Skip to main content

Cardiovascular System

STIM1/Orai1-Mediated Store-operated Ca2+ Entry in Cardiovascular Disease

  • Chapter
  • First Online:
Store-operated Ca2+ entry (SOCE) pathways

Abstract

The concept of store operated Ca2+ entry (SOCE), or capacitative Ca2+ entry (CCE) as it was originally termed by Jim Putney, stemmed from a series of insightful experiments he conducted in the late 1970s and formalized in a 1986 hypothesis paper. SOCE refers to a mode of regulated Ca2+ entry whereby the discharge of intracellular Ca2+ stores couples and activates a Ca2+ entry route across the plasma membrane. The last 5 years brought about a great understanding of the mode of activation and regulation of SOCE through the discovery of STIM1 and Orai1 as essential components of this Ca2+ entry pathway. STIM1 senses Ca2+ stores discharge in the endoplasmic reticulum through a luminal low affinity EF-hand domain and directly communicates this information, via protein-protein interaction, to the plasma membrane SOC channel constituted by Orai1,causing its activation. More recently, evidence suggests that STIM1 and Orai1 proteins contribute to a number of cardiovascular diseases such as cardiac hypertrophy, thrombosis, hypertension, atherosclerosis, restenosis and vascular smooth muscle proliferation and migration, an important determinant in the development and progression of several vascular occlusive diseases such as hypertension, restenosis and atherosclerosis. In this review, we will present a retrospective analysis of the current literature suggesting involvement of STIM1 and Orai1 in cardiovascular diseases and the potential therapeutic exploitation of these molecules for treatment of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulos N, Raggi P (2009) Calcification in atherosclerosis. Nat Rev Cardiol 6:681–688

    Article  PubMed  CAS  Google Scholar 

  • Aubart FC, Sassi Y, Coulombe A, Mougenot N, Vrignaud C, Leprince P, Lechat P, Lompre AM, Hulot JS (2009) RNA interference targeting STIM1 suppresses vascular smooth muscle cell proliferation and neointima formation in the rat. Mol Ther 17:455–462

    Article  PubMed  CAS  Google Scholar 

  • Authi KS (2009) Orai1: a channel to safer antithrombotic therapy. Blood 113:1872–1873

    Article  PubMed  CAS  Google Scholar 

  • Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, Numaga T, Mori Y, Iino M, Hikida M, Kurosaki T (2006) Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA 103:16704–16709

    Article  PubMed  CAS  Google Scholar 

  • Baryshnikov SG, Pulina MV, Zulian A, Linde CI, Golovina VA (2009) Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger and plasma membrane Ca2+ pump in proliferating human arterial myocytes. Am J Physiol Cell Physiol 297:C1103–C1112

    Article  PubMed  CAS  Google Scholar 

  • Bergmeier W, Oh-Hora M, McCarl CA, Roden RC, Bray PF, Feske S (2009) R93W mutation in Orai1 causes impaired calcium influx in platelets. Blood 113:675–678

    Article  PubMed  CAS  Google Scholar 

  • Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B (2009) STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2(93):ra67

    Article  PubMed  Google Scholar 

  • Berra-Romani R, Mazzocco-Spezzia A, Pulina MV, Golovina VA (2008) Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am J Physiol Cell Physiol 295:C779–C790

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (2003) Cardiac calcium signalling. Biochem Soc Trans 31:930–933

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  • Bisaillon JM, Motiani RK, Gonzalez-Cobos JC, Potier M, Halligan KE, Alzawahra WF, Barroso M, Singer HA, Jourd’heuil D, Trebak M (2010) Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. Am J Physiol Cell Physiol 298:C993–C1005

    Article  PubMed  CAS  Google Scholar 

  • Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Braun A, Varga-Szabo D, Kleinschnitz C, Pleines I, Bender M, Austinat M, Bosl M, Stoll G, Nieswandt B (2009) Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 113:2056–2063

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11:669–677

    Article  PubMed  CAS  Google Scholar 

  • Carrasco S, Meyer T (2010) Cracking CRAC. Nat Cell Biol 2010:416–418

    Article  CAS  Google Scholar 

  • Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  PubMed  CAS  Google Scholar 

  • Cortes SF, Lemos VS, Stoclet JC (1997) Alterations in calcium stores in aortic myocytes from spontaneously hypertensive rats. Hypertension 29:1322–1328

    PubMed  CAS  Google Scholar 

  • de Groot D, Pasterkamp G, Hoefer IE (2009) Cardiovascular risk factors and collateral artery formation. Eur J Clin Invest 39:1036–1047

    Article  PubMed  CAS  Google Scholar 

  • De Windt LJ, Lim HW, Bueno OF, Liang Q, Delling U, Braz JC, Glascock BJ, Kimball TF, del Monte F, Hajjar RJ, Molkentin JD (2001) Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 98:3322–3327

    Article  PubMed  Google Scholar 

  • DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr (2007) Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 282:17548–17556

    Article  PubMed  CAS  Google Scholar 

  • Devynck MA (2002) Gender and vascular smooth muscle cells: a direct influence on Ca2+ handling? J Hypertens 20:2139–2140

    Article  PubMed  CAS  Google Scholar 

  • Edwards JM, Neeb ZP, Alloosh MA, Long X, Bratz IN, Peller CR, Byrd JP, Kumar S, Obukhov AG, Sturek M (2009) Exercise training decreases store-operated Ca2+ entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovasc Res 85:631–640

    Article  PubMed  CAS  Google Scholar 

  • Elezi S, Kastrati A, Neumann FJ, Hadamitzky M, Dirschinger J, Schomig A (1998) Vessel size and long-term outcome after coronary stent placement. Circulation 98:1875–1880

    PubMed  CAS  Google Scholar 

  • Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231:189–209

    Article  PubMed  CAS  Google Scholar 

  • Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    Article  PubMed  CAS  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  • Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M et al (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease.Stent restenosis study investigators. N Engl J Med 331:496–501

    Article  PubMed  CAS  Google Scholar 

  • Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  PubMed  CAS  Google Scholar 

  • Galan C, Zbidi H, Bartegi A, Salido GM, Rosado JA (2009) STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets. Arch Biochem Biophys 490:137–144

    Article  PubMed  CAS  Google Scholar 

  • Giachini FR, Chiao CW, Carneiro FS, Lima VV, Carneiro ZN, Dorrance AM, Tostes RC, Webb RC (2009) Increased activation of stromal interaction molecule-1/Orai-1 in aorta from hypertensive rats: a novel insight into vascular dysfunction. Hypertension 53:409–416

    Article  PubMed  CAS  Google Scholar 

  • Giachini FR, Webb RC, Tostes RC (2010) STIM and Orai proteins: players in sexual differences in hypertension-associated vascular dysfunction? Clin Sci (Lond) 118:391–396

    Article  CAS  Google Scholar 

  • Gilio K, van Kruchten R, Braun A, Berna-Erro A, Feijge MA, Stegner D, van der Meijden PE, Kuijpers MJ, Varga-Szabo D, Heemskerk JW, Nieswandt B (2010) Roles of platelet STIM1 and Orai1 in glycoprotein VI- and thrombin-dependent procoagulant activity and thrombus formation. J Biol Chem 285:23629–23638

    Article  PubMed  CAS  Google Scholar 

  • Golovina VA (1999) Cell proliferation is associated with enhanced capacitative Ca(2+) entry in human arterial myocytes. Am J Physiol 277:C343–C349

    PubMed  CAS  Google Scholar 

  • Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca(2+) entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–H755

    PubMed  CAS  Google Scholar 

  • Grosse J, Braun A, Varga-Szabo D, Beyersdorf N, Schneider B, Zeitlmann L, Hanke P, Schropp P, Mühlstedt S, Zorn C, Huber M, Schmittwolf C, Jagla W, Yu P, Kerkau T, Schulze H, Nehls M, Nieswandt B (2007) An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J Clin Invest 117:3540–3550

    Article  PubMed  CAS  Google Scholar 

  • Guo RW, Wang H, Gao P, Li MQ, Zeng CY, Yu Y, Chen JF, Song MB, Shi YK, Huang L (2009) An essential role for stromal interaction molecule 1 in neointima formation following arterial injury. Cardiovasc Res 81:660–668

    Article  PubMed  CAS  Google Scholar 

  • Gwack Y, Sharma S, Nardone J, Tanasa B, Iuga A, Srikanth S, Okamura H, Bolton D, Feske S, Hogan PG, Rao A (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441:646–650

    Article  PubMed  CAS  Google Scholar 

  • Gwack Y, Srikanth S, Oh-Hora M, Hogan PG, Lamperti ED, Yamashita M, Gelinas C, Neems DS, Sasaki Y, Feske S, Prakriya M, Rajewsky K, Rao A (2008) Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol Cell Biol 28:5209–5222

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn I, Vogtle T, Nieswandt B (2010) Arterial thrombus formation. Novel mechanisms and targets Novel mechanisms and targets. Hamostaseologie 30:127–135

    PubMed  CAS  Google Scholar 

  • Hajjar I, Kotchen JM, Kotchen TA (2006) Hypertension: trends in prevalence, incidence, and control. Annu Rev Public Health 27:465–490

    Article  PubMed  Google Scholar 

  • Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2:E65–E67

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  PubMed  CAS  Google Scholar 

  • House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456:769–785

    Article  PubMed  CAS  Google Scholar 

  • Kannel WB (1974) Role of blood pressure in cardiovascular morbidity and mortality. Prog Cardiovasc Dis 17:5–24

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292:C59–C69

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Lange I, Feske S (2009) A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385:49–54

    Article  PubMed  CAS  Google Scholar 

  • Kirchhefer U, Schmitz W, Scholz H, Neumann J (1999) Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res 42:254–261

    Article  PubMed  CAS  Google Scholar 

  • Kitazono T, Ago T, Kamouchi M, Santa N, Ooboshi H, Fujishima M, Ibayashi S (2002) Increased activity of calcium channels and Rho-associated kinase in the basilar artery during chronic hypertension in vivo. J Hypertens 20:879–884

    Article  PubMed  CAS  Google Scholar 

  • Leung FP, Yung LM, Yao X, Laher I, Huang Y (2008) Store-operated calcium entry in vascular smooth muscle. Br J Pharmacol 153:846–857

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 104:9301–9306

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Zhang C, Dronadula N, Li Q, Rao GN (2005) Blockade of nuclear factor of activated T cells activation signaling suppresses balloon injury-induced neointima formation in a rat carotid artery model. J Biol Chem 280:14700–14708

    Article  PubMed  CAS  Google Scholar 

  • Loukotova J, Kunes J, Zicha J (2002) Gender-dependent difference in cell calcium handling in VSMC isolated from SHR: the effect of angiotensin II. J Hypertens 20:2213–2219

    Article  PubMed  CAS  Google Scholar 

  • Luik RM, Wang B, Prakriya M, Wu MM, Lewis RS (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–542

    Article  PubMed  CAS  Google Scholar 

  • Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    Article  PubMed  CAS  Google Scholar 

  • Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, Dziadek M, Smith PJ (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481:147–155

    Article  PubMed  CAS  Google Scholar 

  • Mazzucato M, Pradella P, Cozzi MR, De Marco L, Ruggeri ZM (2002) Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 100:2793–2800

    Article  PubMed  CAS  Google Scholar 

  • McCarl CA, Picard C, Khalil S, Kawasaki T, Röther J, Papolos A, Kutok J, Hivroz C, Ledeist F, Plogmann K, Ehl S, Notheis G, Albert MH, Belohradsky BH, Kirschner J, Rao A, Fischer A, Feske S (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124(1311–1318):e1317

    Google Scholar 

  • Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW Jr (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 281:24979–24990

    Article  PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    PubMed  CAS  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2008) Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J Physiol 586:419–425

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  • Motiani RK, Abdullaev IF, Trebak M (2010) A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J Biol Chem 285:19173–19183

    Article  PubMed  CAS  Google Scholar 

  • Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J Biol Chem 284:8421–8426

    Article  PubMed  CAS  Google Scholar 

  • Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283:8014–8022

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Hoshide S, Kario K (2010) Hypertension and dementia. Am J Hypertens 23:116–124

    Article  PubMed  Google Scholar 

  • Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M (2008) STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 586:5383–5401

    Article  PubMed  CAS  Google Scholar 

  • Ohba T, Watanabe H, Murakami M, Sato T, Ono K, Ito H (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem Biophys Res Commun 389:172–176

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Hori M, Ozaki H (2005) Microtubule disruption suppresses allergic response through the inhibition of calcium influx in the mast cell degranulation pathway. J Immunol 174:4584–4589

    PubMed  CAS  Google Scholar 

  • Oritani K, Kincade PW (1996) Identification of stromal cell products that interact with pre-B cells. J Cell Biol 134:771–782

    Article  PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB (2006) Cell biology: cracking the calcium entry code. Nature 441:163–165

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 9:399–410

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  PubMed  CAS  Google Scholar 

  • Parker NJ, Begley CG, Smith PJ, Fox RM (1996) Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37:253–256

    Article  PubMed  CAS  Google Scholar 

  • Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406

    Article  PubMed  CAS  Google Scholar 

  • Peinelt C, Vig M, Koomoa DL, Beck A, Nadler MJ, Koblan-Huberson M, Lis A, Fleig A, Penner R, Kinet JP (2006) Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat Cell Biol 8:771–773

    Article  PubMed  CAS  Google Scholar 

  • Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116–120

    Article  PubMed  CAS  Google Scholar 

  • Picard C, McCarl CA, Papolos A, Khalil S, Lüthy K, Hivroz C, LeDeist F, Rieux-Laucat F, Rechavi G, Rao A, Fischer A, Feske S (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360:1971–1980

    Article  PubMed  CAS  Google Scholar 

  • Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M (2009) Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J 23:2425–2437

    Article  PubMed  CAS  Google Scholar 

  • Potier M, Trebak M (2008) New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch 457:405–415

    Article  PubMed  CAS  Google Scholar 

  • Putney Jr JW (2011) The physiological function of store-operated calcium entry. Neurochem Res [in press]

    Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11:611–624

    Article  PubMed  CAS  Google Scholar 

  • Raines EW (2004) PDGF and cardiovascular disease. Cytokine Growth Factor Rev 15:237–254

    Article  PubMed  CAS  Google Scholar 

  • Ramirez MT, Zhao XL, Schulman H, Brown JH (1997) The nuclear deltaB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272:31203–31208

    Article  PubMed  CAS  Google Scholar 

  • Rink TJ, Sage SO (1990) Calcium signaling in human platelets. Annu Rev Physiol 52:431–449

    Article  PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  • Sabbioni S, Barbanti-Brodano G, Croce CM, Negrini M (1997) GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res 57:4493–4497

    PubMed  CAS  Google Scholar 

  • Safar ME, Smulyan H (2004) Hypertension in women. Am J Hypertens 17:82–87

    Article  PubMed  Google Scholar 

  • Schaff UY, Dixit N, Procyk E, Yamayoshi I, Tse T, Simon SI (2010) Orai1 regulates intracellular calcium, arrest, and shape polarization during neutrophil recruitment in shear flow. Blood 115:657–666

    Article  PubMed  Google Scholar 

  • Schuhmann MK, Stegner D, Berna-Erro A, Bittner S, Braun A, Kleinschnitz C, Stoll G, Wiendl H, Meuth SG, Nieswandt B (2010) Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunol 184:1536–1542

    Article  PubMed  CAS  Google Scholar 

  • Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P et al (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent study group. N Engl J Med 331:489–495

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (2009) Arachidonic acid, ARC channels, and Orai proteins. Cell Calcium 45:602–610

    Article  PubMed  CAS  Google Scholar 

  • Smyth JT, DeHaven WI, Bird GS, Putney JW Jr (2007) Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J Cell Sci 120:3762–3771

    Article  PubMed  CAS  Google Scholar 

  • Soboloff J, Spassova MA, Tang XD, Hewavitharana T, Xu W, Gill DL (2006) Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem 281:20661–20665

    Article  PubMed  CAS  Google Scholar 

  • Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y (2010) A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12:436–446

    Article  PubMed  CAS  Google Scholar 

  • Stathopulos PB, Li GY, Plevin MJ, Ames JB, Ikura M (2006) Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J Biol Chem 281:35855–35862

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Watanabe H, Murakami M, Ono K, Munehisa Y, Koyama T, Nobori K, Iijima T, Ito H (2007) Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochem Biophys Res Commun 361:934–940

    Article  PubMed  CAS  Google Scholar 

  • Takemura H, Hughes AR, Thastrup O, Putney JW Jr (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264:12266–12271

    PubMed  CAS  Google Scholar 

  • Takuwa N, Zhou W, Kumada M, Takuwa Y (1993) Ca(2+)-dependent stimulation of retinoblastoma gene product phosphorylation and p34cdc2 kinase activation in serum-stimulated human fibroblasts. J Biol Chem 268:138–145

    PubMed  CAS  Google Scholar 

  • Ter Keurs HE, Boyden PA (2007) Calcium and arrhythmogenesis. Physiol Rev 87:457–506

    Article  PubMed  CAS  Google Scholar 

  • Trebak M, St J, Bird G, McKay RR, Birnbaumer L, Putney JW Jr (2003a) Signaling mechanism for receptor-activated canonical transient receptor potential 3 (TRPC3) channels. J Biol Chem 278:16244–16252

    Article  PubMed  CAS  Google Scholar 

  • Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003b) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33:451–461

    Article  PubMed  CAS  Google Scholar 

  • Van Assche T, Fransen P, Guns PJ, Herman AG, Bult H (2007) Altered Ca2+ handling of smooth muscle cells in aorta of apolipoprotein E-deficient mice before development of atherosclerotic lesions. Cell Calcium 41:295–302

    Article  PubMed  CAS  Google Scholar 

  • Varga-Szabo D, Authi KS, Braun A, Bender M, Ambily A, Hassock SR, Gudermann T, Dietrich A, Nieswandt B (2008a) Store-operated Ca(2+) entry in platelets occurs independently of transient receptor potential (TRP) C1. Pflugers Arch 457:377–387

    Article  PubMed  CAS  Google Scholar 

  • Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Renne T, Stoll G, Nieswandt B (2008b) The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 205:1583–1591

    Article  PubMed  CAS  Google Scholar 

  • Varga-Szabo D, Braun A, Nieswandt B (2009) Calcium signaling in platelets. J Thromb Haemost 7:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Venkiteswaran G, Hasan G (2009) Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. Proc Natl Acad Sci USA 106:10326–10331

    Article  PubMed  CAS  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  • Voelkers M, Salz M, Herzog N, Frank D, Dolatabadi N, Frey N, Gude N, Friedrich O, Koch WJ, Katus HA, Sussman MA, Most P (2010) Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J Mol Cell Cardiol 48:1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Wehrens XH, Marks AR (2004) Novel therapeutic approaches for heart failure by normalizing calcium cycling. Nat Rev Drug Discov 3:565–573

    Article  PubMed  CAS  Google Scholar 

  • Wellman GC, Cartin L, Eckman DM, Stevenson AS, Saundry CM, Lederer WJ, Nelson MT (2001) Membrane depolarization, elevated Ca(2+) entry, and gene expression in cerebral arteries of hypertensive rats. Am J Physiol Heart Circ Physiol 281:H2559–H2567

    PubMed  CAS  Google Scholar 

  • Welt FG, Edelman ER, Simon DI, Rogers C (2000) Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries. Arterioscler Thromb Vasc Biol 20:2553–2558

    Article  PubMed  CAS  Google Scholar 

  • Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  PubMed  CAS  Google Scholar 

  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443:226–229

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Sliedregt-Bol K, Overkleeft H, van der Marel GA, van Berkel TJ, Biessen EA (2006) Therapeutic potential of a synthetic peptide inhibitor of nuclear factor of activated T cells as antirestenotic agent. Arterioscler Thromb Vasc Biol 26:1531–1537

    Article  PubMed  CAS  Google Scholar 

  • Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11:337–343

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Meraner P, Kwon HT, Machnes D, Oh-hora M, Zimmer J, Huang Y, Stura A, Rao A, Hogan PG (2010) STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat Struct Mol Biol 17:112–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Trebak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Motiani, R.K., Trebak, M. (2012). Cardiovascular System. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_20

Download citation

Publish with us

Policies and ethics