Skip to main content

Reproductive System

Store-operated Ca2+ Entry in Germ Cells: Role in Egg Activation

  • Chapter
  • First Online:
  • 660 Accesses

Abstract

At the time of fertilization the sperm activates the egg and induces embryonic development by triggering an elevation in the egg’s intracellular free Ca2+ concentration. In mammals the initial Ca2+ rise is followed by a series of repetitive Ca2+ transients that lasts for several hours. Although the source of Ca2+ during the signaling process is primarily the egg’s smooth endoplasmic reticulum, the oscillation stops in the absence of extracellular Ca2+ indicating that a Ca2+ influx across the plasma membrane is essential to sustain it. Depletion of the intracellular stores using specific inhibitors generates a Ca2+ entry across the plasma membrane of eggs of various species and a continuous influx of Ca2+ has been linked to the sperm-induced Ca2+ oscillation in the mouse; these data indicate that store-operated Ca2+ entry (SOCE) operates in eggs and may be the mechanism that maintains the long-lasting signal at fertilization. Recent findings suggest that the signaling proteins STIM1 and Orai1 are present in eggs; they are responsible for mediating SOCE, and their functions are essential for proper Ca2+ signaling at fertilization to support normal embryo development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barish ME (1983) A transient calcium-dependent chloride current in the immature Xenopus oocyte. J Physiol 342:309–325

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754

    Article  PubMed  CAS  Google Scholar 

  • Bobanovic LK, Laine M, Petersen CC, Bennett DL, Berridge MJ, Lipp P, Ripley SJ, Bootman MD (1999) Molecular cloning and immunolocalization of a novel vertebrate trp homologue from Xenopus. Biochem J 340:593–599

    Article  PubMed  CAS  Google Scholar 

  • Brereton HM, Harland ML, Auld AM, Barritt GJ (2000) Evidence that the TRP-1protein is unlikely to account for store-operated Ca2+ inflow in Xenopus laevis oocytes. Mol Cell Biochem 214:63–74

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Jones KT, Whittingham DG (1996) Ca2+ release and the development of Ca2+ release mechanisms during oocyte maturation: a prelude to fertilization. Rev Reprod 3:137–143

    Article  Google Scholar 

  • Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux S, Ozil JP (2002) Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev Biol 250:280–291

    Article  PubMed  CAS  Google Scholar 

  • Dumollard R, Carroll J, Dupont G, Sardet C (2002) Calcium wave pacemakers in eggs. J Cell Sci 115:3557–3564

    Article  PubMed  CAS  Google Scholar 

  • Dupont G, Dumollard R (2004) Simulation of calcium waves in ascidian eggs: insights into the origin of the pacemaker sites and the possible nature of the sperm factor. J Cell Sci 117:4313–4323

    Article  PubMed  CAS  Google Scholar 

  • Faure JE, Myles DG, Primakoff P (1999) The frequency of calcium oscillations in mouse eggs at fertilization is modulated by the number of fused sperm. Dev Biol 213:370–377

    Article  PubMed  CAS  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  • Florman HM, Jungnickel MK, Sutton KA (2008) Regulating the acrosome reaction. Int J Dev Biol 52:503–510

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Fernández C, Pozo-Guisado E, Gañán-Parra M, Perianes MJ, Alvarez IS, Martín-Romero FJ (2009) Relocalization of STIM1 in mouse oocytes at fertilization: early involvement of store-operated calcium entry. Reproduction 138:211–221

    Article  PubMed  Google Scholar 

  • Grimaldi M, Maratos M, Verma A (2003) Transient receptor potential channel activation causes a novel form of [Ca2+]i oscillations and is not involved in capacitative Ca2+ entry in glial cells. J Neurosci 23:4737–4745

    PubMed  CAS  Google Scholar 

  • Halet G, Tunwell R, Parkinson SJ, Carroll J (2004) Conventional PKCs regulate the temporal pattern of Ca2+ oscillations at fertilization in mouse eggs. J Cell Biol 164:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, ICRAC and TRPC1 channels. Nat Cell Biol 8:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Igusa Y, Miyazaki S (1983) Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J Physiol 340:611–632

    PubMed  CAS  Google Scholar 

  • Jones KT (2007) Intracellular calcium in the fertilization and development of mammalian eggs. Clin Exp Pharmacol Physiol 34:1084–1089

