Skip to main content

Self-association of STAT Proteins from Monomers to Paracrystals

  • Chapter
  • First Online:
Jak-Stat Signaling : From Basics to Disease

Abstract

STAT transcription factors assemble dimers of variable solubility and complex conformational dynamics. Unphosphorylated STAT dimers are formed through reciprocal N domain (ND) and core fragment (CF) interactions between protomers, resulting in an antiparallel conformation. Phosphorylated STAT dimers, in contrast, oscillate between this antiparallel and an equally stable parallel conformation that requires reciprocal SH2:pTyr interactions. Moreover, the phosphorylated STAT dimers can polymerize, which occurs both on DNA and off DNA. Polymerization of the parallel phosphodimers is DNA-dependent, and results in cooperative DNA binding, whereas antiparallel phosphodimers can polymerize off DNA, resulting in paracrystals that protect the activated STATs from inactivation. Thus, the central event in cytokine signaling – STAT tyrosine phosphorylation – does not initiate STAT dimerization. Rather, STAT activation regulates the partitioning between different dimer conformations and triggers polymerization of the activated dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antunes F, Marg A, Vinkemeier U (2011) STAT1 signaling is not regulated by a phosphorylation-acetylation switch. Mol Cell Biol 31:3029–3037

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Groner B, Müller CW (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394:145–151

    Article  PubMed  CAS  Google Scholar 

  • Begitt A, Droescher M, Knobeloch KP, Vinkemeier U (2011) SUMO conjugation of STAT1 protects cells from hyperresponsiveness to IFN-gamma. Blood 118:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Bernado P, Perez Y, Blobel J, Fernandez-Recio J, Svergun DI, Pons M (2009) Structural characterization of unphosphorylated STAT5a oligomerization equilibrium in solution by small-angle X-ray scattering. Protein Sci 18:716–726

    PubMed  CAS  Google Scholar 

  • Braunstein J, Brutsaert S, Olson R, Schindler C (2003) STATs dimerize in the absence of phosphorylation. J Biol Chem 278:34133–34140

    Article  PubMed  CAS  Google Scholar 

  • Chang HC, Zhang S, Oldham I, Naeger L, Hoey T, Kaplan MH (2003) STAT4 requires the N-terminal domain for efficient phosphorylation. J Biol Chem 278:32471–32477

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93:827–839

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Bhandari R, Vinkemeier U, Van den Akker F, Darnell JE Jr, Kuriyan J (2003) A reinterpretation of the dimerization interface of the N-terminal domains of STATs. Protein Sci 12:361–365

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE Jr (1997) Phosphotyrosine signaling and the single cell: metazoan boundary. Proc Natl Acad Sci USA 94:11767–11769

    Article  PubMed  CAS  Google Scholar 

  • Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Decker T, Kovarik P, Meinke A (1997) GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res 117:121–134

    Google Scholar 

  • Droescher M, Begitt A, Marg A, Zacharias M, Vinkemeier U (2011) Cytokine-induced paracrystals prolong the activity of signal transducers and activators of transcription (STAT) and provide a model for the regulation of protein solubility by small ubiquitin-like modifier (SUMO). J Biol Chem 286:18731–18746

    Article  PubMed  CAS  Google Scholar 

  • Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, Nabholz M, Bucher P (2001) DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J Biol Chem 276:6675–6688

    Article  PubMed  CAS  Google Scholar 

  • Frahm T, Hauser H, Koster M (2005) IFN-type-I-mediated signaling is regulated by modulation of STAT2 nuclear export. J Cell Sci 119:1092–1104

    Article  Google Scholar 

  • Greenlund AC, Morales MO, Viviano BL, Yan H, Krolewski J, Schreiber RD (1995) Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 2:677–687

    Article  PubMed  CAS  Google Scholar 

  • Guo GG, Patel K, Kumar V, Shah M, Fried VA, Etlinger JD, Sehgal PB (2002) Association of the chaperone glucose-regulated protein 58 (GRP58/ER-60/ERp57) with Stat3 in cytosol and plasma membrane complexes. J Interferon Cytokine Res 22:555–563

    Article  PubMed  CAS  Google Scholar 

  • Haan S, Kortylewski M, Behrmann I, Müller-Esterl W, Heinrich PC, Schaper F (2000) Cytoplasmic STAT proteins associate prior to activation. Biochem J 345(Pt 3):417–421

    Article  PubMed  CAS  Google Scholar 

  • Haan C, Kreis S, Margue C, Behrmann I (2006) Jaks and cytokine receptors – an intimate relationship. Biochem Pharmacol 72:1538–1546

    Article  PubMed  CAS  Google Scholar 

  • Haspel RL, Darnell JE Jr (1999) A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc Natl Acad Sci USA 96:10188–10193

    Article  PubMed  CAS  Google Scholar 

  • Haspel RL, Salditt-Georgieff M, Darnell JE Jr (1996) The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J 15:6262–6268

    PubMed  CAS  Google Scholar 

  • Heim MH, Kerr IM, Stark GR, Darnell JE Jr (1995) Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science 267:1347–1349

    Article  PubMed  CAS  Google Scholar 

  • Herrington J, Rui L, Luo G, Yu-Lee LY, Carter-Su C (1999) A functional DNA binding domain is required for growth hormone-induced nuclear accumulation of Stat5B. J Biol Chem 274:5138–5145

    Article  PubMed  CAS  Google Scholar 

  • Horvath CM, Wen Z, Darnell JE Jr (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9:984–994

    Article  PubMed  CAS  Google Scholar 

  • Hou Z, Srivastava S, Mistry MJ, Herbst MP, Bailey JP, Horseman ND (2003) Two tandemly linked interferon-gamma-activated sequence elements in the promoter of glycosylation-dependent cell adhesion molecule 1 gene synergistically respond to prolactin in mouse mammary epithelial cells. Mol Endocrinol 17:1910–1920

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Ivashkiv LB (2009) Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31:539–550

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Minami M, Matsumoto M, Kishimoto T, Akira S (1997) The amino acid residues immediately carboxyl-terminal to the tyrosine phosphorylation site contribute to interleukin 6-specific activation of signal transducer and activator of transcription 3. J Biol Chem 272:9550–9555

    Article  PubMed  CAS  Google Scholar 

  • John S, Vinkemeier U, Soldaini E, Darnell JE Jr, Leonard WJ (1999) The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol 19:1910–1918

    PubMed  CAS  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  PubMed  CAS  Google Scholar 

  • Kawata T, Shevchenko A, Fukuzawa M, Jermyn KA, Totty NF, Zhukovskaya NV, Sterling AE, Mann M, Williams JG (1997) SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in dictyostelium. Cell 89:909–916

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar AK, Dinger MC, Henze C, Brocke-Heidrich K, Horn F (2004) Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells. Biochem J 377:289–297

    Article  PubMed  CAS  Google Scholar 

  • Kristensen IA, Veirum JE, Møller BK, Christiansen M (2011) Novel STAT1 alleles in a patient with impaired resistance to mycobacteria. J Clin Immunol 31:265–271

    Article  PubMed  Google Scholar 

  • Lackmann M, Harpur AG, Oates AC, Mann RJ, Gabriel A, Meutermans W, Alewood PF, Kerr IM, Stark GR, Wilks AF (1998) Biomolecular interaction analysis of IFN gamma-induced signaling events in whole-cell lysates: prevalence of latent STAT1 in high-molecular weight complexes. Growth Factors 16:39–51

    Article  PubMed  CAS  Google Scholar 

  • Leung S, Li X, Stark GR (1996) STATs find that hanging together can be stimulating. Science 273:750–751

    Article  PubMed  CAS  Google Scholar 

  • Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  PubMed  CAS  Google Scholar 

  • Li L, Shaw PE (2004) A STAT3 dimer formed by inter-chain disulphide bridging during oxidative stress. Biochem Biophys Res Commun 322:1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Li X, Leung S, Burns C, Stark GR (1998) Cooperative binding of Stat1-2 heterodimers and ISGF3 to tandem DNA elements. Biochimie 80:703–710

    Article  PubMed  CAS  Google Scholar 

  • Lim C, Cao X (2006) Structure, function, and regulation of STAT proteins. Mol Biosyst 2:536–550

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, Toubiana J, Itan Y, Audry M, Nitschke P et al (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Lödige I, Marg A, Wiesner B, Malecová B, Oelgeschläger T, Vinkemeier U (2005) Nuclear export determines the cytokine sensitivity of STAT transcription factors. J Biol Chem 280:43087–43099

    Google Scholar 

  • Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101:12288–12293

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Ren Z, Parker GN, Sondermann H, Pastorello MA, Wang W, McMurray JS, Demeler B, Darnell JE Jr, Chen X (2005) Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell 17:761–771

    Article  PubMed  CAS  Google Scholar 

  • Meissner T, Krause E, Lödige I, Vinkemeier U (2004a) Arginine methylation of STAT1: a reassessment. Cell 119:587–589

    PubMed  CAS  Google Scholar 

  • Meissner T, Krause E, Vinkemeier U (2004b) Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett 576:27–30

    Article  PubMed  CAS  Google Scholar 

  • Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X, Darnell JE Jr (2006) Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 20:3372–3381

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Vinkemeier U (2010) Assessing sequence-specific DNA binding and transcriptional activity of STAT1 transcription factor. Methods Mol Biol 647:139–159

    Article  PubMed  CAS  Google Scholar 

  • Meyer WK, Reichenbach P, Schindler U, Soldaini E, Nabholz M (1997) Interaction of STAT5 dimers on two low affinity binding sites mediates interleukin 2 (IL-2) stimulation of IL-2 receptor alpha gene transcription. J Biol Chem 272:31821–31828

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U (2003) DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1. Genes Dev 17:1992–2005

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Hendry L, Begitt A, John S, Vinkemeier U (2004) A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of Stat transcription factors. J Biol Chem 279:18998–19007

    Article  PubMed  CAS  Google Scholar 

  • Mikita T, Campbell D, Wu P, Williamson K, Schindler U (1996) Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol Cell Biol 16:5811–5820

    PubMed  CAS  Google Scholar 

  • Mo W, Zhang L, Yang G, Zhai J, Hu Z, Chen Y, Chen X, Hui L, Huang R, Hu G (2008) Nuclear beta-arrestin1 functions as a scaffold for the dephosphorylation of STAT1 and moderates the antiviral activity of IFN-gamma. Mol Cell 31:695–707

    Article  PubMed  CAS  Google Scholar 

  • Moriggl R, Sexl V, Kenner L, Duntsch C, Stangl K, Gingras S, Hoffmeyer A, Bauer A, Piekorz R, Wang D, Bunting KD, Wagner EF, Sonneck K, Valent P, Ihle JN, Beug H (2005) Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 7:87–99

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Shah M, Xu F, Patel K, Tuder RM, Sehgal PB (2008) Cytoplasmic provenance of STAT3 and PY-STAT3 in the endolysosomal compartments in pulmonary arterial endothelial and smooth muscle cells: implications in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 294:L449–L468

    Article  PubMed  CAS  Google Scholar 

  • Murphy TL, Geissal ED, Farrar JD, Murphy KM (2000) Role of the Stat4 N domain in receptor proximal tyrosine phosphorylation. Mol Cell Biol 20:7121–7131

    Article  PubMed  CAS  Google Scholar 

  • Nardozzi J, Wenta N, Yasuhara N, Vinkemeier U, Cingolani G (2010) Molecular basis for the recognition of phosphorylated STAT1 by importin alpha5. J Mol Biol 402:83–100

    Article  PubMed  CAS  Google Scholar 

  • Ndubuisi MI, Guo GG, Fried VA, Etlinger JD, Sehgal PB (1999) Cellular physiology of STAT3: where’s the cytoplasmic monomer? J Biol Chem 274:25499–25509

    Article  PubMed  CAS  Google Scholar 

  • Neculai D, Neculai AM, Verrier S, Straub K, Klumpp K, Pfitzner E, Becker S (2005) Structure of the unphosphorylated STAT5a dimer. J Biol Chem 280:40782–40787

    Article  PubMed  CAS  Google Scholar 

  • O’Shea JJ, Kanno Y, Chen X, Levy DE (2005) Cell signaling. Stat acetylation – a key facet of cytokine signaling? Science 307:217–218

    Article  PubMed  Google Scholar 

  • Ota N, Brett TJ, Murphy TL, Fremont DH, Murphy KM (2004) N-domain-dependent nonphosphorylated STAT4 dimers required for cytokine-driven activation. Nat Immunol 5:208–215

    Article  PubMed  CAS  Google Scholar 

  • Park OK, Schaefer LK, Wang W, Schaefer TS (2000) Dimer stability as a determinant of differential DNA binding activity of Stat3 isoforms. J Biol Chem 275:32244–32249

