Skip to main content

Time Constant of the Cerebral Arterial Bed

  • Chapter
  • First Online:

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 114))

Abstract

We have defined a novel cerebral hemodynamic index, a time constant of the cerebral arterial bed (τ), the product of arterial compliance (Ca) and cerebrovascular resistance (CVR). Ca and CVR were calculated based on the relationship between pulsatile arterial blood pressure (ABP) and transcranial Doppler cerebral blood flow velocity. This new parameter theoretically estimates how fast the cerebral arterial bed is filled by blood volume after a sudden change in ABP during one cardiac cycle. We have explored this concept in 11 volunteers and in 25 patients with severe stenosis of the internal carotid artery (ICA). An additional group of 15 subjects with non-vascular dementia was studied to assess potential age dependency of τ. The τ was shorter (p = 0.011) in ICA stenosis, both unilateral (τ = 0.18 ± 0.04 s) and bilateral (τ = 0.16 ± 0.03 s), than in controls (τ = 0.22 ± 0.0 s). The τ correlated with the degree of stenosis (R = −0.62, p = 0.001). In controls, τ was independent of age. Further study during cerebrovascular reactivity tests is needed to establish the usefulness of τ for quantitative estimation of haemodynamics in cerebrovascular disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aaslid R (1992) Cerebral hemodynamics. In: Newell DW, Aaslid R (eds) Transcranial Doppler. Raven Press Ltd, New York, pp 49–55

    Google Scholar 

  2. Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard KF (1991) Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke 22:1148–1154

    Article  PubMed  CAS  Google Scholar 

  3. Alperin N, Sivaramakrishnan A, Lichtor T (2005) Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg 103:46–52

    Article  PubMed  Google Scholar 

  4. Avezaat CJ, van Eijndhoven JH (1986) The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev 9:113–120

    Article  PubMed  CAS  Google Scholar 

  5. Carrera E, Kim DJ, Castellani G, Zweifel C, Smielewski P, Pickard JD, Czosnyka M (2011) Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging 21:121–125

    Article  PubMed  Google Scholar 

  6. Czosnyka M, Richards H, Pickard JD, Harris N, Iyer V (1994) Frequency-dependent properties of cerebral blood transport – an experimental study in anaesthetized rabbits. Ultrasound Med Biol 20:391–399

    Article  PubMed  CAS  Google Scholar 

  7. Czosnyka M, Richards HK, Czosnyka Z, Piechnik S, Pickard JD, Chir M (1999) Vascular components of cerebrospinal fluid compensation. J Neurosurg 90:752–759

    Article  PubMed  CAS  Google Scholar 

  8. Evans DH, Levene MI, Shortland DB, Archer LN (1988) Resistance index, blood flow velocity, and resistance-area product in the cerebral arteries of very low birth weight infants during the first week of life. Ultrasound Med Biol 14:103–110

    Article  PubMed  CAS  Google Scholar 

  9. Gosling RG, King DH (1974) Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 67:447–449

    PubMed  CAS  Google Scholar 

  10. Kim DJ, Kasprowicz M, Carrera E, Castellani G, Zweifel C, Lavinio A, Smielewski P, Sutcliffe MP, Pickard JD, Czosnyka M (2009) The monitoring of relative changes in compartmental compliances of brain. Physiol Meas 30:647–659

    Article  PubMed  CAS  Google Scholar 

  11. Kontos HA (1989) Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke 20:1–3

    Article  PubMed  CAS  Google Scholar 

  12. Michel E, Hillebrand S, vonTwickel J, Zernikow B, Jorch G (1997) Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab 17:1127–1131

    Article  PubMed  CAS  Google Scholar 

  13. Panerai RB, Coughtrey H, Rennie JM, Evans DH (1993) A model of the instantaneous pressure–velocity relationships of the neonatal cerebral circulation. Physiol Meas 14:411–418

    Article  PubMed  CAS  Google Scholar 

  14. Panerai RB, Kelsall AW, Rennie JM, Evans DH (1996) Analysis of cerebral blood flow autoregulation in neonates. IEEE Trans Biomed Eng 43:779–788

    Article  PubMed  CAS  Google Scholar 

  15. Panerai RB, Sammons EL, Smith SM, Rathbone WE, Bentley S, Potter JF, Samani NJ (2007) Transient drifts between Finapres and continuous intra-aortic measurements of blood pressure. Blood Press Monit 12:369–376

    Article  PubMed  Google Scholar 

  16. Philippe EG, Hebert JL, Coirault C, Zamani K, Lecarpentier Y, Chemla D (1998) A comparison between systolic aortic root pressure and finger blood pressure. Chest 113:1466–1474

    Article  PubMed  CAS  Google Scholar 

  17. Stolz E, Kaps M, Kern A, Babacan SS, Dorndorf W (1999) Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. Reference data from 130 volunteers. Stroke 30:1070–1075

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the Foundation for Polish Science (MK); National Institute of Health Research, Biomedical Research Centre, Cambridge University Hospital Foundation Trust – Neurosciences Theme plus Senior Investigator Award (JDP) and Clifford and Mary Corbridge Trust (KPB).

Conflict of interest statement

ICM+ (www.neurosurg.cam.ac.uk/icmplus) is licensed by University of Cambridge, UK. PS and MC have an interest in a part of the licensing fee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Czosnyka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kasprowicz, M. et al. (2012). Time Constant of the Cerebral Arterial Bed. In: Schuhmann, M., Czosnyka, M. (eds) Intracranial Pressure and Brain Monitoring XIV. Acta Neurochirurgica Supplementum, vol 114. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0956-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0956-4_4

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0955-7

  • Online ISBN: 978-3-7091-0956-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics