Skip to main content

Synaptic Pathology of Down Syndrome

  • Chapter
  • First Online:
Book cover Synaptic Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((volume 970))

Abstract

Down syndrome is characterized by mild to moderate cognitive impairments that are caused by trisomy of chromosome 21. Several anatomical, behavioral, electrophysiological, and developmental abnormalities have been associated with Down syndrome. In this review, the current knowledge about the neurobiology of this disease and future perspectives of pharmacological treatments for this condition will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adayev, T., Chen-Hwang, M. C., et al. (2006). MNB/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochemical and Biophysical Research Communications, 351(4), 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  • Aldridge, K., Reeves, R. H., et al. (2007). Differential effects of trisomy on brain shape and volume in related aneuploid mouse models. American Journal of Medical Genetics A, 143A(10), 1060–1070.

    Article  Google Scholar 

  • Altafaj, X., Ortiz-Abalia, J., et al. (2008). Increased NR2A expression and prolonged decay of NMDA-induced calcium transient in cerebellum of TgDyrk1A mice, a mouse model of Down syndrome. Neurobiology of Disease, 32(3), 377–384.

    Article  CAS  PubMed  Google Scholar 

  • Antonarakis, S. E., Lyle, R., et al. (2004). Chromosome 21 and Down syndrome: From genomics to pathophysiology. Nature Reviews Genetics, 5(10), 725–738.

    Article  CAS  PubMed  Google Scholar 

  • Arron, J. R., Winslow, M. M., et al. (2006). NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature, 441(7093), 595–600.

    Article  CAS  PubMed  Google Scholar 

  • Atack, J. R. (2010). Preclinical and clinical pharmacology of the GABA(A) receptor alpha5 subtype-selective inverse agonist alpha5IA. Pharmacology and Therapeutics, 125, 11–26.

    Article  CAS  PubMed  Google Scholar 

  • Baek, K. H., Zaslavsky, A., et al. (2009). Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature, 459(7250), 1126–1130.

    Article  CAS  PubMed  Google Scholar 

  • Becker, L. E. (1991). Synaptic dysgenesis. Canadian Journal of Neurological Sciences, 18(2), 170–180.

    CAS  PubMed  Google Scholar 

  • Becker, L., Mito, T., et al. (1991). Growth and development of the brain in Down syndrome. Progress in Clinical and Biological Research, 373, 133–152.

    CAS  PubMed  Google Scholar 

  • Belichenko, N. P., Belichenko, P. V., et al. (2009a). The “Down syndrome critical region” is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. Journal of Neuroscience, 29(18), 5938–5948.

    Article  CAS  PubMed  Google Scholar 

  • Belichenko, P. V., Kleschevnikov, A. M., et al. (2009b). Excitatory-inhibitory relationship in the fascia dentata in the Ts65Dn mouse model of Down syndrome. The Journal of Comparative Neurology, 512(4), 453–466.

    Article  PubMed  Google Scholar 

  • Belichenko, P. V., Masliah, E., et al. (2004). Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. The Journal of Comparative Neurology, 480(3), 281–298.

    Article  PubMed  Google Scholar 

  • Best, T. K., Siarey, R. J., et al. (2007). Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current. Journal of Neurophysiology, 97(1), 892–900.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, P., Ciani, E., et al. (2010). Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for Down syndrome. Journal of Neuroscience, 30(26), 8769–8779.

    Article  CAS  PubMed  Google Scholar 

  • Birks, J., & Harvey, R. J. (2006). Donepezil for dementia due to Alzheimer’s disease. Cochrane Database System Review, 1, CD001190. DOI: 10.1002/14651858.CD001190.pub2.

    Google Scholar 

  • Chakrabarti, L., Best, T. K., et al. (2010). Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nature Neuroscience, 13(8), 927–934.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti, L., Galdzicki, Z., et al. (2007). Defects in embryonic neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse model of Down syndrome. Journal of Neuroscience, 27(43), 11483–11495.

    Article  CAS  PubMed  Google Scholar 

  • Clark, S., Schwalbe, J., et al. (2006). Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Experimental Neurology, 200(1), 256–261.

    Article  CAS  PubMed  Google Scholar 

  • Colas, D., Chuluun, B., et al. (2012). Assessment of the GABAA Antagonist Pentylenetetrazole as a Procognitive Therapy in a Mouse Model of Down Syndrome. J Neuropsychopharmacology (submitted)

    Google Scholar 

  • Contestabile, A., Fila, T., et al. (2007). Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with Down syndrome and in Ts65Dn mice. Hippocampus, 17(8), 665–678.

    Article  PubMed  Google Scholar 

  • Cooper, J. D., Salehi, A., et al. (2001). Failed retrograde transport of NGF in a mouse model of Down’s syndrome: Reversal of cholinergic neurodegenerative phenotypes following NGF infusion. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10439–10444.

    Article  CAS  PubMed  Google Scholar 

  • Costa, A. C. S., & Grybko, M. J. (2005). Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: A model of Down syndrome. Neuroscience Letters, 382(3), 317–322.

    Article  CAS  PubMed  Google Scholar 

  • Costa, A. C. S., Scott-McKean, J. J., et al. (2008). Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacology, 33(7), 1624–1632.

    Article  CAS  PubMed  Google Scholar 

  • Cramer, N. P., Best, T. K., et al. (2010). GABAB-GIRK2-mediated signaling in Down syndrome. Advances in Pharmacology, 58, 397–426.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Costa, R. M., et al. (2008). Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell, 135(3), 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Das, I., & Reeves, R. H. (2011). The use of mouse models to understand and improve cognitive deficits in Down syndrome. Disease Models and Mechanisms, 4(5), 596–606.

    Google Scholar 

  • Davisson, M. T., Schmidt, C., et al. (1990). Segmental trisomy of murine chromosome 16: A new model system for studying Down syndrome. Progress in Clinical and Biological Research, 360, 263–280.

    CAS  PubMed  Google Scholar 

  • De Camilli, P. (2004). Molecular mechanisms in membrane traffic at the neuronal synapse: Role of protein-lipid interactions. Harvey Lectures, 100, 1–28.

    PubMed  Google Scholar 

  • Delabar, J. M., Theophile, D., et al. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. European Journal of Human Genetics, 1(2), 114–124.

    CAS  PubMed  Google Scholar 

  • Delatour, B., Braudeau, J., et al. (2009). Alleviation of cognitive deficits in Ts65Dn mice modeling Down syndrome by pharmacological inhibition of GABAergic transmission. Program No. 829.16. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience. Online.

    Google Scholar 

  • Demas, G. E., Nelson, R. J., et al. (1996). Spatial memory deficits in segmental trisomic Ts65Dn mice. Behavioural Brain Research, 82(1), 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Demas, G. E., Nelson, R. J., et al. (1998). Impaired spatial working and reference memory in segmental trisomy (Ts65Dn) mice. Behavioural Brain Research, 90(2), 199–201.

    Article  CAS  PubMed  Google Scholar 

  • Dierssen, M., Benavides-Piccione, R., et al. (2003). Alterations of neocortical pyramidal cell phenotype in the Ts65Dn mouse model of Down syndrome: Effects of environmental enrichment. Cerebral Cortex, 13(7), 758–764.

    Article  CAS  PubMed  Google Scholar 

  • Dierssen, M., Ortiz-Abalia, J., et al. (2006). Pitfalls and hopes in Down syndrome therapeutic approaches: In the search for evidence-based treatments. Behavior Genetics, 36(3), 454–468.

    Article  PubMed  Google Scholar 

  • Dittman, J., & Ryan, T. A. (2009). Molecular circuitry of endocytosis at nerve terminals. Annual Review of Cell and Developmental Biology, 25, 133–160.

    Article  CAS  PubMed  Google Scholar 

  • Drake, C. T., Bausch, S. B., et al. (1997). GIRK1 immunoreactivity is present predominantly in dendrites, dendritic spines, and somata in the CA1 region of the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 94(3), 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  • Egan, J. F. X., Benn, P. A., et al. (2004). Down syndrome births in the United States from 1989 to 2001. American Journal of Obstetrics and Gynecology, 191(3), 1044–1048.

    Article  PubMed  Google Scholar 

  • Ehrengruber, M. U., Doupnik, C. A., et al. (1997). Activation of heteromeric G protein-gated inward rectifier K+ channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 94(13), 7070–7075.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, F., & Garner, C. C. (2007). Over-inhibition: A model for developmental intellectual disability. Trends in Neurosciences, 30(10), 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, F., & Garner, C. C. (2008). Episodic-like memory in Ts65Dn, a mouse model of Down syndrome. Behavioural Brain Research, 188(1), 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, F., Morishita, W., et al. (2007). Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nature Neuroscience, 10(4), 411–413.

    CAS  PubMed  Google Scholar 

  • Gardiner, K. (2004). Gene-dosage effects in Down syndrome and trisomic mouse models. Genome Biology, 5(10), 244.

    Article  PubMed  Google Scholar 

  • Gardiner, K. J. (2010). Molecular basis of pharmacotherapies for cognition in Down syndrome. Trends Pharmacol Sci, 31(2), 66–73.

    Google Scholar 

  • Gardiner, K., & Costa, A. C. S. (2006). The proteins of human chromosome 21. American Journal of Medical Genetics C, Seminars in Medical Genetics, 142C(3), 196–205.

    Article  CAS  Google Scholar 

  • Gardiner, K., Herault, Y., et al. (2010). Down syndrome: From understanding the neurobiology to therapy. Journal of Neuroscience, 30(45), 14943–14945.

    Article  CAS  PubMed  Google Scholar 

  • Golden, J. A., & Hyman, B. T. (1994). Development of the superior temporal neocortex is anomalous in trisomy 21. Journal of Neuropathology and Experimental Neurology, 53(5), 513–520.

    Article  CAS  PubMed  Google Scholar 

  • Guedj, F., Sébrié, C., et al. (2009). Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One, 4(2), e4606.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J. E., Blank, M., et al. (2007). The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down’s syndrome. Journal of Physiology (London), 579(Pt 1), 53–67.

    Article  CAS  Google Scholar 

  • Harashima, C., Jacobowitz, D. M., et al. (2006). Elevated expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in cerebellar unipolar brush cells of a Down syndrome mouse model. Cellular and Molecular Neurobiology, 26(4–6), 719–734.

    CAS  PubMed  Google Scholar 

  • Hattori, M., Fujiyama, A., et al. (2000). The DNA sequence of human chromosome 21. Nature, 405(6784), 311–319.

    Article  CAS  PubMed  Google Scholar 

  • Holtzman, D. M., Santucci, D., et al. (1996). Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 13333–13338.

    Article  CAS  PubMed  Google Scholar 

  • Hyde, L. A., Frisone, D. F., et al. (2001). Ts65Dn mice, a model for Down syndrome, have deficits in context discrimination learning suggesting impaired hippocampal function. Behavioural Brain Research, 118(1), 53–60.

    Article  CAS  PubMed  Google Scholar 

  • Kamenetz, F., Tomita, T., et al. (2003). APP processing and synaptic function. Neuron, 37(6), 925–937.

    Article  CAS  PubMed  Google Scholar 

  • Keating, D. J., Dubach, D., et al. (2008). DSCR1/RCAN1 regulates vesicle exocytosis and fusion pore kinetics: Implications for Down syndrome and Alzheimer’s disease. Human Molecular Genetics, 17(7), 1020–1030.

    Article  CAS  PubMed  Google Scholar 

  • Kesslak, J. P., Nagata, S. F., et al. (1994). Magnetic resonance imaging analysis of age-related changes in the brains of individuals with Down’s syndrome. Neurology, 44(6), 1039–1045.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Park, J., et al. (2010). Overexpression of Dyrk1A causes the defects in synaptic vesicle endocytosis. Neuro-Signals, 18(3), 164–172.

    Article  CAS  PubMed  Google Scholar 

  • Kishnani, P. S., Sommer, B. R., et al. (2009). The efficacy, safety, and tolerability of donepezil for the treatment of young adults with Down syndrome. American Journal of Medical Genetics A, 149A(8), 1641–1654.

    Article  CAS  Google Scholar 

  • Kleschevnikov, A. M., Belichenko, P. V., et al. (2008). Antagonists of the GABAB receptors enhance LTP and reduce pro-epileptiform activity in Ts65Dn mouse model of Down syndrome. Program No. 348.4. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience, 2008. Online.

    Google Scholar 

  • Kleschevnikov, A. M., Belichenko, P. V., et al. (2004). Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. Journal of Neuroscience, 24(37), 8153–8160.

    Article  CAS  PubMed  Google Scholar 

  • Kolar, D., Keller, A., et al. (2008). Treatment of adults with attention-deficit/hyperactivity disorder. Neuropsychiatric Disease and Treatment, 4(1), 107–121.

    CAS  PubMed  Google Scholar 

  • Korbel, J. O., Tirosh-Wagner, T., et al. (2009). The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proceedings of the National Academy of Sciences of the United States of America, 106(29), 12031–12036.

    Article  CAS  PubMed  Google Scholar 

  • Korenberg, J. R. (1990). Molecular mapping of the Down syndrome phenotype. Progress in Clinical and Biological Research, 360, 105–115.

    CAS  PubMed  Google Scholar 

  • Korenberg, J. R., Bradley, C., et al. (1992). Down syndrome: Molecular mapping of the congenital heart disease and duodenal stenosis. American Journal of Human Genetics, 50(2), 294–302.

    CAS  PubMed  Google Scholar 

  • Korenberg, J. R., Chen, X. N., et al. (1994). Down syndrome phenotypes: The consequences of chromosomal imbalance. Proceedings of the National Academy of Sciences of the United States of America, 91(11), 4997–5001.

    Article  CAS  PubMed  Google Scholar 

  • Koyrakh, L., Lujan, R., et al. (2005). Molecular and cellular diversity of neuronal G-protein-gated potassium channels. Journal of Neuroscience, 25(49), 11468–11478.

    Article  CAS  PubMed  Google Scholar 

  • Kurt, M. A., Davies, D. C., et al. (2000). Synaptic deficit in the temporal cortex of partial trisomy 16 (Ts65Dn) mice. Brain Research, 858(1), 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Kurt, M. A., Kafa, M. I., et al. (2004). Deficits of neuronal density in CA1 and synaptic density in the dentate gyrus, CA3 and CA1, in a mouse model of Down syndrome. Brain Research, 1022(1–2), 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. Y., Wenk, M. R., et al. (2004). Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 546–551.

    Article  CAS  PubMed  Google Scholar 

  • Lejeune, J., Turpin, R., et al. (1959). Mongolism; a chromosomal disease (trisomy). Bulletin de l’Académie Nationale de Médecine, 143(11–12), 256–265.

    CAS  PubMed  Google Scholar 

  • Liu, C., Morishima, M., et al. (2011). Genetic analysis of Down syndrome-associated heart defects in mice. Human Genetics, 130(5), 623–632.

    Article  CAS  PubMed  Google Scholar 

  • Llorens-Martin, M. V., Rueda, N., et al. (2010). Effects of voluntary physical exercise on adult hippocampal neurogenesis and behavior of Ts65Dn mice, a model of Down syndrome. Neuroscience, 171(4), 1228–1240.

    Article  CAS  PubMed  Google Scholar 

  • Longo, F. M., Yang, T., et al. (2007). Small molecule neurotrophin receptor ligands: Novel strategies for targeting Alzheimer’s disease mechanisms. Current Alzheimer Research, 4(5), 503–506.

    Article  CAS  PubMed  Google Scholar 

  • Lott, I. T., & Dierssen, M. (2010). Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurology, 9(6), 623–633.

    Article  PubMed  Google Scholar 

  • Ma, Q. (2006). Transcriptional regulation of neuronal phenotype in mammals. Journal de Physiologie, 575(Pt 2), 379–387.

    Article  CAS  Google Scholar 

  • Marin-Padilla, M. (1976). Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome. A Golgi study. The Journal of Comparative Neurology, 167(1), 63–81.

    Article  CAS  PubMed  Google Scholar 

  • Martinez de Lagran, M., Bortolozzi, A., et al. (2007). Dopaminergic deficiency in mice with reduced levels of the dual-specificity tyrosine-phosphorylated and regulated kinase 1A, Dyrk1A(+/−). Genes, Brain, and Behavior, 6(6), 569–578.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Cue, C., Baamonde, C., et al. (2002). Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behavioural Brain Research, 134(1–2), 185–200.

    Article  PubMed  Google Scholar 

  • Martinez-Cue, C., Rueda, N., et al. (2005). Behavioral, cognitive and biochemical responses to different environmental conditions in male Ts65Dn mice, a model of Down syndrome. Behavioural Brain Research, 163(2), 174–185.

    Article  CAS  PubMed  Google Scholar 

  • Mason, C. R., & Cooper, R. M. (1972). A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia, 13(5), 663–674.

    Article  CAS  PubMed  Google Scholar 

  • Merims, D., & Giladi, N. (2008). Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson’s disease. Parkinsonism & Related Disorders, 14(4), 273–280.

    Article  Google Scholar 

  • Meyer, M. P., & Smith, S. J. (2006). Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. Journal of Neuroscience, 26(13), 3604–3614.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi, G., Butt, S. J., et al. (2007). Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. Journal of Neuroscience, 27(29), 7786–7798.

    Article  CAS  PubMed  Google Scholar 

  • Moore, C. S., & Roper, R. J. (2007). The power of comparative and developmental studies for mouse models of Down syndrome. Mammalian Genome, 18(6–7), 431–443.

    Article  PubMed  Google Scholar 

  • Morris, J. K., & Alberman, E. (2009). Trends in Down’s syndrome live births and antenatal diagnoses in England and Wales from 1989 to 2008: Analysis of data from the National Down Syndrome Cytogenetic Register. British Medical Journal, 339, b3794.

    Article  PubMed  Google Scholar 

  • Murakami, N., Xie, W., et al. (2006). Phosphorylation of amphiphysin I by minibrain kinase/dual-specificity tyrosine phosphorylation-regulated kinase, a kinase implicated in Down syndrome. Journal of Biological Chemistry, 281(33), 23712–23724.

    Article  CAS  PubMed  Google Scholar 

  • Nadel, L. (2003). Down’s syndrome: A genetic disorder in biobehavioral perspective. Genes, Brain, and Behavior, 2(3), 156–166.

    Article  CAS  PubMed  Google Scholar 

  • Nikolaienko, O., Nguyen, C., et al. (2005). Human chromosome 21/Down syndrome gene function and pathway database. Gene, 364, 90–98.

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty, A., Ruf, S., et al. (2005). An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science, 309(5743), 2033–2037.

    Article  PubMed  CAS  Google Scholar 

  • Olson, L. E., Roper, R. J., et al. (2004). Down syndrome mouse models Ts65Dn, Ts1Cje, and Ms1Cje/Ts65Dn exhibit variable severity of cerebellar phenotypes. Developmental Dynamics, 230(3), 581–589.

    Article  CAS  PubMed  Google Scholar 

  • Olson, L. E., Roper, R. J., et al. (2007). Trisomy for the Down syndrome ‘critical region’ is necessary but not sufficient for brain phenotypes of trisomic mice. Human Molecular Genetics, 16(7), 774–782.

    Article  CAS  PubMed  Google Scholar 

  • Palop, J. J., Chin, J., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55(5), 697–711.

    Article  CAS  PubMed  Google Scholar 

  • Palop, J. J., & Mucke, L. (2009). Epilepsy and cognitive impairments in Alzheimer disease. Archives of Neurology, 66(4), 435–440.

    Article  PubMed  Google Scholar 

  • Patterson, D. (2009). Molecular genetic analysis of Down syndrome. Human Genetics, 126(1), 195–214.

    Article  CAS  PubMed  Google Scholar 

  • Pennington, B. F., Moon, J., et al. (2003). The neuropsychology of Down syndrome: Evidence for hippocampal dysfunction. Child Development, 74(1), 75–93.

    Article  PubMed  Google Scholar 

  • Pereira, P. L., Magnol, L., et al. (2009). A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Human Molecular Genetics, 18(24), 4756–4769.

    Article  CAS  PubMed  Google Scholar 

  • Pletcher, M. T., Wiltshire, T., et al. (2001). Use of comparative physical and sequence mapping to annotate mouse chromosome 16 and human chromosome 21. Genomics, 74(1), 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Prasher, V. P. (2004). Review of donepezil, rivastigmine, galantamine and memantine for the treatment of dementia in Alzheimer’s disease in adults with Down syndrome: Implications for the intellectual disability population. International Journal of Geriatric Psychiatry, 19(6), 509–515.

    Article  CAS  PubMed  Google Scholar 

  • Rachidi, M., & Lopes, C. (2007). Mental retardation in Down syndrome: From gene dosage imbalance to molecular and cellular mechanisms. Neuroscience Research, 59(4), 349–369.

    Article  CAS  PubMed  Google Scholar 

  • Reeves, R. H., Irving, N. G., et al. (1995). A mouse model for Down syndrome exhibits learning and behaviour deficits. Nature Genetics, 11(2), 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Roizen, N. J., & Patterson, D. (2003). Down’s syndrome. Lancet, 361(9365), 1281–1289.

    Article  PubMed  Google Scholar 

  • Roper, R. J., Baxter, L. L., et al. (2006). Defective cerebellar response to mitogenic Hedgehog signaling in Down [corrected] syndrome mice. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1452–1456.

    Article  CAS  PubMed  Google Scholar 

  • Roper, R. J., Vanhorn, J. F., et al. (2009). A neural crest deficit in Down syndrome mice is associated with deficient mitotic response to Sonic hedgehog. Mechanisms of Development, 126(3–4), 212–219.

    Article  CAS  PubMed  Google Scholar 

  • Ross, L. J. (1994). Developmental disabilities: Genetic implications. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 23(6), 502–505.

    Article  CAS  PubMed  Google Scholar 

  • Rothermel, B. A., Vega, R. B., et al. (2003). The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends in Cardiovascular Medicine, 13(1), 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Rueda, N., Flórez, J., et al. (2008). Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome. Neuroscience Letters, 433(1), 22–27.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A., Delcroix, J.-D., et al. (2006). Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron, 51(1), 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Salehi, A., Faizi, M., et al. (2009). Restoration of norepinephrine-modulated contextual memory in a mouse model of Down syndrome. Science Translational Medicine, 1(7), 7ra17.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson, J. L., & Dell’acqua, M. L. (2010). AKAP signaling complexes in regulation of excitatory synaptic plasticity. The Neuroscientist, 17(3), 321–336.

    Article  CAS  Google Scholar 

  • Schmidt-Sidor, B., Wisniewski, K. E., et al. (1990). Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clinical Neuropathology, 9(4), 181–190.

    CAS  PubMed  Google Scholar 

  • Siarey, R. J., Carlson, E. J., et al. (1999). Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology, 38(12), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  • Siarey, R. J., Kline-Burgess, A., et al. (2006). Altered signaling pathways underlying abnormal hippocampal synaptic plasticity in the Ts65Dn mouse model of Down syndrome. Journal of Neurochemistry, 98(4), 1266–1277.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, A., Lacroix, T., et al. (2008). Molecular responses of the Ts65Dn and Ts1Cje mouse models of Down syndrome to MK-801. Genes, Brain, and Behavior, 7(7), 810–820.

    Article  CAS  PubMed  Google Scholar 

  • Villar, A. J., Belichenko, P. V., et al. (2005). Identification and characterization of a new Down syndrome model, Ts[Rb(12.1716)]2Cje, resulting from a spontaneous Robertsonian fusion between T(171)65Dn and mouse chromosome 12. Mammalian Genome, 16(2), 79–90.

    Article  CAS  PubMed  Google Scholar 

  • Voronov, S. V., Frere, S. G., et al. (2008). Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9415–9420.

    Article  CAS  PubMed  Google Scholar 

  • Weitzdoerfer, R., Dierssen, M., et al. (2001). Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. Journal of Neural Transmission Supplementum, 61, 59–70.

    PubMed  Google Scholar 

  • Wetmore, D. Z., & Garner, C. C. (2010). Emerging pharmacotherapies for neurodevelopmental disorders. Journal of Developmental and Behavioral Pediatrics, 31(7), 564–581.

    Article  PubMed  Google Scholar 

  • Wisniewski, K. E., Dalton, A. J., et al. (1985). Alzheimer’s disease in Down’s syndrome: Clinicopathologic studies. Neurology, 35(7), 957–961.

    Article  CAS  PubMed  Google Scholar 

  • Woods, Y. L., Cohen, P., et al. (2001a). The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: Potential role for DYRK as a glycogen synthase kinase 3-priming kinase. The Biochemical Journal, 355(Pt 3), 609–615.

    CAS  PubMed  Google Scholar 

  • Woods, Y. L., Rena, G., et al. (2001b). The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. The Biochemical Journal, 355(Pt 3), 597–607.

    CAS  PubMed  Google Scholar 

  • Xie, W., Ramakrishna, N., et al. (2008). Promotion of neuronal plasticity by (−)-epigallocatechin-3-gallate. Neurochemical Research, 33(5), 776–783.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Q., Rasmussen, S. A., et al. (2002). Mortality associated with Down’s syndrome in the USA from 1983 to 1997: A population-based study. Lancet, 359(9311), 1019–1025.

    Article  PubMed  Google Scholar 

  • Yoshiike, Y., Kimura, T., et al. (2008). GABA(A) receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS One, 3(8), e3029.

    Article  PubMed  CAS  Google Scholar 

  • Yu, T., Li, Z., Jia, Z., Clapcote, S. J., Liu, C., Li, S., Asrar, S., Pao, A., Chen, R., Fan, N., Carattini-Rivera, S., Bechard, A. R., Spring, S., Henkelman, R. M., Stoica, G., Matsui, S., Nowak, N. J., Roder, J. C., Chen, C., Bradley, A., Yu, Y. E. (2010). A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Human Molecular Genetics, 19(14), 2780–2791.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig C. Garner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Garner, C.C., Wetmore, D.Z. (2012). Synaptic Pathology of Down Syndrome. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_20

Download citation

Publish with us

Policies and ethics