Skip to main content

Plasticity based crack models and applications

  • Chapter
Book cover Numerical Modeling of Concrete Cracking

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 532))

Abstract

Models for the numerical simulation of concrete cracking are traditionally based either on the smeared crack approach or the discrete crack approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H. Kupfer, H.K. Hilsdorf and H. Rüsch, Behavior of Concrete under Biaxial Stresses, ACI Journal, Vol. 66, pages 656–666, 1969.

    Google Scholar 

  2. J. Walraven, H. Reinhardt, Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading, Heron 26:5–68, 1981.

    Google Scholar 

  3. J.G.M. van Mier, Complete Stress-Strain Behavior and Damaging Status of Concrete under Multiaxial Conditions, Proceedings of the International Conference on Concrete under Multiaxial Conditions, RILEM — CEB — CNRS, Presses de’l Université Paul Sabatier, Toulouse, 1984, pages 75–85, 1984.

    Google Scholar 

  4. RILEM TC50-FMC: Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams, RILEM Materials and Structures, Vol. 107, pages 407–413, 1985.

    Google Scholar 

  5. J. Oliver, A consistent characteristic length for smeared cracking models, International Journal for Numerical Methods in Engineering 28, 431–474 1989.

    Article  Google Scholar 

  6. M.A. Crisfield and J. Wills, Analysis of R/C panels using different concrete models, Journal of Engineering Mechanics, Vol. 115, pages 578–597, 1989.

    Article  Google Scholar 

  7. J. Lubliner, Plasticity Theory, Macmillan, New York, 1990.

    MATH  Google Scholar 

  8. CEB-FIP Model Code 1990. Bulletin d’information, Comité Euro-International du Béton (CEB), Lausanne, 1991.

    Google Scholar 

  9. Hassanzadeh M. Behavior of fracture process zones in concrete influenced by simultaneously applied normal and shear displacements. Dissertation, Lund Institute; 1992.

    Google Scholar 

  10. M.B. Nooru-Mohamed. Mixed-mode fracture of concrete: An experimental approach. Ph.D. Thesis, Delft University of Technology, Delft, 1992.

    Google Scholar 

  11. O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Computer Methods in Applied Mechanics and Engineering, 101, 207–224, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Simo, J. Oliver, F. Armero, An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Computational Mechanics, 12, 277–296, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Hofstetter and H. Mang, Computational Mechanics of Reinforced Concrete Structures, Vieweg Verlag, 1995.

    Google Scholar 

  14. J. Oliver, Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals, International Journal for Numerical Methods in Engineering, 39:3575–3600, 1996.

    Article  MATH  Google Scholar 

  15. P.H. Feenstra and R. de Borst, A composite plasticity model for concrete, International Journal of Solids and Structures, Vol. 33, pages 707–730, 1996.

    Article  MATH  Google Scholar 

  16. J.G.M. van Mier. Fracture Processes of Concrete. Series: New Directions in Civil Engineering, Vol. 12, CRC Press, 1997.

    Google Scholar 

  17. R. Meiswinkel and H. Rahm, Modelling tension stiffening in RC structures regarding non-linear design analyses, European Conference on Computational Mechanics (ECCM 1999), CD-ROM, 20 pages, 1999.

    Google Scholar 

  18. R. I. Borja, A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation, Computer Methods in Applied Mechanics and Engineering, 190, 1529–1549, 2000.

    Article  MATH  Google Scholar 

  19. A. Vigl, Honeycomb segmental tunnel linings — simple, economical, successful, Felsbau, Vol. 18, pages 24–31, 2000.

    Google Scholar 

  20. B. Trunk, Einfluss der Bauteilgröβe auf die Bruchenergie von Beton, AEDIFICATIO Publishers, D-79104 Freiburg, 2000.

    Google Scholar 

  21. [Jirasek(2001)] Jirásek M, Zimmermann T, Embedded crack model: Part II: Combination with smeared cracks, International Journal for Numerical Methods in Engineering, 50(6):1291–1305, 2001.

    Google Scholar 

  22. B. Winkler, Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton, Dissertation, University of Innsbruck, Austria, 2001.

    Google Scholar 

  23. B. Winkler, G. Hofstetter and G. Niederwanger, Experimental verification of a constitutive model for concrete cracking, Proceedings of the Institution of Mechanical Engineers, Part L, Materials: Design and Applications, Vol. 215, pages 75–86, 2001.

    Google Scholar 

  24. M. Jirásek, and T. Belytschko, Computational resolution of strong discontinuities, Proc.World Congress on Computational Mechanics, WCCM V, Eds.: Mang, H.A. and Rammerstorfer, F.G. and Eberhardsteiner, J., Vienna University of Technology, Austria, http://wccm.tuwien.ac.at, 2002.

    Google Scholar 

  25. J. Oliver, A. E. Huespe, E. Samaniego, E. W. V. Chaves, On strategies for tracking strong discontinuities in computational failure mechanics, in: H. Mang, F. Rammerstorfer, J. Eberhardsteiner (Eds.), Proc.World Congress on Computational Mechanics, WCCM V, Vienna University of Technology, Austria, 2002, http://wccm.tuwien.ac.at.

    Google Scholar 

  26. E. Samaniego, Contributions to the Continuum Modelling of Strong Discontinuities in Two-dimensional Solids, Ph.D. thesis, UPC Barcelona, 2003.

    Google Scholar 

  27. J. Mosler, G. Meschke, 3D modeling of strong discontinuities in elastoplastic solids: Fixed and rotating localization formulations, International Journal for Numerical Methods in Engineering 57, 1553–1576, 2003.

    Article  MATH  Google Scholar 

  28. S. Rolshoven, M. Jirásek. Numerical aspects of nonlocal plasticity with strain softening. In N. Bićanić, R. de Borst, H. Mang, and G. Meschke, editors, Computational Modelling of Concrete Structures (EURO-C 2003), St. Johann im Pongau, Austria, Lisse, The Netherlands, Swets & Zeitlinger B.V., 305–314, 2003.

    Google Scholar 

  29. B. Winkler, G. Hofstetter and H. Lehar, Application of a constitutive model for concrete to the analysis of a precast segmental tunnel lining, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 28, pages 797–819, 2004.

    Article  MATH  Google Scholar 

  30. J. Oliver and A.E. Huespe and P.J. Sanchez, A comparative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM, Computer Methods in Applied Mechanics and Engineering, 195, 4732–4752, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Feist, G. Hofstetter, An Embedded Strong Discontinuity Model for Cracking of Plain Concrete, Computer Methods in Applied Mechanics and Engineering, 195, 7115–7138, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  32. ABAQUS Inc., ABAQUS/Standard Users Manual, Version 6.6, Providence, RI, USA, 2006.

    Google Scholar 

  33. C. Feist, G. Hofstetter, Three-dimensional fracture simulations based on the SDA, International Journal for Numerical and Analytical Methods in Geomechanics, 31, 189–212, 2007.

    Article  MATH  Google Scholar 

  34. Y. Theiner, G. Hofstetter, Numerical Prediction of Crack Propagation and Crack Widths in Concrete Structures, Engineering Structures, 31, 1832–1840, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Hofstetter, G., Feist, C., Lehar, H., Theiner, Y., Valentini, B., Winkler, B. (2011). Plasticity based crack models and applications. In: Hofstetter, G., Meschke, G. (eds) Numerical Modeling of Concrete Cracking. CISM International Centre for Mechanical Sciences, vol 532. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0897-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0897-0_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0896-3

  • Online ISBN: 978-3-7091-0897-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics