Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 532))

Abstract

Continuum damage mechanics is a constitutive theory that describes the progressive loss of material integrity due to the propagation and coalescence of microcracks, microvoids, and similar defects. These changes in the microstructure lead to a degradation of material stiffness observed on the macroscale. The term “continuum damage mechanics” was first used by Hult in 1972 but the concept of damage had been introduced by Kachanov already in 1958 in the context of creep rupture (Kachanov, 1958) and further developed by Rabotnov (1968); Hayhurst (1972); Leckie and Hayhurst (1974). The simplest version of the isotropic damage model considers the damaged stiffness tensor as a scalar multiple of the initial elastic stiffness tensor, i.e., damage is characterized by a single scalar variable. A general isotropic damage model should deal with two scalar variables corresponding to two independent elastic constants of standard isotropic elasticity. More refined theories take into account the anisotropic character of damage; they represent damage by a family of vectors (Krajcinovic and Fonseka, 1981), by a second-order tensor (Vakulenko and Kachanov, 1971) or, in the most general case, by a fourth-order tensor (Chaboche, 1979). Anisotropic formulations can be based on the principle of strain equivalence (Lemaitre, 1971), or on the principle of energy equivalence (Cordebois and Sidoroff, 1979) (the principle of stress equivalence is also conceptually possible but is rarely used).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • E. C. Aifantis. On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology, ASME, 106:326–330, 1984.

    Article  Google Scholar 

  • Z. P. Bažant and M. Jirásek. Nonlocal integral formulations of plasticity and damage: Survey of progress. Journal of Engineering Mechanics, ASCE, 128:1119–1149, 2002.

    Article  Google Scholar 

  • Z. P. Bažant and F.-B. Lin. Nonlocal smeared cracking model for concrete fracture. Journal of Engineering Mechanics, ASCE, 114:2493–2510, 1988a.

    Google Scholar 

  • Z. P. Bažant and F.-B. Lin. Nonlocal yield-limit degradation. International Journal for Numerical Methods in Engineering, 26:1805–1823, 1988b.

    Article  MATH  Google Scholar 

  • Z. P. Bažant and G. Di Luzio. Nonlocal microplane model with strain-softening yield limits. International Journal of Solids and Structures, 41:7209–7240, 2004.

    Article  MATH  Google Scholar 

  • Z. P. Bažant and B.-H. Oh. Crack band theory for fracture of concrete. Materials and Structures, 16:155–177, 1983.

    Google Scholar 

  • Z. P. Bažant and J. Ožbolt. Nonlocal microplane model for fracture, damage, and size effect in structures. Journal of Engineering Mechanics, ASCE, 116:2485–2505, 1990.

    Article  Google Scholar 

  • L. Cedolin and S. Dei Poli. Finite element studies of shear-critical R/C beams. Journal of Engineering Mechanics, ASCE, 103(3):395–410, 1977.

    Google Scholar 

  • J. L. Chaboche. Le concept de contrainte effective, appliqué à l’élasticité et à la viscoplasticité en présence d’un endommagement anisotrope. Number 295 in Col. Euromech 115, pages 737–760, Grenoble, 1979. Editions du CNRS.

    Google Scholar 

  • CEB91. CEB-FIP Model Code 1990, Design Code. Comité Euro-International du Béton, Lausanne, Switzerland, 1991.

    Google Scholar 

  • R. J. Cope, P. V. Rao, L. A. Clark, and P. Norris. Modelling of reinforced concrete behaviour for finite element analysis of bridge slabs. In C. Taylor et al, editor, Numerical Methods for Nonlinear Problems, volume 1, pages 457–470, Swansea, 1980. Pineridge Press.

    Google Scholar 

  • J. P. Cordebois and F. Sidoroff. Anisotropie élastique induite par endommagement. In Comportement mécanique des solides anisotropes, number 295 in Colloques internationaux du CNRS, pages 761–774, Grenoble, 1979. Editions du CNRS.

    Google Scholar 

  • R. de Borst and P. Nauta. Non-orthogonal cracks in a smeared finite element model. Engineering Computations, 2:35–46, 1985.

    Article  Google Scholar 

  • J. H. P. de Vree, W. A. M. Brekelmans, and M. A. J. van Gils. Comparison of nonlocal approaches in continuum damage mechanics. Computers and Structures, 55:581–588, 1995.

    Article  MATH  Google Scholar 

  • A. C. Eringen. On nonlocal plasticity. International Journal of Engineering Science, 19:1461–1474, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  • A. C. Eringen. Theories of nonlocal plasticity. International Journal of Engineering Science, 21:741–751, 1983.

    Article  MATH  Google Scholar 

  • A. K. Gupta and H. Akbar. Cracking in reinforced concrete analysis. Journal of Structural Engineering, ASCE, 110(8): 1735–1746, 1984.

    Article  Google Scholar 

  • J. Hadamard. Leçons sur la propagation des ondes. Librairie Scientifique A. Hermann et Fils, Paris, 1903.

    MATH  Google Scholar 

  • D. R. Hayhurst. Creep rupture under multi-axial state of stress. Journal of the Mechanics and Physics of Solids, 20:381–390, 1972.

    Article  Google Scholar 

  • R. Hill. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 6:236–249, 1958.

    MATH  Google Scholar 

  • D. A. Hordijk. Local approach to fatigue of concrete. PhD thesis, Delft University of Technology, Delft, The Netherlands, 1991.

    Google Scholar 

  • M. Jirásek and T. Zimmermann. Rotating crack model with transition to scalar damage: I. Local formulation, II. Nonlocal formulation and adaptivity. LSC Internal Report 97/01, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1997.

    Google Scholar 

  • M. Jirásek and Th. Zimmermann. Analysis of rotating crack model. Journal of Engineering Mechanics, ASCE, 124:842–851, 1998a.

    Article  Google Scholar 

  • M. Jirásek and Th. Zimmermann. Rotating crack model with transition to scalar damage. Journal of Engineering Mechanics, ASCE, 124:277–284, 1998b.

    Article  Google Scholar 

  • L. M. Kachanov. Time of the rupture process under creep conditions. Izvestija Akademii Nauk SSSR, Otdelenie Techniceskich Nauk, 8:26–31, 1958.

    Google Scholar 

  • H.A. Kormeling and H. W. Reinhardt. Determination of the fracture energy of normal concrete and epoxy modified concrete. Technical Report 5-83-18, Stevin Lab, Delft University of Technology, 1983.

    Google Scholar 

  • D. Krajcinovic and G. U. Fonseka. The continuous damage theory of brittle materials. Journal of Applied Mechanics, ASME, 48:809–824, 1981.

    Article  MATH  Google Scholar 

  • H. Kupfer, H. K. Hilsdorf, and H. Rüsch. Behavior of concrete under biaxial stresses. Journal of the American Concrete Institute, 66:656–666, 1969.

    Google Scholar 

  • F. A. Leckie and D. R. Hayhurst. Creep rupture of structures. Proceedings of the Royal Society A, 340:323–347, 1974.

    Article  MATH  Google Scholar 

  • J. Lemaitre. Evaluation of dissipation, damage in metals submitted to dynamic loading. In Proc. Ist International Conference on Mechanical Behavior of Materials, 1971.

    Google Scholar 

  • J. Lemaitre and R. Desmorat. Engineering Damage Mechanics. Springer, Berlin, Heidelberg, New York, 2005.

    Google Scholar 

  • J. Mazars. Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. Thèse de Doctorat d’Etat, Université Paris VI., France, 1984.

    Google Scholar 

  • J. Mazars. A description of micro and macroscale damage of concrete structures. International Journal of Fracture, 25:729–737, 1986.

    Google Scholar 

  • M. B. Nooru-Mohamed. Mixed-mode fracture of concrete: An experimental approach. PhD thesis, Delft University of Technology, The Netherlands, 1992.

    Google Scholar 

  • J. Oliver. A consistent characteristic length for smeared cracking models. International Journal for Numerical Methods in Engineering, 28:461–474, 1989.

    Article  MATH  Google Scholar 

  • N. Ottosen and K. Runesson. Properties of discontinuous bifurcation solutions in elasto-plasticity. International Journal of Solids and Structures, 27:401–421, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Ožbolt and Z. P. Bažant. Numerical smeared fracture analysis: Nonlocal microcrack interaction approach. International Journal for Numerical Methods in Engineering, 39:635–661,1996.

    Article  MATH  Google Scholar 

  • R. H. J. Peerlings, R. de Borst, W. A. M. Brekelmans, and J. H. P. de Vree. Gradient-enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 39:3391–3403, 1996.

    Article  MATH  Google Scholar 

  • S. Pietruszczak and Z. Mróz. Finite element analysis of deformation of strain-softening materials. International Journal for Numerical Methods in Engineering, 17:327–334, 1981.

    Article  Google Scholar 

  • G. Pijaudier-Cabot and Z. P. Bažant. Nonlocal damage theory. Journal of Engineering Mechanics, ASCE, 113:1512–1533, 1987.

    Article  Google Scholar 

  • Y. N. Rabotnov. Creep rupture. In Proc. 12th International Congress of Applied Mechanics, Stanford, 1968.

    Google Scholar 

  • Y. R. Rashid. Ultimate strength analysis of prestressed concrete pressure vessels. Nuclear Engineering and Design, 7:334–344, 1968.

    Article  Google Scholar 

  • H. W. Reinhardt, H. A. W. Cornelissen, and D. A. Hordijk. Tensile tests and failure analysis of concrete. Journal of Structural Engineering, ASCE, 112: 2462–2477, 1986.

    Article  Google Scholar 

  • E. Rizzi, I. Carol, and K. Willam. Localization analysis of elastic degradation with application to scalar damage. Journal of Engineering Mechanics, ASCE, 121: 541–554, 1996.

    Google Scholar 

  • J. G. Rots. Computational modeling of concrete fracture. PhD thesis, Delft University of Technology, Delft, The Netherlands, 1988.

    Google Scholar 

  • J. W. Rudnicky and J. R. Rice. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 23:371–394, 1975.

    Article  Google Scholar 

  • C. Saouridis. Identification et numerisation objectives des comportements adoucissants: Une approche multiéchelle de l’endommagement du béton. PhD thesis, Université Paris VI., 1988.

    Google Scholar 

  • A. Simone. Explicit and implicit gradient-enhanced damage models. Revue européenne de génie civil, 11:1023–1044, 2007.

    Article  Google Scholar 

  • L. Strömberg and M. Ristinmaa. FE-formulation of a nonlocal plasticity theory. Computer Methods in Applied Mechanics and Engineering, 136:127–144, 1996.

    Article  MathSciNet  Google Scholar 

  • M. Suidan and W. C. Schnobrich. Finite element analysis of reinforced concrete. Journal of the Structural Division, ASCE, 99(10):2109–2122, 1973.

    Google Scholar 

  • A. A. Vakulenko and M. L. Kachanov. Continuum theory of medium with cracks (in Russian). Mekhanika Tverdogo Tela, (4): 159–166, 1971.

    Google Scholar 

  • V. Červenka, R. Pukl, J. Ožbolt, and R. Eligehausen. Mesh sensitivity in smeared finite element analysis of concrete fracture. In F. H. Wittmann, editor, Fracture Mechanics of Concrete Structures, pages 1387–1396. Aedificatio Publishers, Freiburg, Germany, 1995.

    Google Scholar 

  • S. Weihe. Modelle der fiktiven Riβbildung zur Berechnung der Initiierung und Ausbreitung von Rissen. PhD thesis, Universität Stuttgart, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

Jirásek, M. (2011). Damage and Smeared Crack Models. In: Hofstetter, G., Meschke, G. (eds) Numerical Modeling of Concrete Cracking. CISM International Centre for Mechanical Sciences, vol 532. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0897-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0897-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0896-3

  • Online ISBN: 978-3-7091-0897-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics