Skip to main content

3D Structure and Drug Design

  • Chapter
  • First Online:
Book cover Computational Medicine

Abstract

The knowledge of the three-dimensional (3D) structure of the macromolecules and of their complexes plays a major role in the discovery of potential novel lead compounds and drugs and in the characterization of the biochemical mechanisms underlying the pharmacological and biological activity. Given that this information driven process is grounded on the experimental or computational determinations of the 3D structures, this chapter begins with a description of the core methodologies that allow one to obtain 3D structural data and to assess their quality. The impact of structural genomics is then summarized, with specific emphasis on both the technological progress and the molecular biology achievements brought by these high-throughput initiatives during the last decade. Then, the attention is focused on the computational techniques intended for inferring pharmaco-biological information from 3D structural data. Recently designed approaches for structure-based annotations, computational docking, 3D structure-based virtual screening, and interactome analysis are described, with particular accent on the advances over previous methods and on their intrinsic limitations. Few practical examples are provided to illustrate the state of the art of these methodologies. The more recently underscored intrinsically disordered proteins and conformational diseases are eventually described, pointing the attention toward the interplay between biophysical, biochemical, and bioinformatics approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya KR, Lloyd MD (2005) The advantage and limitations of protein crystal structures. Trends Pharmacol Sci 26:10–14

    Article  PubMed  CAS  Google Scholar 

  • Auluck PK, Caraveo G, Lindquist S (2010) alpha-Synuclein: membrane interactions and toxicity in Parkinson's disease. Annu Rev Cell Dev Biol 26:211–233

    Article  PubMed  CAS  Google Scholar 

  • Bagley SC, Altman RB (1995) Characterizing the microenvironment surrounding protein sites. Protein Sci 4:622–635

    Article  PubMed  CAS  Google Scholar 

  • Bayer TA, Wirths O (2010) Intracellular accumulation of amyloid-Beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer's disease. Front Aging Neurosci 2:8

    PubMed  CAS  Google Scholar 

  • Bellotti V, Nuvolone M, Giorgetti S, Obici L, Palladini G, Russo P, Lavatelli F, Perfetti V, Merlini G (2007) The workings of the amyloid diseases. Ann Med 39:200–207

    Article  PubMed  CAS  Google Scholar 

  • Benkert P, Tosatto SCE, Schwede T (2009) Global and loval model quality estimation at CASP8 using the scoring functions QMEAN and QMEANclust. Proteins 77:173–180

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  PubMed  CAS  Google Scholar 

  • Bohm H-J (2003) Prediction of non-bonded interactions in drug design. In: Bohm H-J, Schneider G (eds) Protein-ligand interactions. Wiley, Weinheim, pp 3–20

    Chapter  Google Scholar 

  • Carugo O (2006) Rapid methods for comparing protein structures and scanning structure databases. Curr Bioinform 1:75–83

    Article  CAS  Google Scholar 

  • Carugo O (2007a) Editorial to the special issue on likelihood of protein crystallization. Curr Protein Pept Sci 8:119–120

    Article  CAS  Google Scholar 

  • Carugo O (2007b) Recent progress in measuring structural similarity between proteins. Curr Protein Pept Sci 8:219–241

    Article  PubMed  CAS  Google Scholar 

  • Carugo O (2007c) A structural proteomics filter: prediction of the quaternary structural type of hetero-oligomeric proteins on the basis of their sequences. J Appl Cryst 40:986–989

    Article  CAS  Google Scholar 

  • Carugo O (2008) Metallo-proteins: metal binding predicted on the basis of the amino acid sequence. J Appl Cryst 41:104–109

    Article  CAS  Google Scholar 

  • Carugo O, Kumar S (2008) Consensus prediction of protein conformational disorder. Open Biochem J 2:1–5

    Article  PubMed  Google Scholar 

  • Carugo O, Pongor S (2002a) The evolution of structural databases. Trends Biotechnol 20:498–501

    Article  PubMed  CAS  Google Scholar 

  • Carugo O, Pongor S (2002b) Recent progress in protein 3D structure comparison. Curr Protein Pept Sci 3:441–449

    Article  PubMed  CAS  Google Scholar 

  • Castagnetto JM, Hennessy SW, Roberts VA, Getzoff ED, Tainer JA, Pique ME (2002) MDB: the metalloprotein database and browser at the Scripps research institute. Nucl Acids Res 30:379–382

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG III, Rance M, Skelton NJ (2007) Protein NMR spectroscopy. Elsevier, Burlington

    Google Scholar 

  • Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Cryst D66:12–21

    CAS  Google Scholar 

  • Cheng J, Sweredoski M, Baldi P (2005) Accurate prediction of protein disordered regions by mining protein structure data. Data Mining Knowledge Discov 11:213–222

    Article  Google Scholar 

  • Cho Y, Ioerger TR, Sacchettini J (2008) Discovery of novel nitrobenzodiazole inhibitors for Mycobacterium tuberculosis ATP phosphoribosyl transferase (HisG) through virtual screening. J Med Chem 51:5984–5992

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  Google Scholar 

  • Coeytaux K, Poupon A (2005) Prediction of unfolded segments in a protein sequence based on amino acid composition. Bioinformatics 21:1891–1900

    Article  PubMed  CAS  Google Scholar 

  • Cottingham K (2008) The structural genomics consortium makes its presence known. J Proteome Res 7:5073

    Article  PubMed  CAS  Google Scholar 

  • Coutard B, Gorbalenya AE, Snijder EJ, Leontovich AM, Poupon A, De Lamballerie X, Charrel R, Gould EA, Gunther S, Norder H et al (2008) The VIZIER project: preparedness against pathogenic RNA viruses. Antiviral Res 78:37–46

    Article  PubMed  CAS  Google Scholar 

  • Covaceuszach S, Cassetta A, Konarev PV, Gonfloni S, Rudolph R, Svergun DI, Lamba D, Cattaneo A (2008) Dissecting NGF interactions with TrkA and p75 receptors by structural and functional studies of an anti-NGF neutralizing antibody. J Mol Biol 381:881–896

    Article  PubMed  CAS  Google Scholar 

  • Das K, Aramini JM, Ma L-C, Krug RM, Arnold E (2010) Structures of influenza A proteins and insights into antiviral drug targets. Nat Struct Mol Biol 17:530–538

    Article  PubMed  CAS  Google Scholar 

  • Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on the estimated energy content. Bioinformatics 21:3433–3434

    Article  PubMed  CAS  Google Scholar 

  • Doye JPK, Louis AA, Vendruscolo M (2004) Inhibition of protein crystallization by evolutionary negative design. Phys Biol 1:9–13

    Article  CAS  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liamg J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functional annotated residues. Nucl Acids Res 34:W116–W118

    Article  PubMed  CAS  Google Scholar 

  • Dunford JE, Kwaasi AA, Rogers MJ, Barnett BL, Ebetino R, Russell RG, Oppermann U, Kavanagh KL (2008) Structure-activity relationships among the nitrogen containing bisphosphonates in clinical use and other analogues: time dependent inhibition of human farnesyl pyrophosphate synthase. J Med Che 51:2187–2195

    Article  CAS  Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  PubMed  CAS  Google Scholar 

  • Florez AF, Park D, Bhak J, Kim B-C, Kuchinski A, Morris JH, Espinosa J, Kuskus C (2010) Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection. BMC Bioinformatics 11:484

    Article  PubMed  CAS  Google Scholar 

  • Friedberg I, Harder T, Godzik A (2006) JAFA: a protein function annotation neta-server. Nucl Acids Res 34:W379–W381

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B et al (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  PubMed  CAS  Google Scholar 

  • George RA, Spriggs RV, Bartlett GJ, Gutterige A, MacArthur MW, Porter CT, Al-Lazikani B, Thornton JM, Swindells MB (2005) Effective function annotation through catalytic residue conservation. Nucleic Acid Res 102:12299–12304

    CAS  Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. J Combin Chem 1:55–68

    Article  CAS  Google Scholar 

  • Ghosh S, Nie A, Huang Z (2006) Structure-based virtual screening of chemical libraries for drug discovery. Curr Op Chem Bio 10:194–202

    Article  CAS  Google Scholar 

  • Goulding CW, Apostol M, Anderson DH, Gill HS, Smith CV, Kuo MR, Yang JK, Waldo GS, Suh SW, Chauhan R et al (2002) The TB structural genomics consortium: providing a structural foundation for drug discovery. Curr Drug Targets Infect Disord 2:121–141

    Article  PubMed  CAS  Google Scholar 

  • Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18:1244–1260

    Article  PubMed  CAS  Google Scholar 

  • Guo G, Jureller JE, Warren JT, Solomaha E, Florian J, Tang W-J (2008) Protein-protein docking and analysis reveal that Two homologous bacterial adenylyl cyclase toxins interact with calmodulin differently. J Biol Chem 283:23836–23845

    Article  PubMed  CAS  Google Scholar 

  • Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443

    Article  PubMed  CAS  Google Scholar 

  • Holtje H-D, Sippl W, Rognan D, Folkers G (2003) Molecular modelling. Basic principles and applications. Wiley, Weinheim

    Google Scholar 

  • Holton SJ, Weiss MS, Tucker PA, Wilmanns M (2007) Structure-based approaches to drug discovery against tuberculosis. Curr Protein Peptide Sci 8:365–375

    Article  CAS  Google Scholar 

  • Irwin JJ, Shoichet BK (2005) ZINC − a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24:1344–1348

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Stevens RC (2009) Structural aspects of therapeutic enzymes to treat metabolic disorders. Hum Mutat 30:1591–1610

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG, Oppermann U (2006) The molecular mechanis of nitrogen-containing bisphsphonates as antiosteoporosis drugs. Proc Natl Acad Sci USA 103:7829–7834

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Nakanishi I, Warizaya M, Iwashita A, Kido Y, Hattori K, Fujii T (2004) Inhibitor-induced structural change of the active site of human poly(ADP-ribose) polymerase. FEBS Lett 556:43–46

    Article  PubMed  CAS  Google Scholar 

  • Kirillova S, Kumar S, Carugo O (2009) Protein domain boundary predictions: a structural biology perspective. Open Biochem J 3:1–8

    Article  PubMed  CAS  Google Scholar 

  • Kuhner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P et al (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Carugo O (2008) Consensus prediction of protein conformational disorder from amino acidic sequence. Open Biochem J 2:1–5

    Article  PubMed  CAS  Google Scholar 

  • Lasker K, Sali A, Wolfson HJ (2010) Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Proteins 78:3205–3211

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces. J Mol Graph 13:323–330

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA (2003) Structural quality assurance. In: Bourne PE, Weissig H (eds) Structural bioinformatics. Wiley, Hoboken, pp 273–304

    Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93

    Article  PubMed  CAS  Google Scholar 

  • Lensink MF, Wodak SJ (2010a) Blinf predictions of protein interfaces by docking calculations in CAPRI. Proteins 78:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Lensink MF, Wodak SJ (2010b) Docking and scoring protein interactions: CAPRI 2009. Proteins 78:3073–3084

    Article  PubMed  CAS  Google Scholar 

  • Lieutaud P, Canard B, Longhi S (2008) MeDor: a metaserver for predicting protein disorder. BMC Genomics 9(Suppl 2):S25

    Article  PubMed  Google Scholar 

  • Lin TW, Melgar MM, Kurth D, Swamidass SJ, Purdon J, Tseng T, Gago G, Baldi P, Gramajo H, Tsai SC (2006) Structure-based inhibitor design of AccD5, an essential acyl-CoA carboxylase carboxyltransferase domain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:3072–3077

    Article  PubMed  CAS  Google Scholar 

  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003a) Protein disorder prediction: implications for structural proteomics. Structure (Camb) 11:1453–1459

    Article  CAS  Google Scholar 

  • Linding R, Russell RB, Neduva V, Gibson TJ (2003b) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 23:3–25

    Article  CAS  Google Scholar 

  • Loewenstein Y, Raimondo D, Redfern OC, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramkontano A (2009) Protein function annotation by homology-based inference. Genome Biol 10:207

    Article  PubMed  Google Scholar 

  • MacCallum MR (2004) Striped sheets and protein contact prediction. Bioinformatics 20:i224–i231

    Article  PubMed  CAS  Google Scholar 

  • McGuffin LG (2009) Prediction of global and local model quality in CASP8 using the ModFOLD server. Proteins 77:185–190

    Article  PubMed  CAS  Google Scholar 

  • Moreira IS, Fernandes PA, Ramos MJ (2010) Protein-protein docking dealing with the unknown. J Comput Chem 31:317–342

    PubMed  CAS  Google Scholar 

  • Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A (2009) Critical assessment of methods of protein structure prediction - Round VIII. Proteins 77:1–4

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of protein database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Nair R, Liu J, Soong TT, Acton TB, Everett JK, Kouranov A, Fiser A, Godzik A, Jaroszewski L, Orengo C et al (2009) Structural genomics is the largest contributor of novel structural leverage. J Struct Funct Genomics 10:181–191

    Article  PubMed  CAS  Google Scholar 

  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53:566–572

    Article  PubMed  CAS  Google Scholar 

  • Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK (2005) Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61:176–182

    Article  PubMed  CAS  Google Scholar 

  • Ofran Y, Punta M, Schneider R, Rost B (2005) Beyond annotation transfer by homology: novel protei-function prediction methods to assist drug discovery. Drug Discov Today 10:1475–1482

    Article  PubMed  CAS  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH–a hierarchical classification of protein domain structures. Structure 5:1093–1108

    Article  PubMed  CAS  Google Scholar 

  • Pal D, Eisenberg D (2005) Inference of protein structure from protein structure. Structure 13:121–130

    Article  PubMed  CAS  Google Scholar 

  • Papaleo E, Invernizzi G (2011) Conformational diseases: structural studies of aggregation of polyglutamine proteins. Curr Comput Aided Drug Des 7:23–43

    Article  PubMed  CAS  Google Scholar 

  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  PubMed  CAS  Google Scholar 

  • Raman K, Chandra N (2008) Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 8:234

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS (2003) All-atom contacts: a new approach to structure validation. In: Bourne PE, Weiss MS (eds) Structural bioinformatics. Wiley, Hoboken, pp 305–320

    Google Scholar 

  • Rodon J, Iniesta MD, Papadopoulos K (2009) Development of PARP inhibitors in oncology. Expert Opin Investig Drugs 18:31–43

    Article  PubMed  CAS  Google Scholar 

  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  PubMed  CAS  Google Scholar 

  • Rullmann JAC (1996) AQUA, computer program. Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht

    Google Scholar 

  • Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2:569–577

    Article  PubMed  CAS  Google Scholar 

  • Samudrala R, Levitt M (2000) Decoys 'R' Us: a database of incorrect conformations to improve protein structure prediction. Protein Sci 9:1399–1401

    Article  PubMed  CAS  Google Scholar 

  • Sasin JM, Godzic KA, Bujnicki JM (2007) SURF'SUP! - protein classification bt surface comparisons. J Biosci 32:97–100

    Article  PubMed  CAS  Google Scholar 

  • Schimdt A, Lamzin VS (2002) Veni, vidi, cisi - Atomic resolution unravelling the mysteries of protein function. Curr Opin Struct Biol 12:698–703

    Article  Google Scholar 

  • Schneidman-Duhovny D, Hammel M, Sali A (2010) Macromolecular docking restrained by a small angle X-ray scattering profile. J Struct Biol 173:461–471

    Google Scholar 

  • Shulman-Peleg A, Nussinov R, Wolfson H (2005) SiteEngines: recognition and comparison of binding sites and protein-protein interfaces. Nucleic Acids Res 33:W337–W341

    Article  PubMed  CAS  Google Scholar 

  • Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN et al (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35:D786–D793

    Article  PubMed  CAS  Google Scholar 

  • Sikic K, Tomic S, Carugo O (2010) Systematic comparison of crystal and NMR protein structures deposited in the protein data bank. Open Biochem J 4:83–95

    Article  PubMed  CAS  Google Scholar 

  • Smialowski P, Frishman D (2010) Protein crystallizability. Methods Mol Biol 609:385–400

    Article  PubMed  CAS  Google Scholar 

  • Soto C (2010) Prion hypothesis: the end of the controversy? Trends Biochem Sci 36:151–158

    Article  PubMed  CAS  Google Scholar 

  • Stark A, Russell RB (2003) Annotation in three dimensions, PINTS: patterns in non-homologous tertiary structures. Nucleic Acids Res 31:3341–3344

    Article  PubMed  CAS  Google Scholar 

  • Stuart DI, Jones EY, Wilson KS, Daenke S (2006) SPINE: structural proteomics in Europe – the best of both worlds. Acta Cryst D62:i–ii

    Google Scholar 

  • Takahashi T, Katada S, Onodera O (2010) Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? J Mol Cell Biol 2:180–191

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2010) Structure and function of intrinsically disordered proteins. Chapman & Hall, Boca Raton

    Google Scholar 

  • Tong L (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62:1784–1803

    Article  PubMed  CAS  Google Scholar 

  • Tusnády GE, Dosztányi Z, Simon I (2005) PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res 33:D275–D278

    Article  PubMed  CAS  Google Scholar 

  • Vajda S, Kozakov D (2009) Convergence and combination of methods in protein-protein docking. Curr Opin Struct Biol 19:164–170

    Article  PubMed  CAS  Google Scholar 

  • Vedadi M, Lew J, Artz J, Amani M, Zhao Y, Dong A, Wasney GA, Gao M, Hills T, Brokx S et al (2007) Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. Mol Biochem Parasitol 151:100–110

    Article  PubMed  CAS  Google Scholar 

  • Villoutreix BO, Eudes R, Miteva MA (2009) Structure-based virtual ligan screening: recent success stories. Comb Chem High Throughput Screen 12:1000–1016

    Article  PubMed  CAS  Google Scholar 

  • Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein disorder. Proteins 52:573–584

    Article  PubMed  CAS  Google Scholar 

  • Vullo A, Bortolami O, Pollastri G, Tosatto S (2006) Spritz: a server for the prediction of intrinsically disordered regions in protein sequences using kernel machines. Nucleic Acids Res 34:W164–W168

    Article  PubMed  CAS  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:532–645

    Article  CAS  Google Scholar 

  • Weigelt J (2010) Structural genomics - impact on biomedicine and drug disovery. Exp Cell Res 316:1332–1338

    Article  PubMed  CAS  Google Scholar 

  • Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804:996–1010

    Article  PubMed  CAS  Google Scholar 

  • Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376

    Article  PubMed  CAS  Google Scholar 

  • Yuriev E, Agostino M, Ramsland PA (2011) Challanges and advances in computational docking: 2009 in review. J Mol Recognit 24:149–164

    Article  PubMed  CAS  Google Scholar 

  • Zanotti B (2002) Protein crystallography. In: Giacovazzo C (ed) Fundamentals of crystallography. Oxford University Press, Oxford, pp 667–757

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliviero Carugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Djinović-Carugo, K., Carugo, O. (2012). 3D Structure and Drug Design. In: Trajanoski, Z. (eds) Computational Medicine. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0947-2_8

Download citation

Publish with us

Policies and ethics