Skip to main content

The Linear Theory of Anisotropic Poroelastic Solids

  • Chapter
Mechanics of Crustal Rocks

Part of the book series: CISM Courses and Lectures ((CISM,volume 533))

Abstract

This chapter offers a comprehensive derivation of the constitutive equations of linear poroelasticity. A main purpose of this survey is to assist with the formulation of experimental strategies for the measurement of poroelastic constants. The complete set of linearized constitutive relations is phrased alternatively in terms of undrained bulk parameters or drained skeleton parameters. Displayed in the form of a mnemonic diagram, this can provide a rapid overview of the theory. The principal relationships between alternative sets of material parameters are tabulated, among them the well-known Gassmann or Brown-Korringa fluid substitution relations that are rederived here without any pore-scale considerations. The possibility of an isotropic unjacketed response is pointed out, which — if verified experimentally — will make for an interesting and practically useful special case of anisotropic poroelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Berge, P.A., and J.G. Berryman (1995). Realizability of negative pore compressibility in poroelastic composites. J. Appl. Mech. 62, 1053–1062.

    Article  Google Scholar 

  • Berryman, J.G. (1995). Mixture theories for rock properties. In: Rock Physics and Phase Relations. A Handbook of Physical Constants, edited by T.J. Ahrens, Am. Geophys. Union, Washington D.C., pp. 205–228.

    Chapter  Google Scholar 

  • Biot, M.A. (1941). General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164.

    Article  MATH  Google Scholar 

  • Biot, M.A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185.

    Article  MathSciNet  MATH  Google Scholar 

  • Biot, M.A. (1956a). Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Biot, M.A. (1972). Theory of finite deformation of porous solids. Indiana Univ. Math. J. 21(7), 597–620.

    Article  MathSciNet  Google Scholar 

  • Biot, M.A. (1973). Nonlinear and semilinear rheology of porous solids. J. Geophys. Res. 78, 4924–4937.

    Article  Google Scholar 

  • Biot, M.A., and D.G. Willis (1957). The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601.

    MathSciNet  Google Scholar 

  • Brown, R.J.S., and J. Korringa (1975). On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid. Geophysics 40, 608–616.

    Article  Google Scholar 

  • Callen, H.B. (1960). Thermodynamics, John Wiley, New York.

    MATH  Google Scholar 

  • Carcione, J.M., and U. Tinivella (2001). The seismic response to overpressure: a modelling study based on laboratory, well and seismic data. Geophysical Prospecting 49, 523–539.

    Article  Google Scholar 

  • Carroll, M.M. (1979). An effective stress law for anisotropic elastic deformation. J. Geophys. Res. 84, 7510–7512.

    Article  Google Scholar 

  • Cheng, A.H.D. (1997). Material coefficients of anisotropic poroelasticity. Int. J. Rock Mech. Min. Sci. 34, 199–205.

    Article  Google Scholar 

  • Coussy, O. (2004). Poromechanics, John Wiley & Sons Ltd., Chichester UK.

    Google Scholar 

  • Detournay, E., and A.H.D. Cheng (1993). Fundamentals of poroelasticity. In: Comprehensive Rock Engineering Vol. 2, edited by J. A. Hudson, Pergamon Press, Oxford, Chap. 5, pp. 113–171.

    Google Scholar 

  • Gassmann, F. (1951). Über die Elastizität poröser Medien. Vierteljahrsschr. Naturforsch. Ges. Zürich 96, 1–23.

    MathSciNet  Google Scholar 

  • Geertsma, J. (1957a). A remark on the analogy between thermoelasticity and the elasticity of saturated porous media. J. Mech. Phys. Solids 6, 13–16.

    Article  MATH  Google Scholar 

  • Geertsma, J. (1957b). The effect of fluid pressure decline on volumetric changes in porous rocks. Trans. AIME 210, 331–340.

    Google Scholar 

  • Geertsma, J. (1966). Problems of rock mechanics in petroleum production engineering. Proc. 1st Congr. Int. Society of Rock Mechanics, 585–594.

    Google Scholar 

  • Green, D.H., and H.F. Wang (1986). Fluid pressure response to undrained compression in saturated sedimentary rocks. Geophysics 51, 948–956.

    Article  Google Scholar 

  • Green, D.H., and H.F. Wang (1990). Specific storage as a poroelastic coefficient. Water Resources Res. 26, 1631–37.

    Article  Google Scholar 

  • Guéguen, Y., L. Dormieux, and M. Boutéca (2004). Fundamentals of Poromechanics. In: Mechanics of Fluid-Saturated Rocks, edited by Y. Guéguen and M. Boutéca, Elsevier Academic Press, Burlington MA, pp. 1–54.

    Google Scholar 

  • Jaeger, J.C., N.G.W. Cook, and R.W. Zimmerman (2007). Fundamentals of Rock Mechanics (4th edition), Blackwell Publishing Ltd, Oxford, etc.

    Google Scholar 

  • Kümpel, H-J. (1991). Poroelasticity: parameters reviewed. Geophys. J. Int. 105, 783–799.

    Article  Google Scholar 

  • Mavko, G., T. Mukerji, and J. Dvorkin (1998). The Rock Physics Handbook. Tools for Seismic Analysis in Porous Media. Cambridge U. Press, Cambridge UK.

    Google Scholar 

  • McTigue, D.F. (1986). Thermoelastic response of fluid-saturated porous rock. J. Geophys. Res. 91, 9533–9542.

    Article  Google Scholar 

  • Nur, A., and J.D. Byerlee (1971). An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res. 76, 6414–6419.

    Article  Google Scholar 

  • Nye, J.F. (1957). Physical Properties of Crystals. Oxford University Press, Oxford etc., (reprinted in 1979).

    MATH  Google Scholar 

  • Rice, J.R., and M.P. Cleary (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys. 14, 227–241.

    Article  Google Scholar 

  • Rudnicki, J.W. (1985). Effect of pore fluid diffusion on deformation and failure of rock. In: Mechanics of Geomaterials, edited by E. Bažant, John Wiley & Sons Ltd., New York, Chap. 15, pp. 315–347.

    Google Scholar 

  • Rudnicki, J.W. (2001). Coupled deformation-diffusion effects in the mechanics of faulting and failure of geomaterials. Appl. Mech. Rev. 54, 1–20.

    Article  Google Scholar 

  • Terzaghi, K., and O.K. Fröhlich (1936). Theorie der Setzung von Tonschichten, F. Deutike, Wien.

    MATH  Google Scholar 

  • Thompson, M., and J.R. Willis (1991). A reformulation of the equations of anisotropic poroelasticity. J. Appl. Mech. 58, 612–616.

    Article  MATH  Google Scholar 

  • Wang, H.F. (2000). Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton and Oxford.

    Google Scholar 

  • Weiner, J.H. (1983). Statistical Mechanics of Elasticity, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Zimmerman, R.W., W.H. Somerton, and M.S. King (1986). Compressibility of porous rocks. J. Geophys. Res. 91,12,765–12,777.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Lehner, F.K. (2011). The Linear Theory of Anisotropic Poroelastic Solids. In: Leroy, Y.M., Lehner, F.K. (eds) Mechanics of Crustal Rocks. CISM Courses and Lectures, vol 533. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0939-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0939-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0938-0

  • Online ISBN: 978-3-7091-0939-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics