Skip to main content

Micro-fabricated Shunt to Mimic Arachnoid Granulations for the Treatment of Communicating Hydrocephalus

  • Chapter
  • First Online:
Intracranial Pressure and Brain Monitoring XIV

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 114))

Abstract

Hydrocephalus is the abnormal accumulation of cerebrospinal fluid (CSF) within the confines of the skull that if left untreated results in significant morbidity and mortality. The treatment for hydrocephalus has remained essentially unchanged for over 50 years. It was a technological advance in materials that allowed John Holter, in conjunction with neurosurgeons Spitzer and Nulsen, to devise a valve and shunt system that diverted excess CSF from the ventricular space to the peritoneum. This ventriculo-peritoneal (VP) shunt is far from ideal, with problems associated with under/over shunting, mechanical mismatch, infection, high failure rates, disconnection and erosion. With the advances in the field of micro-fabrication and micro-machines we propose an innovative shunt system that would mimic the function of arachnoid granulations. This micro-fabricated shunting device, or micro-mechanical arachnoid granulation (MAG), consists of a multiplicity of micro-valves each 210 μm in diameter that each adhere to individual micro-needles. This work demonstrates the design and initial test results of the micro-valve with parameters for low cracking pressure, optimal flow rate, and reflux that would mimic the function of the native arachnoid granulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizenberg J et al (2004) Biological and bioinspired materials and devices, vol 823. In: Materials Research Society symposium proceedings, Warrendale, 2004

    Google Scholar 

  2. Boockvar JA, Loudon W, Sutton LN (2001) Development of the Spitz-Holter valve in Philadelphia. J Neurosurg 95:145–147

    Article  PubMed  CAS  Google Scholar 

  3. Drake JM, Destle J, Milner R et al (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–305

    Article  PubMed  CAS  Google Scholar 

  4. Gardeniers JGE, Luttge R, Berenschot JW, de Boer MJ, Yeshurun Y, Hefetz M, van’t Oever R, van der Berg A (2003) Silicon micromachined hollow needles for transdermal liquid transport. J Microelectromech Syst 6(1):855–862

    Article  Google Scholar 

  5. Grzybowski DM, Holman DW, Katz SE, Lubow M (2006) In vitro model of cerebrospinal fluid outflow through human arachnoid granulations. Invest Ophthalmol Vis Sci 47(8):3664–3672

    Article  PubMed  Google Scholar 

  6. Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87(8):922–925

    Article  PubMed  CAS  Google Scholar 

  7. Lin L, Pisano AP (1999) Silicon-processed microneedles. J Microelectromech Syst 8(1):78–84

    Article  Google Scholar 

  8. Lizhofer A, Ritter B, Tsakmakis Ch (1995) Development of passive microvalves by the finite element method. J Microelectromech Microeng 5:226–230

    Article  Google Scholar 

  9. Noh H-S, Huang Y, Hesketh PJ (2004) Parylene micromolding, a rapid and low-cost fabrication method of parylene microchannel. Sens Actuators B Chem 102:78–85

    Article  Google Scholar 

  10. Noh H-S, Moon K-S, Cannon A, Hesketh PJ, Wong CP (2004) Wafer bonding using microwave heating of parylene intermediate layers. J Micromech Microeng 14:625–631

    Article  CAS  Google Scholar 

  11. Patwardhan RV, Nanda A (2005) Implanted ventricular shunts in the United States: the billion-dollar-a-year cost of hydrocephalus treatment. Neurosurgery 56(1):139–145

    PubMed  Google Scholar 

  12. Upton ML, Weller RO (1985) The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63(6):867–875

    Article  PubMed  CAS  Google Scholar 

  13. Wang X-Q, Tai Y-C (2000) A normally closed in-channel micro check valve. In: The thirteenth annual international conference on MEMS, Miyazaki, 2000, pp 68–73

    Google Scholar 

  14. Wang X-Q, Lin Q, Tai Y-C (1999) A Parylene micro check valve. In: The twelfth IEEE international conference on MEMS, Orlando, 1999, pp 177–182

    Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Kralick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kralick, F., Oh, J., Medina, T., Noh, H.(. (2012). Micro-fabricated Shunt to Mimic Arachnoid Granulations for the Treatment of Communicating Hydrocephalus. In: Schuhmann, M., Czosnyka, M. (eds) Intracranial Pressure and Brain Monitoring XIV. Acta Neurochirurgica Supplementum, vol 114. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0956-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0956-4_47

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0955-7

  • Online ISBN: 978-3-7091-0956-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics