Skip to main content

Cardiovascular System

TRPC/Orai-Containing Channels, Na+/Ca2+ Exchanger and Ca2+ Handling in Hypertension

  • Chapter
  • First Online:
  • 652 Accesses

Abstract

Abnormal vascular Ca2+ regulation in various forms of hypertension has been widely demonstrated. Recent evidence indicates that arterial smooth muscle store- and receptor-operated Ca2+ permeable non-selective cation channels (SOCs and ROCs, respectively), along with type 1 Na+/Ca2+ exchanger (NCX1), play key roles in vasoregulation and the modulation of blood pressure (BP). Members of the “canonical” TRPC family of seven proteins are prime molecular candidates for SOCs and ROCs, although the recently discovered proteins Orai1 and STIM1 also contribute to store-dependent mechanisms. TRPC/Orai1-containing channels and NCX1 are co-localized at plasma membrane (PM)-sarcoplasmic reticulum (SR) junctions. This arrangement enables these transport systems to function as integrated units that help to regulate Ca2+ signaling and myogenic tone, and are, thus, critical for the determination of vascular resistance in hypertension. In particular, activation of non-selective TRPC6 cation channels (abundantly expressed in the vasculature) induces not only Ca2+ influx, but also Na+ entry, through the channels. The consequent cell depolarization should open voltage-dependent L-type Ca2+ channels and, along with the entering Na+, promote Ca2+ entry through adjacent NCX1. Augmented Ca2+ entry through SOCs, ROCs and NCX1 also contributes to excessive arterial smooth muscle cell (SMC) proliferation and vascular hypertrophy, a major cause of elevated pulmonary vascular resistance in primary pulmonary hypertension. In view of the profound influence of SOCs, ROCs and NCX1 on vascular SMC functions, it is not surprising that abnormal regulation of these transport systems have been implicated in the pathogenesis of systemic and pulmonary arterial hypertension. This review summarizes emerging ideas about the critical roles of TRPC/Orai-containing channels and NCX1 in up-regulated arterial Ca2+ signaling in rat models of essential hypertension and in human idiopathic pulmonary hypertension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297–328

    Article  PubMed  CAS  Google Scholar 

  • Arnon A, Hamlyn JM, Blaustein MP (2000) Na+ entry via store-operated channels modulates Ca2+ signaling in arterial myocytes. Am J Physiol Cell Physiol 278:C163–C173

    PubMed  CAS  Google Scholar 

  • Bae YM, Kim A, Lee YJ, Lim W, Noh YH, Kim EJ, Kim J, Kim TK, Park S, Kim B, Cho SI, Kim DK, Ho WK (2007) Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J Hypertens 25:809–817

    Article  PubMed  CAS  Google Scholar 

  • Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA (2009) Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger in proliferating human arterial myocytes. Am J Physiol Cell Physiol 297:C1103–C1112

    Article  PubMed  CAS  Google Scholar 

  • Beech DJ, Muraki K, Fremming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559:685–706

    PubMed  CAS  Google Scholar 

  • Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K (2003) Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 93:839–847

    Article  PubMed  CAS  Google Scholar 

  • Bergdahl A, Gomez MF, Wihlborg AK, Erlinge D, Eyjolfson A, Xu SZ, Beech DJ, Dreja K, Hellstrand P (2005) Plasticity of TRPC expression in arterial smooth muscle: correlation with store-operated Ca2+ entry. Am J Physiol Cell Physiol 288:C872–880

    Article  PubMed  CAS  Google Scholar 

  • Berra-Romani R, Mazzocco-Spezzia PMV, Golovina VA (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol 295:C779–790

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP, Hamlyn JM (2010) Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na+ pump, the Na+/Ca2+ exchanger and TRPC proteins. Biochim Biophys Acta 1802:1219–1229

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Zhang J, Chen L, Song H, Raina H, Kinsey SP, Izuka M, Iwamoto T, Kotlikoff MI, Lingrel JB, Philipson KD, Wier WG, Hamlyn JM (2009) The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension 53:291–298

    Article  PubMed  CAS  Google Scholar 

  • Boulanger RB, Lilly MP, Hamlyn JM, Laredo J, Shurtleff D, Gann DS (1993) Ouabain is secreted by the adrenal gland in awake dogs. Am J Physiol 264:E413–419

    PubMed  CAS  Google Scholar 

  • Brayden JE, Earley S, Nelson MT, Reading S (2008) Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol 35:1116–1120

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD (2009) STIMulating store-operated Ca2+ entry. Nat Cell Biol 11:669–677

    Article  PubMed  CAS  Google Scholar 

  • Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol 317:263–279

    PubMed  CAS  Google Scholar 

  • Chen X, Yang D, Ma S, He H, Luo Z, Feng X, Cao T, Ma L, Yan Z, Liu D, Tepel M, Zhu Z (2010) Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels. J Cell Mol Med 14:2483–2494

    Article  PubMed  CAS  Google Scholar 

  • Cowley AW Jr (1992) Long-term control of arterial blood pressure. Physiol Rev 72:231–300

    PubMed  Google Scholar 

  • Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    PubMed  CAS  Google Scholar 

  • Dibb KM, Graham HK, Venetucci LA, Eisner DA, Trafford AW (2007) Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. Cell Calcium 42:503–512

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birmbaumer L (2005) Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 25:6980–6989

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Kalwa H, Fuchs B, Grimminger F, Weissmann N, Gudermann T (2007a) In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium 42:233–244

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Kalwa H, Storch U, Mederos Y, Schnitzler M, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T (2007b) Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455:465–477

    Article  PubMed  CAS  Google Scholar 

  • Dostanic-Larson I, van Huysse JW, Lorenz JN, Lingrel JB (2005) The highly conserved cardiac glycoside binding site of Na, K-ATPase plays a role in blood pressure regulation. Proc Natl Acad Sci USA 102:15845–15850

    Article  PubMed  CAS  Google Scholar 

  • Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929

    Article  PubMed  CAS  Google Scholar 

  • Eder P, Poteser M, Romanin C, Groschner K (2005) Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling. Pflugers Arch 451:99–104

    Article  PubMed  CAS  Google Scholar 

  • Feihl F, Liaudet L, Waeber B, Levy BI (2006) Hypertension: a disease of the microcirculation? Hypertension 48:1012–1017

    Article  PubMed  CAS  Google Scholar 

  • Fellner SK, Arendshorst WJ (2008) Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange. Am J Physiol Renal Physiol 294:F212–219

    Article  PubMed  CAS  Google Scholar 

  • Ferrandi M, Manunta P, Balzan S, Hamlyn JM, Bianchi G, Ferrari P (1997) Ouabain-like factor quantification in mammalian tissues and plasma: comparison of two independent assays. Hypertension 30:886–896

    PubMed  CAS  Google Scholar 

  • Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weissgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol 3:121–127

    Article  PubMed  CAS  Google Scholar 

  • Giachini FR, Chiao CW, Carneiro FS, Lima VV, Carneiro ZN, Dorrance AM, Tostes RC, Webb RC (2009) Increased activation of stromal interaction molecule-1/Orai-1 in aorta from hypertensive rats: a novel insight into vascular dysfunction. Hypertension 53:409–416

    Article  PubMed  CAS  Google Scholar 

  • Golovina VA (1999) Cell proliferation is associated with enhanced capacitative Ca2+ entry in human arterial myocytes. Am J Physiol 277:C343–349

    PubMed  CAS  Google Scholar 

  • Golovina VA (2005) Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564:737–749

    Article  PubMed  CAS  Google Scholar 

  • Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–755

    PubMed  CAS  Google Scholar 

  • Guyton AC, Granger HJ, Coleman TG (1971) Autoregulation of the total systemic circulation and its relation to control of cardiac output and arterial pressure. Circ Res 28(suppl 1):93–97

    PubMed  Google Scholar 

  • Hamlyn JM, Blaustein MP, Bova S, Ducharme DW, Mandel F, Mathews WR, Ludens JH (1991) Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci USA 88:6259–6263

    Article  PubMed  CAS  Google Scholar 

  • Hill MA, Meininger GA, Davis MJ, Laher I (2009) Therapeutic potential of pharmacologically targeting arteriolar myogenic tone. Trends Pharmacol Sci 30:363–374

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  • Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naiton S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res 88:325–332

    PubMed  CAS  Google Scholar 

  • Inoue R, Jensen L, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131

    Article  PubMed  CAS  Google Scholar 

  • Inoue R, Jensen LJ, Jian Z, Shi J, Hai L, Lurie AI, Henriksen FH, Salomonsson M, Morita H, Kawarabayashi Y, Mori M, Mori Y, Ito Y (2009) Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ Res 104:1399–1409

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Kita S, Zhang J, Blaustein MP, Arai Y, Yoshida S, Wakimoto K, Komuro I, Katsuragi T (2004) Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat Med 10:1193–1199

    Article  PubMed  CAS  Google Scholar 

  • Juhaszova M, Blaustein MP (1997) Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc Natl Acad Sci USA 94:1800–1805

    Article  PubMed  CAS  Google Scholar 

  • Juhaszova M, Shimizu H, Borin ML, Yip RK, Santiago EM, Lindermayer GE, Blaustein MP (1996) Localization of the Na+-Ca2+ exchanger in vascular smooth muscle, and in neurons and astrocytes. Ann N Y Acad Sci 779:318–335

    Article  PubMed  CAS  Google Scholar 

  • Kaide J, Ura N, Torii T, Nakagawa M, Takada T, Shimamoto K (1999) Effects of digoxin-specific antibody Fab fragment (Digibind) on blood pressure and renal water–sodium metabolism in 5/6 reduced renal mass hypertensive rats. Am J Hypertens 12:611–619

    Article  PubMed  CAS  Google Scholar 

  • Kaplan NM (2006) Clinical hypertension. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Kashihara T, Nakayama K, Matsuda T, Baba A, Ishikawa T (2009) Role of Na+/Ca2+ exchanger-mediated Ca2+ entry in pressure-induced myogenic constriction in rat posterior cerebral arteries. J Pharmacol Sci 110:218–222

    Article  PubMed  CAS  Google Scholar 

  • Knot HJ, Nelson MT (1998) Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 508(Pt 1):199–209

    PubMed  CAS  Google Scholar 

  • Krep H, Price DA, Soszynski P, Tao QF, Graves SW, Hollenberg NK (1995) Volume sensitive hypertension and the digoxin-like factor. Reversal by a Fab directed against digoxin in DOCA-salt hypertensive rats. Am J Hypertens 8:921–927

    Article  PubMed  CAS  Google Scholar 

  • Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, Mchugh D, Kimgston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98:557–563

    Article  PubMed  CAS  Google Scholar 

  • Kunichika N, Landsberg JW, Yu Y, Kunichika H, Thistlethwaite PA, Rubin LJ, Yuan JX (2004a) Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am J Respir Crit Care Med 170:1101–1107

    Article  PubMed  Google Scholar 

  • Kunichika N, Yu Y, Remillard CV, Platoshyn O, Zhang S, Yuan JX (2004b) Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 287:L962–969

    Article  PubMed  CAS  Google Scholar 

  • Lagaud GJ, Randriamboavonjy V, Roul G, Stoclet JC, Andriantsitohaina R (1999) Mechanism of Ca2+ release and entry during contraction elicited by norepinephrine in rat resistance arteries. Am J Physiol 276:H300–308

    PubMed  CAS  Google Scholar 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    Article  PubMed  CAS  Google Scholar 

  • Lee MY, Song H, Nakai J, Ohkura M, Kotlikoff MI, Kinsey SP, Golovina VA, Blaustein MP (2006) Local subplasma membrane Ca2+ signals detected by a tethered Ca2+ sensor. Proc Natl Acad Sci USA 103:13232–13237

    Article  PubMed  CAS  Google Scholar 

  • Levy MN, Pappano AJ (2007) Cardiovascular physiology, 9th edn. Mosby Elsevier, Philadelphia

    Google Scholar 

  • Li J, Sukumar P, Milligan CJ, Kumar B, Ma ZY, Munsch CM, Jiang LH, Porter KE, Beech DJ (2008) Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. Circ Res 103:e97–104

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci USA 105:2895–2900

    Article  PubMed  CAS  Google Scholar 

  • Lievremont JP, Bird GS, Putney JW Jr (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68:758–762

    PubMed  CAS  Google Scholar 

  • Lin S, Fagan KA, Li KX, Shaul PW, Cooper DM, Rodman DM (2000) Sustained endothelial nitric-oxide synthase activation requires capacitative Ca2+ entry. J Biol Chem 275:17979–17985

    Article  PubMed  CAS  Google Scholar 

  • Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Scholze A, Zhu Z, Kreutz R, Wehland-von-Trebra M, Zidek W, Tepel M (2005) Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. Am J Hypertens 18:1503–1507

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Scholze A, Zhu Z, Krueger K, Thilo F, Burkert A, Streffer K, Holz S, Harteneck C, Zidek W, Tepel M (2006) Transient receptor potential channels in essential hypertension. J Hypertens 24:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Yang D, He H, Chen X, Cao T, Feng X, Ma L, Luo Z, Wang L, Yan Z, Zhu Z, Tepel M (2009) Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53:70–76

    Article  PubMed  CAS  Google Scholar 

  • Lorenz JN, Loreaux EL, Dostanic-Larson I, Lasko V, Schnetzer JR, Paul RJ, Lingrel JB (2008) ACTH-induced hypertension is dependent on the ouabain-binding site of the alpha2-Na+-K+-ATPase subunit. Am J Physiol Heart Circ Physiol 295:H273–280

    Article  PubMed  CAS  Google Scholar 

  • Manunta P, Rogowski AC, Hamilton BP, Hamlyn JM (1994) Ouabain-induced hypertension in the rat: relationships among plasma and tissue ouabain and blood pressure. J Hypertens 12:549–560

    Article  PubMed  CAS  Google Scholar 

  • McDaniel SS, Platoshyn O, Wang J, Yu Y, Sweeney M, Krick S, Rubin LJ, Yuan JX (2001) Capacitative Ca2+ entry in agonist-induced pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 280:L870–880

    PubMed  CAS  Google Scholar 

  • Mederos Y, Schnitzler M, Storch U, Meiberg S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103

    Article  CAS  Google Scholar 

  • Narayanan J, Imig M, Roman RJ, Harder DR (1994) Pressurization of isolated renal arteries increases inositol trisphosphate and diacylglycerol. Am J Physiol 266:H1840–1845

    PubMed  CAS  Google Scholar 

  • Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–18

    PubMed  CAS  Google Scholar 

  • Nilius B, Droodmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium 10:5–15

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  PubMed  CAS  Google Scholar 

  • O’Brien WJ, Lingrel JB, Wallick ET (1994) Ouabain binding kinetics of the rat alpha two and alpha three isoforms of the sodium-potassium adenosine triphosphate. Arch Biochem Biophys 310:32–39

    Article  PubMed  Google Scholar 

  • Payne RA, Webb DJ (2006) Arterial blood pressure and stiffness in hypertension: is arterial structure important? Hypertension 48:366–367

    Article  PubMed  CAS  Google Scholar 

  • Peel SE, Liu B, Hall IP (2008) ORAI and store-operated calciumiInflux in human airway smooth muscle cells. Am J Respir Cell Mol Biol 38:744–749

    Article  PubMed  CAS  Google Scholar 

  • Peppiatt-Wildman CM, Albert AP, Saleh SN, Large WA (2007) Endothelin-1 activates a Ca2+-permeable cation channel with TRPC3 and TRPC7 properties in rabbit coronary artery myocytes. J Physiol 580:755–764

    Article  PubMed  CAS  Google Scholar 

  • Poburko D, Liao CH, Lemos VS, Lin E, Maruyama Y, Cole WC, van Breemen C (2007) Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ Res 101:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 23:2425–2437

    Article  PubMed  CAS  Google Scholar 

  • Potocnik SJ, Hill MA (2001) Pharmacological evidence for capacitative Ca2+ entry in cannulated and pressurized skeletal muscle arterioles. Br J Pharmacol 134:247–256

    Article  PubMed  CAS  Google Scholar 

  • Pulina MV, Zulian A, Berra-Romani R, Beskina O, Mazzocco-Spezzia A, Baryshnikov SG, Papparella I, Hamlyn JM, Blaustein MP, Golovina VA (2010) Up-regulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain hypertensive rats. Am J Physiol Heart Circ Physiol 298:H263–H274

    Article  PubMed  CAS  Google Scholar 

  • Raiesdana A, Loscalzo J (2006) Pulmonary arterial hypertension. Ann Med 38:95–110

    Article  PubMed  CAS  Google Scholar 

  • Reading SA, Earley S, Waldron BJ, Welsh DG, Brayden JE (2005) TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. Am J Physiol Heart Circ Physiol 288:H2055–H2061

    Article  PubMed  CAS  Google Scholar 

  • Riccio A, Mattei C, Kelsell RE, Medhurst AD, Calver AR, Randall AD, Davis JB, Benham CD, Pangalos MN (2002) Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J Biol Chem 277:12302–12309

    Article  PubMed  CAS  Google Scholar 

  • Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner R (2004) Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J Biol Chem 279:13696–13704

    Article  PubMed  CAS  Google Scholar 

  • Rossi G, Manunta P, Hamlyn JM, Pavan E, De Toni R, Semplicini A, Pessina AC (1995) Immunoreactive endogenous ouabain in primary aldosteronism and essential hypertension: relationship with plasma renin, aldosterone and blood pressure levels. J Hypertens 13:1181–1191

    Article  PubMed  CAS  Google Scholar 

  • Sanders RM (2001) Invited review: mechanisms of calcium handling in smooth muscles. J Appl Physiol 91:1438–1449

    PubMed  CAS  Google Scholar 

  • Semenza GL (2005) Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest 128:592S–594S

    Article  PubMed  CAS  Google Scholar 

  • Serban DN, Nilius B, Vanhoutte PM (2010) The endothelial saga: the past, the present, the future. Pflugers Arch 459:787–792

    Article  PubMed  CAS  Google Scholar 

  • Shelly DA, He S, Moseley A, Weber C, Stegemeyer M, Lynch RM, Lingrel J, Paul RJ (2004) Na+ pump alpha 2-isoform specifically couples to contractility in vascular smooth muscle: evidence from gene-targeted neonatal mice. Am J Physiol Cell Physiol 286:C813–820

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AV, Franzini-Armstrong C (1985) New views of smooth muscle structure using freezing, deep-etching and rotary shadowing. Experientia 41:841–856

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi S, Furukawa K, Sasamura S, Ohizumi Y, Seya K, Motomura S (2004) Gene expression and functional activity of sodium/calcium exchanger enhanced in vascular smooth muscle cells of spontaneously hypertensive rats. J Cardiovasc Pharmacol 43:629–637

    Article  PubMed  CAS  Google Scholar 

  • Thompson LP, Bruner CA, Lamb FS, King CM, Webb RC (1987) Calcium influx and vascular reactivity in systemic hypertension. Am J Cardiol 59:29A–34A

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Freichel M, Vogel SM, Paria BC, Menta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4(−/−) mice interferes with increase in lung microvascular permeability. Circ Res 91:70–76

    Article  PubMed  CAS  Google Scholar 

  • van Breemen C, Chen Q, Langer I (1995) Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol Sci 16:98–105

    Article  PubMed  Google Scholar 

  • Vazquez G, Wedel BJ, Trebak M, St John Bird G, Putney JW Jr (2003) Expression level of the canonical transient receptor potential 3 (TRPC3) channel determines its mechanism of activation. J Biol Chem 278:21649–21654

    Article  PubMed  CAS  Google Scholar 

  • Walker RL, Hume JR, Horowitz B (2001) Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol 280:C1184–1192

    PubMed  CAS  Google Scholar 

  • Wang X, Pluznick JL, Wei P, Padanilam BJ, Sansom SC (2004a) TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. Am J Physiol Cell Physiol 287:C357–364

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Shimoda LA, Sylvester JT (2004b) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848–858

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537

    Article  PubMed  CAS  Google Scholar 

  • Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederos Y, Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 103:19093–19098

    Article  PubMed  CAS  Google Scholar 

  • Welsh DG, Morelli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250

    Article  PubMed  CAS  Google Scholar 

  • Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  PubMed  CAS  Google Scholar 

  • Xi Q, Adebiyi A, Zhao G, Chapman RE, Waters CM, Hassid A, Jaggar JH (2008) IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release. Circ Res 102:1118–1126

    Article  PubMed  CAS  Google Scholar 

  • Xu SZ, Beech DJ (2001) TRPC1 is a membrane-spanning subunit of store-operated Ca2+ channels in native vascular smooth muscle cells. Circ Res 88:84–87

    Article  PubMed  CAS  Google Scholar 

  • Xu SZ, Boulay G, Flemming R, Beech DJ (2006) E3-targeted anti-TRPC5 antibody inhibits store-operated calcium entry in freshly isolated pial arterioles. Am J Physiol Heart Circ Physiol 291:H2653–2659

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Kappler CS, Mani SK, Shepherd NR, Renaud L, Snider P, Conway SJ, Menick DR (2009) Chronic administration of KB-R7943 induces up-regulation of cardiac NCX1. J Biol Chem 284:27265–27272

    Article  PubMed  CAS  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  PubMed  CAS  Google Scholar 

  • Yildirim E, Kawasaki BT, Birnbaumer L (2005) Molecular cloning of TRPC3a, an N-terminally extended, store-operated variant of the human C3 transient receptor potential channel. Proc Natl Acad Sci USA 102:3307–3311

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Tothman A, Yuan JX (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284:C316–330

    PubMed  CAS  Google Scholar 

  • Yu Y, Famtozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101:13861–13866

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Lansberg JW, Wang JY, Thistlethwaite PA, Channick RN, Robbins IM, Loyd JE, Ghofrani HA, Grimminger F, Schermuly RT, Cahalan MD, Rubin LJ, Yuan JX (2009) A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119:2313–2322

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Kim MS, Zeng W, Shin DM, Huang G, Worley PF, Muallem S (2009) TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3:221–225

    Article  CAS  Google Scholar 

  • Zhang J, Wier WG, Blaustein MP (2002) Mg2+ blocks myogenic tone but not K+-induced constriction: role for SOCs in small arteries. Am J Physiol Heart Circ Physiol 283:H2692–H2705

    PubMed  CAS  Google Scholar 

  • Zhang J, Lee MY, Cavalli M, Chen L, Berra-Romani R, Balke CW, Bianchi G, Ferrari P, Hamlyn JM, Iwamoto T, Lingrel JB, Matteson DR, Wier WG, Blaustein MP (2005a) Sodium pump alpha2 subunits control myogenic tone and blood pressure in mice. J Physiol 569:243–256

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Yuan JX, Barrett KE, Dong H (2005b) Role of Na+/Ca2+ exchange in regulating cytosolic Ca2+ in cultured human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 288:C245–C252

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005c) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Patel HH, Murray F, Remillard CV, Schach C, Thistlethwaite PA, Insel PA, Yuan JX (2007a) Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 292:L1202–1210

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Dong H, Rubin LJ, Yuan JX (2007b) Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C2297–C2305

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Hamlyn JM, Karashima E, Raina H, Mauban JR, Izuka M, Berra-Romani R, Zulian A, Wier WG, Blaustein MP (2009) Low-dose ouabain constricts small arteries from ouabain-hypertensive rats: implications for sustained elevation of vascular resistance. Am J Physiol Heart Circ Physiol 297:H1140–1150

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Ren C, Chen L, Navedo MF, Antos LK, Kinsey SP, Iwamoto T, Philipson KD, Kotlikoff MI, Santana LF, Wier WG, Matteson DR, Blaustein MP (2010) Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol 298:H1472–H1483

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Ratz PH, Hill MA (2000) Temporal aspects of Ca2+ and myosin phosphorylation during myogenic and norepinephrine-induced arteriolar constriction. J Vasc Res 37:556–567

    Article  PubMed  CAS  Google Scholar 

  • Zulian A, Baryshnikov SG, Linde CI, Hamlyn JM, Ferrari P, Golovina VA (2010) Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats. Am J Physiol Heart Circ Physiol 299:H624–H633

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera A. Golovina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Golovina, V.A. (2012). Cardiovascular System. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_21

Download citation

Publish with us

Policies and ethics