Skip to main content

Roles of Neuronal Activity-Induced Gene Products in Hebbian and Homeostatic Synaptic Plasticity, Tagging, and Capture

  • Chapter
  • First Online:
Book cover Synaptic Plasticity

Part of the book series: Advances in Experimental Medicine and Biology ((volume 970))

Abstract

The efficiency of synaptic transmission undergoes plastic modification in response to changes in input activity. This phenomenon is most commonly referred to as synaptic plasticity and can involve different cellular mechanisms over time. In the short term, typically in the order of minutes to 1 h, synaptic plasticity is mediated by the actions of locally existing proteins. In the longer term, the synthesis of new proteins from existing or newly synthesized mRNAs is required to maintain the changes in synaptic transmission. Many studies have attempted to identify genes induced by neuronal activity and to elucidate the functions of the encoded proteins. In this chapter, we describe our current understanding of how activity can regulate the synthesis of new proteins, how the distribution of the newly synthesized protein is regulated in relation to the synapses undergoing plasticity and the function of these proteins in both Hebbian and homeostatic synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altar, C. A., Laeng, P., Jurata, L. W., Brockman, J. A., Lemire, A., Bullard, J., Bukhman, Y. V., Young, T. A., Charles, V., & Palfreyman, M. G. (2004). Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. Journal of Neuroscience, 24, 2667–2677.

    Article  PubMed  CAS  Google Scholar 

  • Ango, F., Prezeau, L., Muller, T., Tu, J. C., Xiao, B., Worley, P. F., Pin, J. P., Bockaert, J., & Fagni, L. (2001). Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature, 411, 962–965.

    Article  PubMed  CAS  Google Scholar 

  • Asrar, S., Zhou, Z., Ren, W., & Jia, Z. (2009). Ca2+ permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II. PLoS One, 4, e4339.

    Article  PubMed  CAS  Google Scholar 

  • Bagni, C., Mannucci, L., Dotti, C. G., & Amaldi, F. (2000). Chemical stimulation of synaptosomes modulates α-Ca2+/calmodulin-dependent protein kinase II mRNA association to polysomes. Journal of Neuroscience, 20, RC76.

    PubMed  CAS  Google Scholar 

  • Baron, M. K., Boeckers, T. M., Vaida, B., Faham, S., Gingery, M., Sawaya, M. R., Salyer, D., Gundelfinger, E. D., & Bowie, J. U. (2006). An architectural framework that may lie at the core of the postsynaptic density. Science, 311, 531–535.

    Article  PubMed  CAS  Google Scholar 

  • Barondes, S. H., & Cohen, H. D. (1968). Memory impairment after subcutaneous injection of acetoxycycloheximide. Science, 160, 556–557.

    Article  PubMed  CAS  Google Scholar 

  • Bassell, G. J., & Warren, S. T. (2008). Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron, 60, 201–214.

    Article  PubMed  CAS  Google Scholar 

  • Béïque, J. C., Na, Y., Kuhl, D., Worley, P. F., & Huganir, R. L. (2011). Arc-dependent synapse-specific homeostatic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 108, 816–821.

    Article  PubMed  Google Scholar 

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V., & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology (London), 232, 331–356.

    CAS  Google Scholar 

  • Bosch, M., Castro, J., Narayanan, R., Sur, M., & Hayashi, Y. (2009). Structural and molecular reorganization of a single dendritic spine during long-term potentiation. In Neuroscience meeting, Society for Neuroscience, Chicago, IL.

    Google Scholar 

  • Brakeman, P. R., Lanahan, A. A., O’Brien, R., Roche, K., Barnes, C. A., Huganir, R. L., & Worley, P. F. (1997). Homer: A protein that selectively binds metabotropic glutamate receptors. Nature, 386, 284–288.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P. A., Schellinck, H. M., & Keverne, E. B. (1999). Patterns of expression of the immediate-early gene egr-1 in the accessory olfactory bulb of female mice exposed to pheromonal constituents of male urine. Neuroscience, 90, 1463–1470.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, S., Shepherd, J. D., Okuno, H., Lyford, G., Petralia, R. S., Plath, N., Kuhl, D., Huganir, R. L., & Worley, P. F. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron, 52, 445–459.

    Article  PubMed  CAS  Google Scholar 

  • Cochran, B. H., Reffel, A. C., & Stiles, C. D. (1983). Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell, 33, 939–947.

    Article  PubMed  CAS  Google Scholar 

  • Cole, A. J., Saffen, D. W., Baraban, J. M., & Worley, P. F. (1989). Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature, 340, 474–476.

    Article  PubMed  CAS  Google Scholar 

  • Comery, T. A., Harris, J. B., Willems, P. J., Oostra, B. A., Irwin, S. A., Weiler, I. J., & Greenough, W. T. (1997). Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America, 94, 5401–5404.

    Article  PubMed  CAS  Google Scholar 

  • Costa-Mattioli, M., Sossin, W. S., Klann, E., & Sonenberg, N. (2009). Translational control of long-lasting synaptic plasticity and memory. Neuron, 61, 10–26.

    Article  PubMed  CAS  Google Scholar 

  • Cottrell, J. R., Borok, E., Horvath, T. L., & Nedivi, E. (2004). CPG2: A brain- and synapse-specific protein that regulates the endocytosis of glutamate receptors. Neuron, 44, 677–690.

    PubMed  CAS  Google Scholar 

  • Davis, H. P., & Squire, L. R. (1984). Protein synthesis and memory: A review. Psychological Bulletin, 96, 518–559.

    Article  PubMed  CAS  Google Scholar 

  • De Rubeis, S., & Bagni, C. (2010). Fragile X mental retardation protein control of neuronal mRNA metabolism: Insights into mRNA stability. Molecular and Cellular Neuroscience, 43, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Dieterich, D. C., Hodas, J. J., Gouzer, G., Shadrin, I. Y., Ngo, J. T., Triller, A., Tirrell, D. A., & Schuman, E. M. (2010). In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nature Neuroscience, 13, 897–905.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M., & Robertson, H. A. (1987). Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature, 329, 441–442.

    Article  PubMed  CAS  Google Scholar 

  • Eberwine, J., Belt, B., Kacharmina, J. E., & Miyashiro, K. (2002). Analysis of subcellularly localized mRNAs using in situ hybridization, mRNA amplification, and expression profiling. Neurochemical Research, 27, 1065–1077.

    Article  PubMed  CAS  Google Scholar 

  • Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F., Seeburg, D. P., Batterton, M. N., Tada, T., Dolan, B. M., Sharp, P. A., & Sheng, M. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 65, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, R. C., Miles, M. F., & Lowenstein, D. H. (2003). Overlapping microarray profiles of dentate gyrus gene expression during development- and epilepsy-associated neurogenesis and axon outgrowth. Journal of Neuroscience, 23, 2218–2227.

    PubMed  CAS  Google Scholar 

  • Fazeli, M. S., Corbet, J., Dunn, M. J., Dolphin, A. C., & Bliss, T. V. (1993). Changes in protein synthesis accompanying long-term potentiation in the dentate gyrus in vivo. Journal of Neuroscience, 13, 1346–1353.

    PubMed  CAS  Google Scholar 

  • Feng, Y., Zhang, F., Lokey, L. K., Chastain, J. L., Lakkis, L., Eberhart, D., & Warren, S. T. (1995). Translational suppression by trinucleotide repeat expansion at FMR1. Science, 268, 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Flexner, J. B., Flexner, L. B., & Stellar, E. (1963). Memory in mice as affected by intracerebral puromycin. Science, 141, 57–59.

    Article  PubMed  CAS  Google Scholar 

  • Frankland, P. W., Bontempi, B., Talton, L. E., Kaczmarek, L., & Silva, A. J. (2004). The involvement of the anterior cingulate cortex in remote contextual fear memory. Science, 304, 881–883.

    Article  PubMed  CAS  Google Scholar 

  • Franza, B. R., Jr., Rauscher, F. J., 3rd, Josephs, S. F., & Curran, T. (1988). The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science, 239, 1150–1153.

    Article  PubMed  CAS  Google Scholar 

  • French, P. J., O’Connor, V., Voss, K., Stean, T., Hunt, S. P., & Bliss, T. V. (2001). Seizure-induced gene expression in area CA1 of the mouse hippocampus. European Journal of Neuroscience, 14, 2037–2041.

    Article  PubMed  CAS  Google Scholar 

  • Frey, U., & Morris, R. G. (1997). Synaptic tagging and long-term potentiation. Nature, 385, 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Frey, U., Krug, M., Brodemann, R., Reymann, K., & Matthies, H. (1989). Long-term potentiation induced in dendrites separated from rat’s CA1 pyramidal somata does not establish a late phase. Neuroscience Letters, 97, 135–139.

    Article  PubMed  CAS  Google Scholar 

  • Frey, U., Frey, S., Schollmeier, F., & Krug, M. (1996). Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. The Journal of Physiology, 490, 703–711.

    PubMed  CAS  Google Scholar 

  • Gray, N. W., Weimer, R. M., Bureau, I., & Svoboda, K. (2006). Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biology, 4, e370.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, M. E., & Ziff, E. B. (1984). Stimulation of 3 T3 cells induces transcription of the c-fos proto-oncogene. Nature, 311, 433–438.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, M. E., Ziff, E. B., & Greene, L. A. (1986). Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science, 234, 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski, J. F., Setlow, B., Wagner, E. K., & McGaugh, J. L. (2001). Experience-dependent gene expression in the rat hippocampus after spatial learning: A comparison of the immediate-early genes Arc, c-fos, and zif268. Journal of Neuroscience, 21, 5089–5098.

    PubMed  CAS  Google Scholar 

  • Hall, J., Thomas, K. L., & Everitt, B. J. (2001). Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. European Journal of Neuroscience, 13, 1453–1458.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., & Huganir, R. L. (2004). Tyrosine phosphorylation and regulation of the AMPA receptor by Src family tyrosine kinases. Journal of Neuroscience, 24, 6152–6160.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Umemori, H., Mishina, M., & Yamamoto, T. (1999). The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature, 397, 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M. K., Ames, H. M., & Hayashi, Y. (2006). Tetrameric hub structure of postsynaptic scaffolding protein homer. Journal of Neuroscience, 26, 8492–8501.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M. K., Tang, C., Verpelli, C., Narayanan, R., Stearns, M. H., Xu, R. M., Li, H., Sala, C., & Hayashi, Y. (2009). The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell, 137, 159–171.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, A. I., Blace, N., Crary, J. F., Serrano, P. A., Leitges, M., Libien, J. M., Weinstein, G., Tcherapanov, A., & Sacktor, T. C. (2003). Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. Journal of Biological Chemistry, 278, 40305–40316.

    Article  PubMed  CAS  Google Scholar 

  • Herron, C. E., Lester, R. A., Coan, E. J., & Collingridge, G. L. (1986). Frequency-dependent involvement of NMDA receptors in the hippocampus: A novel synaptic mechanism. Nature, 322, 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Hevroni, D., Rattner, A., Bundman, M., Lederfein, D., Gabarah, A., Mangelus, M., Silverman, M. A., Kedar, H., Naor, C., Kornuc, M., Hanoch, T., Seger, R., Theill, L. E., Nedivi, E., Richter-Levin, G., & Citri, Y. (1998). Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. Journal of Molecular Neuroscience, 10, 75–98.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S. J., Li, H., Becker, K. G., Dawson, V. L., & Dawson, T. M. (2004). Identification and analysis of plasticity-induced late-response genes. Proceedings of the National Academy of Sciences of the United States of America, 101, 2145–2150.

    Article  PubMed  CAS  Google Scholar 

  • Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C., & Kasai, H. (2008). The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron, 57, 719–729.

    Article  PubMed  CAS  Google Scholar 

  • Horton, A. C., & Ehlers, M. D. (2003). Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. Journal of Neuroscience, 23, 6188–6199.

    PubMed  CAS  Google Scholar 

  • Hu, J. H., Park, J. M., Park, S., Xiao, B., Dehoff, M. H., Kim, S., Hayashi, T., Schwarz, M. K., Huganir, R. L., Seeburg, P. H., Linden, D. J., & Worley, P. F. (2010). Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron, 68, 1128–1142.

    Article  PubMed  CAS  Google Scholar 

  • Huber, K. M., Gallagher, S. M., Warren, S. T., & Bear, M. F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proceedings of the National Academy of Sciences of the United States of America, 99, 7746–7750.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, P., Beilharz, E., Gluckman, P., & Dragunow, M. (1993). Brain-derived neurotrophic factor is induced as an immediate early gene following N-methyl-D-aspartate receptor activation. Neuroscience, 57, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Im, Y. J., Lee, J. H., Park, S. H., Park, S. J., Rho, S. H., Kang, G. B., Kim, E., & Eom, S. H. (2003). Crystal structure of the Shank PDZ-ligand complex reveals a class I PDZ interaction and a novel PDZ-PDZ dimerization. Journal of Biological Chemistry, 278, 48099–48104.

    Article  PubMed  CAS  Google Scholar 

  • Ingi, T., Krumins, A. M., Chidiac, P., Brothers, G. M., Chung, S., Snow, B. E., Barnes, C. A., Lanahan, A. A., Siderovski, D. P., Ross, E. M., Gilman, A. G., & Worley, P. F. (1998). Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. Journal of Neuroscience, 18, 7178–7188.

    PubMed  CAS  Google Scholar 

  • Irwin, S. A., Patel, B., Idupulapati, M., Harris, J. B., Crisostomo, R. A., Larsen, B. P., Kooy, F., Willems, P. J., Cras, P., Kozlowski, P. B., Swain, R. A., Weiler, I. J., & Greenough, W. T. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: A quantitative examination. American Journal of Medical Genetics, 98, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Ozawa, F., Saitoh, Y., Hirai, K., & Inokuchi, K. (1997). vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Letters, 412, 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Kato, A., Ozawa, F., Saitoh, Y., Fukazawa, Y., Sugiyama, H., & Inokuchi, K. (1998). Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. Journal of Biological Chemistry, 273, 23969–23975.

    Article  PubMed  CAS  Google Scholar 

  • Kauselmann, G., Weiler, M., Wulff, P., Jessberger, S., Konietzko, U., Scafidi, J., Staubli, U., Bereiter-Hahn, J., Strebhardt, K., & Kuhl, D. (1999). The polo-like protein kinases Fnk and Snk associate with a Ca2+- and integrin-binding protein and are regulated dynamically with synaptic plasticity. EMBO Journal, 18, 5528–5539.

    Article  PubMed  CAS  Google Scholar 

  • Kindler, S., & Monshausen, M. (2002). Candidate RNA-binding proteins regulating extrasomatic mRNA targeting and translation in mammalian neurons. Molecular Neurobiology, 25, 149–165.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, C., Takahashi, M., Kondoh, Y., Tashiro, H., & Tashiro, T. (2007). Identification of synaptic activity-dependent genes by exposure of cultured cortical neurons to tetrodotoxin followed by its withdrawal. Journal of Neuroscience Research, 85, 2385–2399.

    Article  PubMed  CAS  Google Scholar 

  • Kitanishi, T., Ikegaya, Y., Matsuki, N., & Yamada, M. K. (2009). Experience-dependent, rapid structural changes in hippocampal pyramidal cell spines. Cerebral Cortex, 19, 2572–2578.

    Article  PubMed  Google Scholar 

  • Krug, M., Lossner, B., & Ott, T. (1984). Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Research Bulletin, 13, 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Kuriu, T., Inoue, A., Bito, H., Sobue, K., & Okabe, S. (2006). Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. Journal of Neuroscience, 26, 7693–7706.

    Article  PubMed  CAS  Google Scholar 

  • Lanahan, A., & Worley, P. (1998). Immediate-early genes and synaptic function. Neurobiology of Learning and Memory, 70, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Pelletier, M. R., Perez Velazquez, J. L., & Carlen, P. L. (2002). Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Molecular and Cellular Neuroscience, 19, 138–151.

    Article  PubMed  CAS  Google Scholar 

  • Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U., & Kuhl, D. (1995). Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proceedings of the National Academy of Sciences of the United States of America, 92, 5734–5738.

    Article  PubMed  CAS  Google Scholar 

  • Loebrich, S., & Nedivi, E. (2009). The function of activity-regulated genes in the nervous system. Physiological Reviews, 89, 1079–1103.

    Article  PubMed  CAS  Google Scholar 

  • Lyford, G. L., Yamagata, K., Kaufmann, W. E., Barnes, C. A., Sanders, L. K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Lanahan, A. A., & Worley, P. F. (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron, 14, 433–445.

    Article  PubMed  CAS  Google Scholar 

  • Martin, K. C., Casadio, A., Zhu, H., Yaping, E., Rose, J. C., Chen, M., Bailey, C. H., & Kandel, E. R. (1997). Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: A function for local protein synthesis in memory storage. Cell, 91, 927–938.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, R., Kato, A., Sakaki, Y., & Inokuchi, K. (1998). Cataloging altered gene expression during rat hippocampal long-term potentiation by means of differential display. Neuroscience Letters, 244, 173–176.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, M., Honkura, N., Ellis-Davies, G. C., & Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature, 429, 761–766.

    Article  PubMed  CAS  Google Scholar 

  • Mayford, M., Baranes, D., Podsypanina, K., & Kandel, E. R. (1996). The 3′-untranslated region of CaMKIIα is a cis-acting signal for the localization and translation of mRNA in dendrites. Proceedings of the National Academy of Sciences of the United States of America, 93, 13250–13255.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S., Yasuda, M., Coats, J. K., Jones, Y., Martone, M. E., & Mayford, M. (2002). Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron, 36, 507–519.

    Article  PubMed  CAS  Google Scholar 

  • Moccia, R., Chen, D., Lyles, V., Kapuya, E., E, Y., Kalachikov, S., Spahn, C. M., Frank, J., Kandel, E. R., Barad, M., & Martin, K. C. (2003). An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. Journal of Neuroscience, 23, 9409–9417.

    PubMed  CAS  Google Scholar 

  • Nedivi, E., Hevroni, D., Naot, D., Israeli, D., & Citri, Y. (1993). Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature, 363, 718–722.

    Article  PubMed  CAS  Google Scholar 

  • Nedivi, E., Wu, G. Y., & Cline, H. T. (1998). Promotion of dendritic growth by CPG15, an activity-induced signaling molecule. Science, 281, 1863–1866.

    Article  PubMed  CAS  Google Scholar 

  • Newton, S. S., Collier, E. F., Hunsberger, J., Adams, D., Terwilliger, R., Selvanayagam, E., & Duman, R. S. (2003). Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. Journal of Neuroscience, 23, 10841–10851.

    PubMed  CAS  Google Scholar 

  • Nimchinsky, E. A., Oberlander, A. M., & Svoboda, K. (2001). Abnormal development of dendritic spines in FMR1 knock-out mice. Journal of Neuroscience, 21, 5139–5146.

    PubMed  CAS  Google Scholar 

  • Okabe, S. (2007). Molecular anatomy of the postsynaptic density. Molecular and Cellular Neuroscience, 34, 503–518.

    Article  PubMed  CAS  Google Scholar 

  • Okada, D., Ozawa, F., & Inokuchi, K. (2009). Input-specific spine entry of soma-derived Vesl-1 S protein conforms to synaptic tagging. Science, 324, 904–909.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Nagai, T., Miyawaki, A., & Hayashi, Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neuroscience, 7, 1104–1112.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, K., Bosch, M., & Hayashi, Y. (2009). The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: A potential molecular identity of a synaptic tag? Physiology (Bethesda, MD), 24, 357–366.

    Article  CAS  Google Scholar 

  • Okuno, H. (2011). Regulation and function of immediate-early genes in the brain: Beyond neuronal activity markers. Neuroscience Research, 69, 175–186.

    Article  PubMed  CAS  Google Scholar 

  • Osten, P., Valsamis, L., Harris, A., & Sacktor, T. C. (1996). Protein synthesis-dependent formation of protein kinase Mzeta in long-term potentiation. Journal of Neuroscience, 16, 2444–2451.

    PubMed  CAS  Google Scholar 

  • Ostroff, L. E., Fiala, J. C., Allwardt, B., & Harris, K. M. (2002). Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron, 35, 535–545.

    Article  PubMed  CAS  Google Scholar 

  • Otani, S., Marshall, C. J., Tate, W. P., Goddard, G. V., & Abraham, W. C. (1989). Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience, 28, 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang, Y., Rosenstein, A., Kreiman, G., Schuman, E. M., & Kennedy, M. B. (1999). Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. Journal of Neuroscience, 19, 7823–7833.

    PubMed  CAS  Google Scholar 

  • Park, C. S., Gong, R., Stuart, J., & Tang, S. J. (2006). Molecular network and chromosomal clustering of genes involved in synaptic plasticity in the hippocampus. Journal of Biological Chemistry, 281, 30195–30211.

    Article  PubMed  CAS  Google Scholar 

  • Plath, N., Ohana, O., Dammermann, B., Errington, M. L., Schmitz, D., Gross, C., Mao, X., Engelsberg, A., Mahlke, C., Welzl, H., Kobalz, U., Stawrakakis, A., Fernandez, E., Waltereit, R., Bick-Sander, A., Therstappen, E., Cooke, S. F., Blanquet, V., Wurst, W., Salmen, B., Bosl, M. R., Lipp, H. P., Grant, S. G., Bliss, T. V., Wolfer, D. P., & Kuhl, D. (2006). Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron, 52, 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Poon, M. M., Choi, S. H., Jamieson, C. A., Geschwind, D. H., & Martin, K. C. (2006). Identification of process-localized mRNAs from cultured rodent hippocampal neurons. Journal of Neuroscience, 26, 13390–13399.

    Article  PubMed  CAS  Google Scholar 

  • Qian, Z., Gilbert, M. E., Colicos, M. A., Kandel, E. R., & Kuhl, D. (1993). Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature, 361, 453–457.

    Article  PubMed  CAS  Google Scholar 

  • Raivich, G., & Behrens, A. (2006). Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Progress in Neurobiology, 78, 347–363.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, B., & Frey, J. U. (2009). Interfering with the actin network and its effect on long-term potentiation and synaptic tagging in hippocampal CA1 neurons in slices in vitro. Journal of Neuroscience, 29, 12167–12173.

    Article  PubMed  CAS  Google Scholar 

  • Rauscher, F. J., 3rd, Cohen, D. R., Curran, T., Bos, T. J., Vogt, P. K., Bohmann, D., Tjian, R., & Franza, B. R., Jr. (1988). Fos-associated protein p39 is the product of the jun proto-oncogene. Science, 240, 1010–1016.

    Article  PubMed  CAS  Google Scholar 

  • Redondo, R. L., & Morris, R. G. (2011). Making memories last: The synaptic tagging and capture hypothesis. Nature Reviews Neuroscience, 12, 17–30.

    Article  PubMed  CAS  Google Scholar 

  • Reijmers, L. G., Perkins, B. L., Matsuo, N., & Mayford, M. (2007). Localization of a stable neural correlate of associative memory. Science, 317, 1230–1233.

    Article  PubMed  CAS  Google Scholar 

  • Rial Verde, E. M., Lee-Osbourne, J., Worley, P. F., Malinow, R., & Cline, H. T. (2006). Increased expression of the immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron, 52, 461–474.

    Article  PubMed  CAS  Google Scholar 

  • Romorini, S., Piccoli, G., Jiang, M., Grossano, P., Tonna, N., Passafaro, M., Zhang, M., & Sala, C. (2004). A functional role of postsynaptic density-95-guanylate kinase-associated protein complex in regulating Shank assembly and stability to synapses. Journal of Neuroscience, 24, 9391–9404.

    Article  PubMed  CAS  Google Scholar 

  • Rong, R., Ahn, J. Y., Huang, H., Nagata, E., Kalman, D., Kapp, J. A., Tu, J., Worley, P. F., Snyder, S. H., & Ye, K. (2003). PI3 kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis. Nature Neuroscience, 6, 1153–1161.

    Article  PubMed  CAS  Google Scholar 

  • Ryder, K., Lau, L. F., & Nathans, D. (1988). A gene activated by growth factors is related to the oncogene v-jun. Proceedings of the National Academy of Sciences of the United States of America, 85, 1487–1491.

    Article  PubMed  CAS  Google Scholar 

  • Rylski, M., & Kaczmarek, L. (2004). AP-1 targets in the brain. Frontiers in Bioscience, 9, 8–23.

    Article  PubMed  CAS  Google Scholar 

  • Sacco, T., & Sacchetti, B. (2010). Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science, 329, 649–656.

    Article  PubMed  CAS  Google Scholar 

  • Saffen, D. W., Cole, A. J., Worley, P. F., Christy, B. A., Ryder, K., & Baraban, J. M. (1988). Convulsant-induced increase in transcription factor messenger RNAs in rat brain. Proceedings of the National Academy of Sciences of the United States of America, 85, 7795–7799.

    Article  PubMed  CAS  Google Scholar 

  • Sajikumar, S., Navakkode, S., Sacktor, T. C., & Frey, J. U. (2005). Synaptic tagging and cross-tagging: The role of protein kinase Mzeta in maintaining long-term potentiation but not long-term depression. Journal of Neuroscience, 25, 5750–5756.

    Article  PubMed  CAS  Google Scholar 

  • Sala, C., Piech, V., Wilson, N. R., Passafaro, M., Liu, G., & Sheng, M. (2001). Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron, 31, 115–130.

    Article  PubMed  CAS  Google Scholar 

  • Sala, C., Futai, K., Yamamoto, K., Worley, P. F., Hayashi, Y., & Sheng, M. (2003). Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. Journal of Neuroscience, 23, 6327–6337.

    PubMed  CAS  Google Scholar 

  • Schütt, J., Falley, K., Richter, D., Kreienkamp, H. J., & Kindler, S. (2009). Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities. Journal of Biological Chemistry, 284, 25479–25487.

    Article  PubMed  CAS  Google Scholar 

  • Seeburg, D. P., & Sheng, M. (2008). Activity-induced Polo-like kinase 2 is required for homeostatic plasticity of hippocampal neurons during epileptiform activity. Journal of Neuroscience, 28, 6583–6591.

    Article  PubMed  CAS  Google Scholar 

  • Seeburg, D. P., Feliu-Mojer, M., Gaiottino, J., Pak, D. T., & Sheng, M. (2008). Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron, 58, 571–583.

    Article  PubMed  CAS  Google Scholar 

  • Shema, R., Sacktor, T. C., & Dudai, Y. (2007). Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science, 317, 951–953.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, M., & Hoogenraad, C. C. (2007). The postsynaptic architecture of excitatory synapses: A more quantitative view. Annual Review of Biochemistry, 76, 823–847.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, J. D., Rumbaugh, G., Wu, J., Chowdhury, S., Plath, N., Kuhl, D., Huganir, R. L., & Worley, P. F. (2006). Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron, 52, 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi-Yamaguchi, Y., & Furuichi, T. (2007). The Homer family proteins. Genome Biology, 8, 206.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O., & Levy, W. B. (1982). Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. Journal of Neuroscience, 2, 284–291.

    PubMed  CAS  Google Scholar 

  • Steward, O., & Worley, P. (2001). Localization of mRNAs at synaptic sites on dendrites. Results and Problems in Cell Differentiation, 34, 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O., Wallace, C. S., Lyford, G. L., & Worley, P. F. (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron, 21, 741–751.

    Article  PubMed  CAS  Google Scholar 

  • Tu, J. C., Xiao, B., Yuan, J. P., Lanahan, A. A., Leoffert, K., Li, M., Linden, D. J., & Worley, P. F. (1998). Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron, 21, 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Tu, J. C., Xiao, B., Naisbitt, S., Yuan, J. P., Petralia, R. S., Brakeman, P., Doan, A., Aakalu, V. K., Lanahan, A. A., Sheng, M., & Worley, P. F. (1999). Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron, 23, 583–592.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends in Neurosciences, 22, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature, 391, 892–896.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D. O., Kim, S. M., Zhao, Y., Hwang, H., Miura, S. K., Sossin, W. S., & Martin, K. C. (2009). Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science, 324, 1536–1540.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D. O., Martin, K. C., & Zukin, R. S. (2010). Spatially restricting gene expression by local translation at synapses. Trends in Neurosciences, 33, 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Westmark, P. R., Westmark, C. J., Wang, S., Levenson, J., O’Riordan, K. J., Burger, C., & Malter, J. S. (2010). Pin1 and PKMzeta sequentially control dendritic protein synthesis. Science Signaling, 3, ra18.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, G., Pan, L., Xing, W., Zhang, L., Huang, L., Yu, J., Zhang, R., Wu, J., Cheng, J., & Zhou, Y. (2007). Identification of activity-dependent gene expression profiles reveals specific subsets of genes induced by different routes of Ca2+ entry in cultured rat cortical neurons. Journal of Cellular Physiology, 212, 126–136.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, B., Tu, J. C., & Worley, P. F. (2000). Homer: A link between neural activity and glutamate receptor function. Current Opinion in Neurobiology, 10, 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata, K., Andreasson, K. I., Kaufmann, W. E., Barnes, C. A., & Worley, P. F. (1993). Expression of a mitogen-inducible cyclooxygenase in brain neurons: Regulation by synaptic activity and glucocorticoids. Neuron, 11, 371–386.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata, K., Sanders, L. K., Kaufmann, W. E., Yee, W., Barnes, C. A., Nathans, D., & Worley, P. F. (1994). rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. Journal of Biological Chemistry, 269, 16333–16339.

    PubMed  CAS  Google Scholar 

  • Yamagata, K., Andreasson, K. I., Sugiura, H., Maru, E., Dominique, M., Irie, Y., Miki, N., Hayashi, Y., Yoshioka, M., Kaneko, K., Kato, H., & Worley, P. F. (1999). Arcadlin is a neural activity-regulated cadherin involved in long term potentiation. Journal of Biological Chemistry, 274, 19473–11979.

    Article  PubMed  CAS  Google Scholar 

  • Yao, Y., Kelly, M. T., Sajikumar, S., Serrano, P., Tian, D., Bergold, P. J., Frey, J. U., & Sacktor, T. C. (2008). PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. Journal of Neuroscience, 28, 7820–7827.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, S., Tanaka, H., Sugiura, H., Okamura, K., Sakaguchi, T., Tran, U., Takemiya, T., Mizoguchi, A., Yagita, Y., Sakurai, T., De Robertis, E. M., & Yamagata, K. (2007). Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2β and p38 MAP kinases. Neuron, 56, 456–471.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, J. P., Kiselyov, K., Shin, D. M., Chen, J., Shcheynikov, N., Kang, S. H., Dehoff, M. H., Schwarz, M. K., Seeburg, P. H., Muallem, S., & Worley, P. F. (2003). Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell, 114, 777–789.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to collaborators of our works introduced here, especially Drs. Mariko Kato-Hayashi, Carlo Sala, Morgan Sheng, Atsushi Miyawaki, Rui-ming Xu, Huilin Li, Mriganka Sur, and members of their laboratories. We thank Drs. Dan Ohtan Wang and Lily Yu for comments on the manuscript. This work was supported by RIKEN, NIH grant R01DA17310, Grant-in-Aid for Scientific Research (A) and Grant-in-Aid for Scientific Research on Innovative Area “Foundation of Synapse and Neurocircuit Pathology” from the Ministry of Education, Science, and Culture of Japan to YH. MB is a recipient of a Beatriu de Pinós fellowship from the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Hayashi, Y., Okamoto, Ki., Bosch, M., Futai, K. (2012). Roles of Neuronal Activity-Induced Gene Products in Hebbian and Homeostatic Synaptic Plasticity, Tagging, and Capture. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_15

Download citation

Publish with us

Policies and ethics