Skip to main content

Tissue Specificity

SOCE: Implications for Ca2+ Handling in Endothelial Cells

  • Chapter
  • First Online:
  • 667 Accesses

Abstract

This review discusses the mechanisms of intracellular Ca2+ regulation in vascular endothelial cells and the role of store-operated Ca2+ entry for endothelium-dependent smooth muscle relaxation and nitric oxide signaling, endothelial oxidative stress response, and excitation-transcription coupling in the vascular endothelium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42:213–223

    Article  PubMed  CAS  Google Scholar 

  • Antigny F, Jousset H, Konig S, Frieden M (2010) Thapsigargin activates Ca(2+) entry both by store-dependent, STIM1/Orai1-mediated, and store-independent, TRPC3/PLC/PKC-mediated pathways in human endothelial cells. Cell Calcium 49(2):115–27

    Article  PubMed  Google Scholar 

  • Aromolaran AA, Blatter LA (2005) Modulation of intracellular Ca2+ release and capacitative Ca2+ entry by CaMKII inhibitors in bovine vascular endothelial cells. Am J Physiol Cell Physiol 289:C1426–1436

    Article  PubMed  CAS  Google Scholar 

  • Aromolaran AS, Zima AV, Blatter LA (2007) Role of glycolytically generated ATP for CaMKII-mediated regulation of intracellular Ca2+ signaling in bovine vascular endothelial cells. Am J Physiol Cell Physiol 293:C106–118

    Article  PubMed  CAS  Google Scholar 

  • Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42:543–549

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1995) Capacitative calcium entry. Biochem J 312(Pt 1):1–11

    PubMed  CAS  Google Scholar 

  • Blatter LA, Taha Z, Mesaros S, Shacklock PS, Wier WG, Malinski T (1995) Simultaneous measurements of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ Res 76:922–924

    PubMed  CAS  Google Scholar 

  • Bolotina VM, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Biochem Sci 30:378–387

    Article  PubMed  CAS  Google Scholar 

  • Boss V, Wang X, Koppelman LF, Xu K, Murphy TJ (1998) Histamine induces nuclear factor of activated T cell-mediated transcription and cyclosporin A-sensitive interleukin-8 mRNA expression in human umbilical vein endothelial cells. Mol Pharmacol 54:264–272

    PubMed  CAS  Google Scholar 

  • Cannell MB, Sage SO (1989) Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J Physiol 419:555–568

    PubMed  CAS  Google Scholar 

  • Carrier GO, Fuchs LC, Winecoff AP, Giulumian AD, White RE (1997) Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca2+-activated K+ channels. Am J Physiol 273:H76–84

    PubMed  CAS  Google Scholar 

  • Chen J, Wang Y, Nakajima T, Iwasawa K, Hikiji H, Sunamoto M, Choi DK, Yoshida Y, Sakaki Y, Toyo-Oka T (2000) Autocrine action and its underlying mechanism of nitric oxide on intracellular Ca2+ homeostasis in vascular endothelial cells. J Biol Chem 275:28739–28749

    Article  PubMed  CAS  Google Scholar 

  • Cioffi DL (2011) Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal 15:1567–1582

    Google Scholar 

  • Clapham DE (1995) Calcium signaling. Cell 80:259–268

    Article  PubMed  CAS  Google Scholar 

  • Dedkova EN, Blatter LA (2002) Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 539:77–91

    Article  PubMed  CAS  Google Scholar 

  • Dedkova EN, Blatter LA (2005) Modulation of mitochondrial Ca2+ by nitric oxide in cultured bovine vascular endothelial cells. Am J Physiol Cell Physiol 289:C836–845

    Article  PubMed  CAS  Google Scholar 

  • Dedkova EN, Ji X, Lipsius SL, Blatter LA (2004) Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am J Physiol Cell Physiol 286:C406–415

    Article  PubMed  CAS  Google Scholar 

  • Doan TN, Gentry DL, Taylor AA, Elliott SJ (1994) Hydrogen peroxide activates agonist-sensitive Ca(2+)-flux pathways in canine venous endothelial cells. Biochem J 297(Pt 1):209–215

    PubMed  CAS  Google Scholar 

  • Dolor RJ, Hurwitz LM, Mirza Z, Strauss HC, Whorton AR (1992) Regulation of extracellular calcium entry in endothelial cells: role of intracellular calcium pool. Am J Physiol 262:C171–181

    PubMed  CAS  Google Scholar 

  • Donnadieu E, Bourguignon LY (1996) Ca2+ signaling in endothelial cells stimulated by bradykinin: Ca2+ measurement in the mitochondria and the cytosol by confocal microscopy. Cell Calcium 20:53–61

    Article  PubMed  CAS  Google Scholar 

  • Dreher D, Junod AF (1995) Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells. J Cell Physiol 162:147–153

    Article  PubMed  CAS  Google Scholar 

  • Elliott SJ, Doan TN (1993) Oxidant stress inhibits the store-dependent Ca(2+)-influx pathway of vascular endothelial cells. Biochem J 292(Pt 2):385–393

    PubMed  CAS  Google Scholar 

  • Elliott SJ, Eskin SG, Schilling WP (1989) Effect of t-butyl-hydroperoxide on bradykinin-stimulated changes in cytosolic calcium in vascular endothelial cells. J Biol Chem 264:3806–3810

    PubMed  CAS  Google Scholar 

  • Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1233–1245

    PubMed  CAS  Google Scholar 

  • Fasolato C, Nilius B (1998) Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch 436:69–74

    Article  PubMed  CAS  Google Scholar 

  • Feske S (2010) CRAC channelopathies. Pflugers Arch 460:417–435

    Article  PubMed  CAS  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    Article  PubMed  CAS  Google Scholar 

  • Florea SM, Blatter LA (2008) The effect of oxidative stress on Ca(2+) release and capacitative Ca(2+) entry in vascular endothelial cells. Cell Calcium 43:405–415

    Article  PubMed  CAS  Google Scholar 

  • Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131

    PubMed  CAS  Google Scholar 

  • Gericke M, Droogmans G, Nilius B (1993) Thapsigargin discharges intracellular calcium stores and induces transmembrane currents in human endothelial cells. Pflugers Arch 422:552–557

    Article  PubMed  CAS  Google Scholar 

  • Girardin NC, Antigny F, Frieden M (2010) Electrophysiological characterization of store-operated and agonist-induced Ca2+ entry pathways in endothelial cells. Pflugers Arch 460:109–120

    Article  PubMed  CAS  Google Scholar 

  • Graier WF, Hoebel BG, Paltauf-Doburzynska J, Kostner GM (1998) Effects of superoxide anions on endothelial Ca2+ signaling pathways. Arterioscler Thromb Vasc Biol 18:1470–1479

    Article  PubMed  CAS  Google Scholar 

  • Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, Schreibmayer W (1998) Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 437:101–106

    Article  PubMed  CAS  Google Scholar 

  • Hadri L, Pavoine C, Lipskaia L, Yacoubi S, Lompre AM (2006) Transcription of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 3 gene, ATP2A3, is regulated by the calcineurin/NFAT pathway in endothelial cells. Biochem J 394:27–33

    Article  PubMed  CAS  Google Scholar 

  • Harrison DG (2005) The shear stress of keeping arteries clear. Nat Med 11:375–376

    Article  PubMed  CAS  Google Scholar 

  • Himmel HM, Whorton AR, Strauss HC (1993) Intracellular calcium, currents, and stimulus-response coupling in endothelial cells. Hypertension 21:112–127

    PubMed  CAS  Google Scholar 

  • Hofer E, Schweighofer B (2007) Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 97:355–363

    PubMed  CAS  Google Scholar 

  • Holda JR, Blatter LA (1997) Capacitative calcium entry is inhibited in vascular endothelial cells by disruption of cytoskeletal microfilaments. FEBS Lett 403:191–196

    Article  PubMed  CAS  Google Scholar 

  • Holda JR, Klishin A, Sedova M, Huser J, Blatter LA (1998) Capacitative calcium entry. News Physiol Sci 13:157–163

    PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Ziegelstein RC (2000) Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation 102:2541–2547

    PubMed  CAS  Google Scholar 

  • Huser J, Blatter LA (1997) Elementary events of agonist-induced Ca2+ release in vascular endothelial cells. Am J Physiol 273:C1775–1782

    PubMed  CAS  Google Scholar 

  • Huser J, Holda JR, Kockskamper J, Blatter LA (1999) Focal agonist stimulation results in spatially restricted Ca2+ release and capacitative Ca2+ entry in bovine vascular endothelial cells. J Physiol 514(Pt 1):101–109

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  • Klishin A, Sedova M, Blatter LA (1998) Time-dependent modulation of capacitative Ca2+ entry signals by plasma membrane Ca2+ pump in endothelium. Am J Physiol 274:C1117–1128

    PubMed  CAS  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655

    Article  PubMed  CAS  Google Scholar 

  • Lawrie AM, Rizzuto R, Pozzan T, Simpson AW (1996) A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem 271:10753–10759

    Article  PubMed  CAS  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  • Lounsbury KM, Hu Q, Ziegelstein RC (2000) Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med 28:1362–1369

    Article  PubMed  CAS  Google Scholar 

  • Madge L, Marshall IC, Taylor CW (1997) Delayed autoregulation of the Ca2+ signals resulting from capacitative Ca2+ entry in bovine pulmonary artery endothelial cells. J Physiol 498(Pt 2):351–369

    PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Osibow K, Graier WF (2003a) Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J Biol Chem 278:10807–10815

    Article  PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003b) Sustained Ca2+ transfer across mitochondria is essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278:44769–44779

    Article  PubMed  CAS  Google Scholar 

  • Malli R, Frieden M, Hunkova M, Trenker M, Graier WF (2007) Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium 41:63–76

    Article  PubMed  CAS  Google Scholar 

  • Michiels C, Arnould T, Houbion A, Remacle J (1992) Human umbilical vein endothelial cells submitted to hypoxia-reoxygenation in vitro: implication of free radicals, xanthine oxidase, and energy deficiency. J Cell Physiol 153:53–61

    Article  PubMed  CAS  Google Scholar 

  • Minami T, Aird WC (2005) Endothelial cell gene regulation. Trends Cardiovasc Med 15:174–184

    Article  PubMed  CAS  Google Scholar 

  • Mumtaz S, Burdyga G, Borisova L, Wray S, Burdyga T (2010) The mechanism of agonist induced Ca(2+) signalling in intact endothelial cells studied confocally in in situ arteries. Cell Calcium 49(1):66–77

    Article  PubMed  Google Scholar 

  • Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier WF, Malli R (2010) Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 123:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett 427:263–266

    Article  PubMed  CAS  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  • Paltauf-Doburzynska J, Frieden M, Graier WF (1999) Mechanisms of Ca2+ store depletion in single endothelial cells in a Ca2+-free environment. Cell Calcium 25:345–353

    Article  PubMed  CAS  Google Scholar 

  • Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    PubMed  CAS  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  • Parker I, Yao Y (1996) Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol 491(Pt 3):663–668

    PubMed  CAS  Google Scholar 

  • Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595

    Article  PubMed  CAS  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1997) Capacitative calcium entry. R. G. Landes Company, Georgetown

    Google Scholar 

  • Putney JW Jr (2009) Capacitative calcium entry: from concept to molecules. Immunol Rev 231:10–22

    Article  PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646

    PubMed  CAS  Google Scholar 

  • Randriamampita C, Tsien RY (1993) Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364:809–814

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro CM, Reece J, Putney JW Jr (1997) Role of the cytoskeleton in calcium signaling in NIH 3T3 cells. An intact cytoskeleton is required for agonist-induced [Ca2+]i signaling, but not for capacitative calcium entry. J Biol Chem 272:26555–26561

    Article  PubMed  CAS  Google Scholar 

  • Rinne A, Blatter LA (2010) A fluorescence-based assay to monitor transcriptional activity of NFAT in living cells. J Physiol 588:3211–3216

    Article  PubMed  CAS  Google Scholar 

  • Rinne A, Banach K, Blatter LA (2009) Regulation of nuclear factor of activated T cells (NFAT) in vascular endothelial cells. J Mol Cell Cardiol 47:400–410

    Article  PubMed  CAS  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Hernandez Y, Laforenza U, Bonetti E, Fontana J, Dragoni S, Russo M, Avelino-Cruz JE, Schinelli S, Testa D, Guerra G, Rosti V, Tanzi F, Moccia F (2010) Store-operated Ca(2+) entry is expressed in human endothelial progenitor cells. Stem Cells Dev 19:1967–1981

    Article  PubMed  CAS  Google Scholar 

  • Schilling WP, Elliott SJ (1992) Ca2+ signaling mechanisms of vascular endothelial cells and their role in oxidant-induced endothelial cell dysfunction. Am J Physiol 262:H1617–1630

    PubMed  CAS  Google Scholar 

  • Schilling WP, Cabello OA, Rajan L (1992) Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway. Biochem J 284(Pt 2):521–530

    PubMed  CAS  Google Scholar 

  • Sedova M, Blatter LA (1999) Dynamic regulation of [Ca2+]i by plasma membrane Ca(2+)-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. Cell Calcium 25:333–343

    Article  PubMed  CAS  Google Scholar 

  • Sedova M, Blatter LA (2000) Intracellular sodium modulates mitochondrial calcium signaling in vascular endothelial cells. J Biol Chem 275:35402–35407

    Article  PubMed  CAS  Google Scholar 

  • Sedova M, Klishin A, Huser J, Blatter LA (2000) Capacitative Ca2+ entry is graded with degree of intracellular Ca2+ store depletion in bovine vascular endothelial cells. J Physiol 523(Pt 3):549–559

    Article  PubMed  CAS  Google Scholar 

  • Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Watanabe H, Tran QK, Ozeki M, Sumi D, Hayashi T, Iguchi A, Ignarro LJ, Ohashi K, Hayashi H (2004) Nitric oxide: inhibitory effects on endothelial cell calcium signaling, prostaglandin I2 production and nitric oxide synthase expression. Cardiovasc Res 62:194–201

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi C, Minshall RD, Paria BC, Vogel SM, Malik AB (2002) Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol 39:173–185

    Article  PubMed  CAS  Google Scholar 

  • Vaca L, Kunze DL (1994) Depletion of intracellular Ca2+ stores activates a Ca(2+)-selective channel in vascular endothelium. Am J Physiol 267:C920–925

    PubMed  CAS  Google Scholar 

  • Varnai P, Hunyady L, Balla T (2009) STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends Pharmacol Sci 30:118–128

    Article  PubMed  CAS  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  • Ward PA (1991) Mechanisms of endothelial cell injury. J Lab Clin Med 118:421–426

    PubMed  CAS  Google Scholar 

  • Yao X, Huang Y (2003) From nitric oxide to endothelial cytosolic Ca2+: a negative feedback control. Trends Pharmacol Sci 24:263–266

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Choi J, Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 482(Pt 3):533–553

    PubMed  CAS  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    Article  PubMed  CAS  Google Scholar 

  • Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci USA 103:9357–9362

    Article  PubMed  CAS  Google Scholar 

  • Zulueta JJ, Sawhney R, Yu FS, Cote CC, Hassoun PM (1997) Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am J Physiol 272:L897–902

    PubMed  CAS  Google Scholar 

  • Zweier JL, Broderick R, Kuppusamy P, Thompson-Gorman S, Lutty GA (1994) Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem 269:24156–24162

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar A. Blatter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Blatter, L.A. (2012). Tissue Specificity. In: Groschner, K., Graier, W., Romanin, C. (eds) Store-operated Ca2+ entry (SOCE) pathways. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0962-5_17

Download citation

Publish with us

Policies and ethics