsson LE, Vidal S et al (1995) The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell 7:391–406

    PubMed  CAS  Google Scholar 

  • Denzel A, Molinari M, Trigueros C et al (2002) Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol Cell Biol 22:7398–7404

    PubMed  CAS  Google Scholar 

  • Desai D, Michalak M, Singh NK et al (1996) Inhibition of retinoic acid receptor function and retinoic acid-regulated gene expression in mouse melanoma cells by calreticulin. A potential pathway for cyclic AMP regulation of retinoid action. J Biol Chem 2711:5153–5159

    Google Scholar 

  • Dickson KM, Bergeron JJ, Shames I et al (2002) Association of calnexin with mutant peripheral myelin protein-22 ex vivo: a basis for “gain-of-function” ER diseases. Proc Natl Acad Sci U S A 99:9852–9857

    PubMed  CAS  Google Scholar 

  • Dissemond J, Busch M, Kothen T et al (2004) Differential downregulation of endoplasmic reticulum-residing chaperones calnexin and calreticulin in human metastatic melanoma. Cancer Lett 203:225–231

    PubMed  CAS  Google Scholar 

  • Dupuis M, Schaerer E, Krause KH, Tschopp J (1993) The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med 177:1–7

    PubMed  CAS  Google Scholar 

  • Duus K, Hansen PR, Houen G (2008) Interaction of calreticulin with amyloid beta peptide 1-47. Protein Pept Lett 15:103–107

    PubMed  CAS  Google Scholar 

  • Eggleton P, Reid K, Kishore U, Sontheimer RD (1997) Clinical relevance of calreticulin in systemic lupus erythematosus. Lupus 6:564–571

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Frickel E-M (2003) Calnexin, calreticulin, and ERp57. Cell Biochem Biophys 39:223–247

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Riek R, Braun D et al (1994) Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry 33:3229–3236

    Google Scholar 

  • Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Riek R, Herrmann T et al (2001a) NMR structure of the calreticulin P-domain. Proc Natl Acad Sci U S A 98:3133–3138

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Riek R, Braun D et al (2001b) Three-dimensional structure topology of the calreticulin P-domain based on NMR assignment. FEBS Lett 488:69–73

    PubMed  CAS  Google Scholar 

  • Ellgaard L, Bettendorff P, Braun D, Herrmann T, Fiorito F, Jelesarov I, Güntert P, Helenius A, Wüthrich K (2002) NMR structures of 36 and 73-residue fragments of the calreticulin P-domain. J Mol Biol 322:773–784

    PubMed  CAS  Google Scholar 

  • Fadel MP, Dziak E, Lo CM et al (1999) Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J Biol Chem 274:15085–15094

    PubMed  CAS  Google Scholar 

  • Fadel MP, Szewczenko-Pawlikowski M, Leclerc P et al (2001) Calreticulin affects beta-catenin-associated pathways. J Biol Chem 276:27083–27089

    PubMed  CAS  Google Scholar 

  • Fontanini A, Chies R, Snapp EL et al (2005) Glycan-independent role of calnexin in the intracellular retention of Charcot-Marie-tooth 1A Gas3/PMP22 mutants. J Biol Chem 280:2378–2387

    PubMed  CAS  Google Scholar 

  • Fraser SA, Michalak M, Welch WH, Hudig D (1998) Calreticulin, a component of the endoplasmic reticulum and of cytotoxic lymphocyte granules, regulates perforin-mediated lysis in the hemolytic model system. Biochem Cell Biol 76:881–887

    PubMed  CAS  Google Scholar 

  • Frickel EM, Riek R, Jelesarov I et al (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci U S A 99:1954–1959

    PubMed  CAS  Google Scholar 

  • Fu H, Liu C, Flutter B, Tao H, Gao B (2009) Calreticulin maintains the low threshold of peptide required for efficient antigen presentation. Mol Immunol 46:3198–3206

    PubMed  CAS  Google Scholar 

  • Gardai SJ, McPhillips KA, Frasch SC et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    PubMed  CAS  Google Scholar 

  • Gelebart P, Opas M, Michalak M (2005) Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37:260–266

    PubMed  CAS  Google Scholar 

  • Goicoechea S, Orr AW, Pallero MA et al (2000) Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem 275:36358–36368

    PubMed  CAS  Google Scholar 

  • Goicoechea S, Pallero MA, Eggleton P et al (2002) The anti-adhesive activity of thrombospondin is mediated by the n-terminal domain of cell surface calreticulin. J Biol Chem 277:37219–37228

    PubMed  CAS  Google Scholar 

  • Gold LI, Rahman M, Blechman KM et al (2006) Overview of the role for calreticulin in the enhancement of wound healing through multiple biological effects. J Invest Dermatol 11:57–65

    CAS  Google Scholar 

  • Gold LI, Eggleton P, Sweetwyne MT et al (2010) Calreticulin: non-endoplamic reticulum functions in physiology and disease. FASEB J 24:665–683

    PubMed  CAS  Google Scholar 

  • Grespin ME, Bonamy GMC, Roggero VR et al (2008) Thyroid hormone receptor α1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway. J Biol Chem 283:25576–25588

    PubMed  CAS  Google Scholar 

  • Gu VY, Wong MH, Stevenson JL et al (2008) Calreticulin in human pregnancy and pre-eclampsia. Mol Hum Reprod 14:309–315

    PubMed  CAS  Google Scholar 

  • Guerin R, Arseneault G, Dumont S et al (2008) Calnexin is involved in apoptosis induced by endoplasmic reticulum stress in the fission yeast. Mol Biol Cell 19:4404–4420

    PubMed  CAS  Google Scholar 

  • Guérin R, Beauregard PB, Leroux A et al (2009) Calnexin regulates apoptosis induced by inositol starvation in fission yeast. PLoS One 4:e6251

    Google Scholar 

  • Guo L, Nakamura K, Lynch J et al (2002) Cardiac-specific expression of calcineurin reverses embryonic lethality in calreticulin-deficient mouse. J Biol Chem 277:50776–50779

    PubMed  CAS  Google Scholar 

  • Guo L, Groenendyk J, Papp S et al (2003) Identification of an N-domain histidine essential for chaperone function in calreticulin. J Biol Chem 278:50645–50653

    PubMed  CAS  Google Scholar 

  • Gupta GS (2005) Quality control of germ cell proteins. In: Gupta GS (ed) Proteomics of spermatogenesis. Springer, New York, pp 749–776

    Google Scholar 

  • Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival. Cell 131:596–10

    PubMed  CAS  Google Scholar 

  • Hayashi I, Takatori S, Urano Y et al (2009a) Single chain variable fragment against nicastrin inhibits the γ-secretase activity. J Biol Chem 284:27838–27847

    PubMed  CAS  Google Scholar 

  • Hayashi T, Rizzuto R, Hajnoczky G, Su T-P (2009b) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88

    PubMed  CAS  Google Scholar 

  • Hebert DN, Foellmer B, Helenius A (1995) Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81:425–433

    PubMed  CAS  Google Scholar 

  • Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71:289–297

    PubMed  Google Scholar 

  • Hershberger ME, Tuan RS (1998) Placental 57-kDa Ca2+-binding protein: regulation of expression and function in trophoblast calcium transport. Dev Biol 199:80–92

    PubMed  CAS  Google Scholar 

  • Hojrup P, Roepstorff P, Houen G (2001) Human placental calreticulin - characterization of domain structure and post-translational modifications. Eur J Biochem 268:2558–2565

    PubMed  CAS  Google Scholar 

  • Holaska JM, Black BE, Love DC, Hanover JA, Leszyk J, Paschal BM (2001) Calreticulin is a receptor for nuclear export. J Cell Biol 152:127–140

    PubMed  CAS  Google Scholar 

  • Ihara Y, Goto US Y, Kondo T (2006) Role of calreticulin in the sensitivity of myocardiac H9c2 cells to oxidative stress caused by hydrogen peroxide. Am J Physiol Cell Physiol 290:C208–C221

    PubMed  CAS  Google Scholar 

  • Ikawa M, Wada I, Kominami K et al (1997) The putative chaperone calmegin is required for sperm fertility. Nature 387(6633):607–611

    PubMed  CAS  Google Scholar 

  • Ireland BS, Brockmeier U, Howe CM et al (2008) Lectin-deficient calreticulin retains full functionality as a chaperone for class I histocompatibility molecules. Mol Biol Cell 19:2413–2423

    PubMed  CAS  Google Scholar 

  • Janssen MJ, Waanders E, Woudenberg J, Lefeber DJ, Drenth JP (2010) Congenital disorders of glycosylation in hepatology: the example of polycystic liver disease. J Hepatol 52:432–440

    PubMed  CAS  Google Scholar 

  • Jethmalani SM, Henle KJ (1998) Calreticulin associates with stress proteins: implications for chaperone function during heat stress. J Cell Biochem 69:30–43

    PubMed  CAS  Google Scholar 

  • Jia XY, He LH, Jing RL, Li RZ (2009) Calreticulin: conserved protein and diverse functions in plants. Physiol Plant 136:127–138

    PubMed  CAS  Google Scholar 

  • Jin H, Hong Z, Su W, Li S (2009) A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. Proc Natl Acad Sci U S A 106:13612–13617

    PubMed  CAS  Google Scholar 

  • Johnson S, Michalak M, Opas M, Eggleton P (2001) The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol 11:122–129

    PubMed  CAS  Google Scholar 

  • Jun-Chao WU, Liang Z-Q et al (2006) Quality control system of the endoplasmic reticulum and related diseases. Acta Biochim Biophys Sin 38:219–226

    Google Scholar 

  • Kageyama K, Ihara Y, Goto S et al (2002) Overexpression of calreticulin modulates protein kinase B/Akt signaling to promote apoptosis during cardiac differentiation of cardiomyoblast H9c2 cells. J Biol Chem 277:19255–19264

    PubMed  CAS  Google Scholar 

  • Kapoor M, Ellgaard L, Gopalakrishnapai J et al (2004) Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Biochemistry 43:97–106

    PubMed  CAS  Google Scholar 

  • Karri S, Johnson H, Hendry WJ 3rd et al (2004) Neonatal exposure to diethylstilbestrol leads to impaired action of androgens in adult male hamsters. Reprod Toxicol 19:53–63

    PubMed  CAS  Google Scholar 

  • Kennedy TE, Kuhl D, Barzilai A et al (1992) Long-term sensitization training in Aplysia leads to an increase in calreticulin, a major presynaptic calcium-binding protein. Neuron 9:1013–1024

    PubMed  CAS  Google Scholar 

  • Knee R, Ahsan I, Mesaeli N et al (2003) Compromised calnexin function in calreticulin-deficient cells. Biochem Biophys Res Commun 304:661–666

    PubMed  CAS  Google Scholar 

  • Kosmaoglou M, Cheetham ME (2008) Calnexin is not essential for mammalian rod opsin biogenesis. Mol Vis 14:2466–2474

    PubMed  CAS  Google Scholar 

  • Krause K-H, Michalak M (1997) Calreticulin. Cell 88:439–443

    PubMed  CAS  Google Scholar 

  • Kuwabara K, Pinsky DJ, Schmidt AM et al (1995) Calreticulin, an antithrombotic agent which binds to vitamin K-dependent coagulation factors, stimulates endothelial nitric oxide production, and limits thrombosis in canine coronary arteries. J Biol Chem 270:8179–8187

    PubMed  CAS  Google Scholar 

  • Kwon MS, Park CS, Choi K et al (2000) Calreticulin couples calcium release and calcium influx in integrin-mediated calcium signaling. Mol Biol Cell 11:1433–1443

    PubMed  CAS  Google Scholar 

  • Langdown ML, Holness MJ, Sugden MC (2003) Effects of prenatal glucocorticoid exposure on cardiac calreticulin and calsequestrin protein expression during early development and in adulthood. Biochem J 371:61–69

    PubMed  CAS  Google Scholar 

  • Laporte C, Vetter G, Loudes AM et al (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    PubMed  CAS  Google Scholar 

  • Leach MR, Williams DB (2004) Lectin-deficient calnexin is capable of binding class I histocompatibility molecules in vivo and preventing their degradation. J Biol Chem 279:9072–9079

    PubMed  CAS  Google Scholar 

  • Leach MR, Cohen-Doyle MF, Thomas DY et al (2002) Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem 277:29686–29697

    PubMed  CAS  Google Scholar 

  • Lee WH, Akatsuka S, Shirase T et al (2006) Alpha-tocopherol induces calnexin in renal tubular cells: another protective mechanism against free radical-induced cellular damage. Arch Biochem Biophys 453:168–178

    PubMed  CAS  Google Scholar 

  • Leung-Hagesteijn CY, Milankov K, Michalak M et al (1994) Cell attachment to extracellular matrix substrates is inhibited upon down-regulation of expression of calreticulin, an intracellular integrin alpha-subunit-binding protein. J Cell Sci 107:589–600

    PubMed  CAS  Google Scholar 

  • Li Y, Camacho P (2004) Ca2+-dependent redox modulation of SERCA 2b by ERp57. J Cell Biol 164:35–46

    PubMed  CAS  Google Scholar 

  • Li Z, Stafford WF, Bouvier M (2001) The metal ion binding properties of calreticulin modulate its conformational flexibility and thermal stability. Biochemistry 40:11193–11201

    PubMed  CAS  Google Scholar 

  • Lin P, Le-Niculescu H, Hofmeister R et al (1998) The mammalian calcium-binding protein, nucleobindin (CALNUC), is a Golgi resident protein. J Cell Biol 141:1515–1527

    PubMed  CAS  Google Scholar 

  • Martin V, Groenendyk J, Steiner SS et al (2006) Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin. J Biol Chem 281:2338–2346

    PubMed  CAS  Google Scholar 

  • McCauliffe DP, Zappi E, Lieu TS et al (1990) A human Ro/SS-A autoantigen is the homologue of calreticulin and is highly homologous with onchocercal RAL-1 antigen and an aplysia “memory molecule”. J Clin Invest 86:332–335

    PubMed  CAS  Google Scholar 

  • McCauliffe DP, Yang YS, Wilson J et al (1992) The 5'-flanking region of the human calreticulin gene shares homology with the human GRP78, GRP94, and protein disulfide isomerase promoters. J Biol Chem 267:2557–2562

    PubMed  CAS  Google Scholar 

  • McGowan KM, Long SD, Pekala PH (1995) Glucose transporter gene expression: regulation of transcription and mRNA stability. Pharmacol Ther 66:465–505

    PubMed  CAS  Google Scholar 

  • Meehan KL, Sadar MD (2004) Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 4:1116–1134

    PubMed  CAS  Google Scholar 

  • Mehta AM, Jordanova ES, Kenter GG et al (2008) Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. Cancer Immunol Immunother 57:197–206

    PubMed  CAS  Google Scholar 

  • Mesaeli N, Phillipson C (2004) Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol Biol Cell 15:1862–1870

    PubMed  CAS  Google Scholar 

  • Mesaeli N, Nakamura K, Zvaritch E et al (1999) Calreticulin is essential for cardiac development. J Cell Biol 144:857–868

    PubMed  CAS  Google Scholar 

  • Michalak M, Burns K, Andrin C et al (1996) Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem 271:29436–29437

    PubMed  CAS  Google Scholar 

  • Michalak M, Corbett EF, Mesaeli N et al (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344:281–297

    PubMed  CAS  Google Scholar 

  • Michalak M, Lynch J, Groenendyk J et al (2002a) Calreticulin in cardiac development and pathology. Biochim Biophys Acta 1600:32–37

    PubMed  CAS  Google Scholar 

  • Michalak M, Robert Parker JM, Opas M (2002b) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269–278

    PubMed  CAS  Google Scholar 

  • Michalak M, Guo L, Robertson M et al (2004) Calreticulin in the heart. Mol Cell Biochem 263:137–147

    PubMed  CAS  Google Scholar 

  • Michalak M, Groenendyk J, Szabo E et al (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    PubMed  CAS  Google Scholar 

  • Mueller CF, Wassmann K, Berger A et al (2008) Differential phosphorylation of calreticulin affects AT1 receptor mRNA stability in VSMC. Biochem Biophys Res Commun 370:669–674

    PubMed  CAS  Google Scholar 

  • Myhill N, Lynes EM, Nanji JA et al (2008) The subcellular distribution of calnexin is mediated by PACS-7. Mol Biol Cell 19:2777–2788

    PubMed  CAS  Google Scholar 

  • Nakamura K, Robertson M, Liu G et al (2001a) Complete heart block and sudden death in mouse over-expressing calreticulin. J Clin Invest 107:1245–1253

    PubMed  CAS  Google Scholar 

  • Nakamura K, Zuppini A, Arnaudeau S et al (2001b) Functional specialization of calreticulin domains. J Cell Biol 154:961–972

    PubMed  CAS  Google Scholar 

  • Nakhasi HL, Singh NK, Pogue GP et al (1994) Identification and characterization of host factor interactions with cis-acting elements of rubella virus RNA. Arch Virol Suppl 9:255–267

    PubMed  CAS  Google Scholar 

  • Nanney LB, Woodrell CD, Greives MR et al (2008) Calreticulin enhances porcine wound repair by diverse biological effects. Am J Pathol 173:610–630

    PubMed  CAS  Google Scholar 

  • Navazio L, Baldan B, Mariani P et al (1996) Primary structure of the N-linked carbohydrate chains of calreticulin from spinach leaves. Glycoconj J 13:977–983

    PubMed  CAS  Google Scholar 

  • Nguyen TQ, Capra JD, Sontheimer RD (1996) Calreticulin is transcriptionally upregulated by heat shock, calcium and heavy metals. Mol Immunol 33:379–386

    PubMed  CAS  Google Scholar 

  • Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651

    PubMed  CAS  Google Scholar 

  • Nickenig G, Michaelsen F, Müller C et al (2002) Destabilization of AT1 receptor mRNA by calreticulin. Circ Res 90:53–58

    PubMed  CAS  Google Scholar 

  • Noorwez SM, Sama RR, Kaushal S (2009) Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal. J Biol Chem 284:33333–33342

    PubMed  CAS  Google Scholar 

  • Okunaga T, Urata Y, Goto S, Matsuo T et al (2006) Calreticulin, a molecular chaperone in the endoplasmic reticulum, modulates radiosensitivity of human glioblastoma U251MG cells. Cancer Res 66:8662–8671

    PubMed  CAS  Google Scholar 

  • Olkku A, Mahonen A (2009) Calreticulin mediated glucocorticoid receptor export is involved in beta-catenin translocation and Wnt signaling inhibition in human osteoblastic cells. Bone 44:555–565

    PubMed  CAS  Google Scholar 

  • Opas M, Szewczenko-Pawlikowski M, Jass GH et al (1996) Calreticulin modulates cellular adhesiveness via regulation of expression of vinculin. J Cell Biol 135:1913–1923

    PubMed  CAS  Google Scholar 

  • Ostwald TJ, MacLennan DH (1974) Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem 249:974–979

    PubMed  CAS  Google Scholar 

  • Otteken A, Moss B (1996) Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J Biol Chem 271:97–103

    PubMed  CAS  Google Scholar 

  • Pallero MA, Elzie CA, Chen J et al (2008) Thrombospondin 1 binding to calreticulin-LRP1 signals resistance to anoikis. FASEB J 22:3968–3979

    PubMed  CAS  Google Scholar 

  • Patton WF, Erdjument-Bromage H, Marks AR et al (1995) Components of the protein synthesis and folding machinery are induced in vascular smooth muscle cells by hypertrophic and hyperplastic agents. Identification by comparative protein phenotyping and microsequencing. J Biol Chem 270:21404–21410

    PubMed  CAS  Google Scholar 

  • Perrone L, Tell G, Di Lauro R (1999) Calreticulin enhances the transcriptional activity of thyroid transcription factor-1 by binding to its homeodomain. J Biol Chem 274:4640–4645

    PubMed  CAS  Google Scholar 

  • Persson S et al (2003) Phylogenetic analyses and expression studies reveal two distinct groups of calreticulin isoforms in higher plants. Plant Physiol 133:1385–1396

    PubMed  CAS  Google Scholar 

  • Pike SE, Yao L, Jones KD et al (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188:2349–2356

    PubMed  CAS  Google Scholar 

  • Pind S, Riordan JR, Williams DB (1994) Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269:12784–12788

    PubMed  CAS  Google Scholar 

  • Platet N, Cunat S, Chalbos D et al (2000) Unliganded and liganded estrogen receptors protect against cancer invasion via different mechanisms. Mol Endocrinol 14:999–1009

    PubMed  CAS  Google Scholar 

  • Pollock S, Kozlov G, Pelletier MF et al (2004) Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO J 23:1020–1029

    PubMed  CAS  Google Scholar 

  • Porcellini S, Traggiai E, Schenk U et al (2006) Regulation of peripheral T cell activation by calreticulin. J Exp Med 203:461–471

    PubMed  CAS  Google Scholar 

  • Prasad SA, Yewdell JW, Porgador A et al (1998) Calnexin expression does not enhance the generation of MHC class I-peptide complexes. Eur J Immunol 28:907–913

    PubMed  CAS  Google Scholar 

  • Qi C, Pekala PH (1999) Breakthroughs and views: the influence of mRNA stability on glucose transporter (GLUT1) gene expression. Biochem Biophys Res Commun 263:265–269

    PubMed  CAS  Google Scholar 

  • Ramsamooj P, Notario V, Dritschilo A (1995) Enhanced expression of calreticulin in the nucleus of radioresistant squamous carcinoma cells in response to ionizing radiation. Cancer Res 55:3016–3021

    PubMed  CAS  Google Scholar 

  • Ritter C, Quirin K, Kowarik M et al (2005) Minor folding defects trigger local modification of glycoproteins by the ER folding sensor GT. EMBO J 24:1730–1738

    PubMed  CAS  Google Scholar 

  • Rizvi SM, Mancino L, Thammavongsa V et al (2004) A polypeptide binding conformation of calreticulin is induced by heat shock, calcium depletion, or by deletion of the C-terminal acidic region. Mol Cell 15:913–923

    PubMed  CAS  Google Scholar 

  • Roderick HL, Campbell AK, Llewellyn DH (1997) Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors. FEBS Lett 405:181–185

    PubMed  CAS  Google Scholar 

  • Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca2+ oscillations via an interaction with SERCA2b. J Cell Biol 1491:235–248

    Google Scholar 

  • Rooke K, Briquet-Laugier V, Xia YR et al (1997) Mapping of the gene for calreticulin (Calr) to mouse chromosome 8. Mamm Genome 8:870–871

    PubMed  CAS  Google Scholar 

  • Rosenbaum EE, Hardie RC, Colley NJ (2006) Calnexin is essential for rhodopsin maturation, Ca2+ regulation, and photoreceptor cell survival. Neuron 49:229–241

    PubMed  CAS  Google Scholar 

  • Roth J, Ziak M, Zuber C (2003) The role of glucosidase II and endomannosidase in glucose trimming of asparagine-linked oligosaccharides. Biochimie 85:287294

    Google Scholar 

  • Saito Y, Ihara Y, Leach MR et al (1999) Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18:6718–6729

    PubMed  CAS  Google Scholar 

  • Sandhu N, Duus K, Jørgensen CS et al (2007) Peptide binding specificity of the chaperone calreticulin. Biochim Biophys Acta 1774:701–713

    PubMed  CAS  Google Scholar 

  • Schrag JD, Bergeron JJ, Li Y et al (2001) The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 8:633–644

    PubMed  CAS  Google Scholar 

  • Sela-Brown A, Russell J, Koszewski NJ et al (1998) Calreticulin inhibits vitamin D’s action on the PTH gene in vitro and may prevent vitamin D’s effect in vivo in hypocalcemic rats. Mol Endocrinol 12:1193–1200

    PubMed  CAS  Google Scholar 

  • Seliger B, Stoehr R, Handke D et al (2010) Association of HLA class I antigen abnormalities with disease progression and early recurrence in prostate cancer. Cancer Immunol Immunother 59:529–540

    PubMed  CAS  Google Scholar 

  • Shen X, Zhang K, Kaufman RJ (2004) The unfolded protein response—a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28:7992

    Google Scholar 

  • Singh NK, Atreya CD (1994) Nakhasi HL Identification of calreticulin as a rubella virus RNA binding protein. Proc Natl Acad Sci U S A 91:12770–12774

    PubMed  CAS  Google Scholar 

  • Sipione S, Ewen C, Shostak I et al (2005) Impaired cytolytic activity in calreticulin-deficient CTLs. J Immunol 174:3212–3219

    PubMed  CAS  Google Scholar 

  • Smith MJ (1992) Nucleotide sequence of a Drosophila melanogaster gene encoding a calreticulin homologue. DNA Seq J DNA Seq Mapp 3:247–250

    CAS  Google Scholar 

  • Song J, Finnerty CC, Herndon DN et al (2009) Severe burn-induced endoplasmic reticulum stress and hepatic damage in mice. Mol Med 15:316–320

    PubMed  Google Scholar 

  • St-Arnaud R, Prud’homme J, Leung-Hagesteijn C, Dedhar S (1995) Constitutive expression of calreticulin in osteoblasts inhibits mineralization. J Cell Biol 131:1351–1359

    PubMed  CAS  Google Scholar 

  • Steinø A, Jørgensen CS, Laursen I, Houen G (2004) Interaction of C1q with the receptor calreticulin requires a conformational change in C1q. Scand J Immunol 59:485–495

    PubMed  Google Scholar 

  • Stephen K, Kazuhiro F, Dixon B (2004) Molecular cloning and characterization of calreticulin from rainbow trout (Oncorhynchus mykiss). Immunogenetics 55:717–723

    Google Scholar 

  • Stronge VS, Saito Y, Ihara Y, Williams DB (2001) Relationship between calnexin and BiP in suppressing aggregation and promoting refolding of protein and glycoprotein substrates. J Biol Chem 276:39779–39787

    PubMed  CAS  Google Scholar 

  • Szegedi A, Irinyi B, Bessenyei B et al (2001) UVB light and 17-beta-estradiol have different effects on the mRNA expression of Ro/SSA and La/SSB autoantigens in HaCaT cells. Arch Dermatol Res 293:275–282

    PubMed  CAS  Google Scholar 

  • Tarr JM, Winyard PG, Ryan B et al (2010a) Extracellular calreticulin is present in the joints of rheumatoid arthritis patients and inhibits FasL (CD95L) mediated apoptosis of T cells. Arthritis Rheum 62:2919–2929

    PubMed  CAS  Google Scholar 

  • Tarr JM, Young PJ, Morse R et al (2010b) A mechanism of release of calreticulin from cells during apoptosis. J Mol Biol 401:799–812

    PubMed  CAS  Google Scholar 

  • Taylor SC, Ferguson AD, Bergeron JJ et al (2004) The ER protein folding sensor UDP-glucose glycoprotein-glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat Struct Mol Biol 11:128–134

    PubMed  CAS  Google Scholar 

  • Thammavongsa V, Mancino L, Raghavan M (2005) Polypeptide substrate recognition by calnexin requires specific conformations of the calnexin protein. J Biol Chem 280:33497–33505

    PubMed  CAS  Google Scholar 

  • Thomson SP, Williams DB (2005) Delineation of the lectin site of the molecular chaperone calreticulin. Cell Stress Chaperones 10:242–251

    PubMed  CAS  Google Scholar 

  • Tjoelker LW, Seyfried CE, Eddy RL Jr et al (1994) Human, mouse, and rat calnexin cDNA cloning: identification of potential calcium binding motifs and gene localization to human chromosome 5. Biochemistry 33:3229–3236

    PubMed  CAS  Google Scholar 

  • Totary-Jain H, Naveh MT, Riahi Y et al (2005) Calreticulin destabilizes GLUT-1 mRNA in vascular endothelial and smooth muscle cells under high glucose conditions. Circ Res 97:1001–1008

    PubMed  CAS  Google Scholar 

  • Treves S, Zorzato F, Pozzan T (1992) Identification of calreticulin isoforms in the central nervous system. Biochem J 287:579–581

    PubMed  CAS  Google Scholar 

  • Trombetta ES, Parodi AJ (2003) Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19:649–676

    PubMed  CAS  Google Scholar 

  • Tutuncu L, Stein P, Ord TS et al (2004) Calreticulin on the mouse egg surface mediates transmembrane signaling linked to cell cycle resumption. Dev Biol 270:246–260

    PubMed  CAS  Google Scholar 

  • Van Leeuwen JE, Kearse KP (1996a) The related molecular chaperones calnexin and calreticulin differentially associate with nascent T cell antigen receptor proteins within the endoplasmic reticulum. J Biol Chem 271:25345–25349

    PubMed  Google Scholar 

  • van Leeuwen JE, Kearse KP (1996b) Calnexin associates exclusively with individual CD3 δ and T cell antigen receptor (TCR) α proteins containing incompletely trimmed glycans that are not assembled into multisubunit TCR complexes. J Biol Chem 271:9660–9665

    PubMed  Google Scholar 

  • Vassilakos A, Michalak M, Lehrman MA et al (1998) Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 37:3480–3490

    PubMed  CAS  Google Scholar 

  • Wada I, Imai S, Kai M et al (1995) Chaperone function of calreticulin when expressed in the endoplasmic reticulum as the membrane-anchored and soluble forms. J Biol Chem 270:20298–20304

    PubMed  CAS  Google Scholar 

  • Wang Z, Tufts R, Haleem R, Cai X (1997) Genes regulated by androgen in the rat ventral prostate. Proc Natl Acad Sci U S A 94:12999–13004

    PubMed  CAS  Google Scholar 

  • Ware FE, Vassilakos A, Peterson PA et al (1995) The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 270:4697–4704

    PubMed  CAS  Google Scholar 

  • Waser M, Mesaeli N, Spencer C, Michalak M (1997) Regulation of calreticulin gene expression by calcium. J Cell Biol 138:547–557

    PubMed  CAS  Google Scholar 

  • Watanabe D, Yamada K, Nishina Y et al (1994) Molecular cloning of a novel Ca2+-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem 269:7744–7749

    PubMed  CAS  Google Scholar 

  • Watanabe D, Okabe M, Hamajima N et al (1995) Characterization of the testis-specific gene ‘calmegin’ promoter sequence and its activity defined by transgenic mouse experiments. FEBS Lett 368:509–512

    PubMed  CAS  Google Scholar 

  • Wearsch PA, Cresswell P (2008) The quality control of MHC class I peptide loading. Curr Opin Cell Biol 20:624–631

    PubMed  CAS  Google Scholar 

  • Wei H, Kim SJ, Zhang Z et al (2008) ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones. Hum Mol Genet 17:469–477

    PubMed  CAS  Google Scholar 

  • Wheeler DG, Horsford J, Michalak M et al (1995) Calreticulin inhibits vitamin D3 signal transduction. Nucleic Acids Res 23:3268–3274

    PubMed  CAS  Google Scholar 

  • Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119:615–623

    PubMed  CAS  Google Scholar 

  • Winrow CJ, Miyata KS, Marcus SL et al (1995) Calreticulin modulates the in vitro DNA binding but not the in vivo transcriptional activation by peroxisome proliferator-activated receptor/retinoid X receptor heterodimers. Mol Cell Endocrinol 111:175–179

    PubMed  CAS  Google Scholar 

  • Wu M, Massaeli H, Durston M et al (2007) Differential expression and activity of matrix metalloproteinase-2 and -9 in the calreticulin deficient cells. Matrix Biol 26:463–472

    PubMed  CAS  Google Scholar 

  • Xu X, Azakami H, Kato A (2004) P-domain and lectin site are involved in the chaperone function of Saccharomyces cerevisiae calnexin homologue. FEBS Lett 570:155–160

    PubMed  CAS  Google Scholar 

  • Yamashita K, Hara-Kuge S, Ohkura T (1999) Intracellular lectins associated with N-linked glycoprotein traffic. Biochim Biophys Acta 1473:147–160

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Hirata K-i (2005) New function of calreticulin. Calreticulin-dependent mRNA destabilization. Circ Res 97:961–963

    PubMed  CAS  Google Scholar 

  • Zapun A, Darby NJ, Tessier DC et al (1998) Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 273:6009–6012

    PubMed  CAS  Google Scholar 

  • Zhang G, Schmidt O, Asgari S (2006) A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev Comp Immunol 30:756–764

    PubMed  CAS  Google Scholar 

  • Zhang Y, Kozlov G, Pocanschi CL et al (2009) ERp57 does not require interactions with calnexin and calreticulin to promote assembly of class I histocompatibility molecules, and it enhances peptide loading independently of its redox activity. J Biol Chem 284:10160–10173

    PubMed  CAS  Google Scholar 

  • Zhu J (1996) Ultraviolet B irradiation and cytomegalovirus infection synergize to induce the cell surface expression of 52-kD/Ro antigen. Clin Exp Immunol 103:47–53

    PubMed  CAS  Google Scholar 

  • Zhu N, Wang Z (1999) Calreticulin expression is associated with androgen regulation of the sensitivity to calcium ionophore-induced apoptosis in LNCaP prostate cancer cells. Cancer Res 59:1896–1902

    PubMed  CAS  Google Scholar 

  • Zhu N, Pewitt EB, Cai X et al (1998) Calreticulin: an intracellular Ca++-binding protein abundantly expressed and regulated by androgen in prostatic epithelial cells. Endocrinology 139:4337–4351

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Gupta, G.S. (2012). Lectins in Quality Control: Calnexin and Calreticulin. In: Animal Lectins: Form, Function and Clinical Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1065-2_2

Download citation

Publish with us

Policies and ethics