    Article  PubMed  CAS  Google Scholar 

  • Jones KT, Carroll J, Whittingham DG (1995) Ionomycin, thapsigargin, ryanodine and sperm sensitive calcium release increase during meiotic maturation of mouse oocytes. J Biol Chem 270:6671–6677

    Article  PubMed  CAS  Google Scholar 

  • Jones KT, Cruttwell C, Parrington J, Swann K (1998) A mammalian sperm cytosolic phospholipase C activity generates inositol trisphosphate and causes Ca2+ release in sea urchin egg homogenates. FEBS Lett 437:297–300

    Article  PubMed  CAS  Google Scholar 

  • Kline D, Kline JT (1992) Thapsigargin activates a calcium influx pathway in the unfertilized mouse egg and suppresses repetitive calcium transients in the fertilized egg. J Biol Chem 267:17624–17630

    PubMed  CAS  Google Scholar 

  • Koh S, Lee K, Wang C, Cabot RA, Machaty Z (2009) STIM1 regulates store-operated Ca2+ entry in oocytes. Dev Biol 330:368–376

    Article  PubMed  CAS  Google Scholar 

  • Kubiak JZ (1989) Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Dev Biol 136:537–545

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Wang C, Chaille JM, Machaty Z (2010) STIM1 is required for normal fertilization in the pig. In: Proceedings of the Annual Meeting of the Society for the Study of Reproduction, Milwaukee, Wisconsin, p 38

    Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Lupu-Meiri M, Beit-Or A, Christensen SB, Oron Y (1993) Calcium entry in Xenopus oocytes: effects of inositol trisphosphate, thapsigargin and DMSO. Cell Calcium 14:101–110

    Article  PubMed  CAS  Google Scholar 

  • Machaca K (2003) Ca2+-calmodulin-dependent protein kinase II potentiates store-operated Ca2+ current. J Biol Chem 278:33730–33737

    Article  PubMed  CAS  Google Scholar 

  • Machaca K (2007) Ca2+ signaling differentiation during oocyte maturation. J Cell Physiol 213:331–340

    Article  PubMed  CAS  Google Scholar 

  • Machaca K, Haun S (2002) Induction of maturation-promoting factor during Xenopus oocyte maturation uncouples Ca2+ store depletion from store-operated Ca2+ entry. J Cell Biol 156:75–85

    Article  PubMed  CAS  Google Scholar 

  • Machaty Z, Ramsoondar JJ, Bonk AJ, Bondioli KR, Prather RS (2002) Capacitative calcium entry mechanism in porcine oocytes. Biol Reprod 66:667–674

    Article  PubMed  CAS  Google Scholar 

  • Madgwick S, Levasseur M, Jones KT (2005) Calmodulin-dependent protein kinase II, and not protein kinase C, is sufficient for triggering cell-cycle resumption in mammalian eggs. J Cell Sci 118:3849–3859

    Article  PubMed  CAS  Google Scholar 

  • Martín-Romero FJ, Ortíz-de-Galisteo JR, Lara-Laranjeira J, Domínguez-Arroyo JA, González-Carrera E, Alvarez IS (2008) Store-operated calcium entry in human oocytes and sensitivity to oxidative stress. Biol Reprod 78:307–315

    Article  PubMed  Google Scholar 

  • Matifat F, Fournier F, Lorca T, Capony JP, Brûlé G, Collin T (1997) Involvement of the Ca2+/calmodulin-dependent protein kinase II pathway in the Ca2+-mediated regulation of the capacitative Ca2+ entry in Xenopus oocytes. Biochem J 322:267–272

    PubMed  CAS  Google Scholar 

  • McGuinness OM, Moreton RB, Johnson MH, Berridge MJ (1996) A direct measurement of increased divalent cation influx in fertilised mouse oocytes. Development 122:2199–2206

    PubMed  CAS  Google Scholar 

  • Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S (1991) Repetitive calcium transients in hamster oocytes. Cell Calcium 12:205–216

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Igusa Y (1981) Ca2+-dependent action potential and Ca2+-induced fertilization potential in golden hamster eggs. In: Ohnishi ST, Endo M (eds) The mechanisms of gated calcium transport across biological membranes. Academic, New York, pp 305–311

    Google Scholar 

  • Miyazaki S, Igusa Y (1982) Ca-mediated activation of a K current at fertilization of golden hamster eggs. Proc Natl Acad Sci USA 79:931–935

    Article  PubMed  CAS  Google Scholar 

  • Ozil JP, Markoulaki S, Toth S, Matson S, Banrezes B, Knott JG, Schultz RM, Huneau D, Ducibella T (2005) Egg activation events are regulated by the duration of a sustained [Ca2+]cyt signal in the mouse. Dev Biol 282:39–54

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, Terlau H, Stühmer W (1993) Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature 364:814–818

    Article  PubMed  CAS  Google Scholar 

  • Parker I, Miledi R (1987) Inositol trisphosphate activates a voltage-dependent calcium influx in Xenopus oocytes. Proc R Soc Lond B Biol Sci 231:27–36

    Article  PubMed  CAS  Google Scholar 

  • Parker I, Gundersen CB, Miledi R (1985) A transient inward current elicited by hyperpolarization during serotonin activation in Xenopus oocytes. Proc R Soc Lond B Biol Sci 223:279–292

    Article  PubMed  CAS  Google Scholar 

  • Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  PubMed  CAS  Google Scholar 

  • Petersen CC, Berridge MJ (1994) The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. J Biol Chem 269:32246–32253

    PubMed  CAS  Google Scholar 

  • Petersen CC, Berridge MJ, Borgese MF, Bennett DL (1995) Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence of vertebrate homologues. Biochem J 311:41–44

    PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  • Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai FA (2002) PLCzeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129:3533–3544

    PubMed  CAS  Google Scholar 

  • Schultz RM, Kopf GS (1995) Molecular basis of mammalian egg activation. Curr Top Dev Biol 30:21–62

    Article  PubMed  CAS  Google Scholar 

  • Shiina Y, Kaneda M, Matsuyama K, Tanaka K, Hiroi M, Doi K (1993) Role of the extracellular Ca2+ on the intracellular Ca2+ changes in fertilized and activated mouse oocytes. J Reprod Fertil 97:143–150

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (1999) What drives calcium entry during [Ca2+]i oscillations?—challenging the capacitative model. Cell Calcium 25:237–246

    Article  PubMed  CAS  Google Scholar 

  • Stricker SA (1999) Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 211:157–176

    Article  PubMed  CAS  Google Scholar 

  • Swann K (1990) A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 110:1295–1302

    PubMed  CAS  Google Scholar 

  • Swann K, Yu Y (2008) The dynamics of calcium oscillations that activate mammalian eggs. Int J Dev Biol 52:585–594

    Article  PubMed  CAS  Google Scholar 

  • Tomita Y, Kaneko S, Funayama M, Kondo H, Satoh M, Akaike A (1998) Intracellular Ca2+ store-operated influx of Ca2+ through TRP-R, a rat homolog of TRP, expressed in Xenopus oocytes. Neurosci Lett 248:195–198

    Article  PubMed  CAS  Google Scholar 

  • Turner PR, Jaffe LA, Fein A (1986) Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein. J Cell Biol 102:70–76

    Article  PubMed  CAS  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Lee K, Machaty Z (2010a) Characterization of Orai1 in porcine oocytes. Reprod Domest Anim 45(suppl 3):73

    Google Scholar 

  • Wang C, Lee K, Machaty Z (2010b) The role of Orai1 in store-operated calcium entry in porcine oocytes. In: Proceedings of the Annual Meeting of the Society for the Study of Reproduction, Milwaukee, Wisconsin, p 126

    Google Scholar 

  • Whitaker M (1996) Control of meiotic arrest. Rev Reprod 1:127–135

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Parker I (1993) Inositol trisphosphate-mediated Ca2+ influx into Xenopus oocytes triggers Ca2+ liberation from intracellular stores. J Physiol 468:275–295

    PubMed  CAS  Google Scholar 

  • Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY (1999) Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 98:475–485

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Sun L, Machaca K (2009) Orai1 internalization and STIM1 clustering inhibition modulate SOCE inactivation during meiosis. Proc Natl Acad Sci USA 106:17401–17406

    Article  PubMed  CAS  Google Scholar 

  • Yu F, Sun L, Machaca K (2010) Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. J Cell Biol 191:523–535

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Machaty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Machaty, Z., Wang, C., Lee, K. (2012). Reproductive System. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_29

Download citation

Publish with us

Policies and ethics