    Article  PubMed  CAS  Google Scholar 

  • Patel BK, Pierce JH, LaRochelle WJ (1998) Regulation of interleukin 4-mediated signaling by naturally occurring dominant negative and attenuated forms of human Stat6. Proc Natl Acad Sci USA 95:172–177

    Article  PubMed  CAS  Google Scholar 

  • Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116:191–203

    Article  PubMed  CAS  Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    Article  PubMed  CAS  Google Scholar 

  • Qureshi SA, Leung S, Kerr IM, Stark GR, Darnell JE Jr (1996) Function of Stat2 protein in transcriptional activation by alpha interferon. Mol Cell Biol 16:288–293

    PubMed  CAS  Google Scholar 

  • Ray S, Boldogh I, Brasier AR (2005) STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology 129:1616–1632

    Article  PubMed  CAS  Google Scholar 

  • Ren Z, Mao X, Mertens C, Krishnaraj R, Qin J, Mandal PK, Romanowski MJ, McMurray JS, Chen X (2008) Crystal structure of unphosphorylated STAT3 core fragment. Biochem Biophys Res Commun 374:1–5

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Schwabe JW (1998) Signal transduction: fast lane to transcriptional activation. Curr Biol 8:R765–R767

    Article  PubMed  CAS  Google Scholar 

  • Rivas ML, Cobreros L, Zeidler MP, Hombria JC (2008) Plasticity of Drosophila Stat DNA binding shows an evolutionary basis for Stat transcription factor preferences. EMBO Rep 9:1114–1120

    Article  PubMed  CAS  Google Scholar 

  • Schaefer TS, Sanders LK, Park OK, Nathans D (1997) Functional differences between Stat3alpha and Stat3beta. Mol Cell Biol 17:5307–5316

    PubMed  CAS  Google Scholar 

  • Schmid CD, Bucher P (2010) MER41 repeat sequences contain inducible STAT1 binding sites. PLoS One 5:e11425

    Article  PubMed  Google Scholar 

  • Schröder M, Kroeger KM, Volk HD, Eidne KA, Grütz G (2004) Preassociation of nonactivated STAT3 molecules demonstrated in living cells using bioluminescence resonance energy transfer: a new model of STAT activation? J Leukoc Biol 75:792–797

    Article  PubMed  Google Scholar 

  • Sehgal PB (2008) Paradigm shifts in the cell biology of STAT signaling. Semin Cell Dev Biol 19:329–340

    Article  PubMed  CAS  Google Scholar 

  • Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc Natl Acad Sci USA 92:3041–3045

    Article  PubMed  CAS  Google Scholar 

  • Shah M, Patel K, Fried VA, Sehgal PB (2002) Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J Biol Chem 277:45662–45669

    Article  PubMed  CAS  Google Scholar 

  • Sherman MA, Secor VH, Brown MA (1999) IL-4 preferentially activates a novel STAT6 isoform in mast cells. J Immunol 162:2703–2708

    PubMed  CAS  Google Scholar 

  • Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821–828

    Article  PubMed  CAS  Google Scholar 

  • Shuai K, Liao J, Song MM (1996) Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol Cell Biol 16:4932–4941

    PubMed  CAS  Google Scholar 

  • Soldaini E, John S, Moro S, Bollenbacher J, Schindler U, Leonard WJ (2000) DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol Cell Biol 20:389–401

    Article  PubMed  CAS  Google Scholar 

  • Soler-Lopez M, Petosa C, Fukuzawa M, Ravelli R, Williams JG, Müller CW (2004) Structure of an activated Dictyostelium STAT in its DNA-unbound form. Mol Cell 13:791–804

    Article  PubMed  CAS  Google Scholar 

  • Stancato LF, David M, Carter-Su C, Larner AC, Pratt WB (1996) Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J Biol Chem 271:4134–4137

    Article  PubMed  CAS  Google Scholar 

  • Strehlow I, Schindler C (1998) Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J Biol Chem 273:28049–28056

    Article  PubMed  CAS  Google Scholar 

  • ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22:5662–5668

    Article  PubMed  Google Scholar 

  • Truchet S, Chebrout M, Djediat C, Wietzerbin J, Debey P (2004) Presence of permanently activated signal transducers and activators of transcription in nuclear interchromatin granules of unstimulated mouse oocytes and preimplantation embryos. Biol Reprod 71:1330–1339

    Article  PubMed  CAS  Google Scholar 

  • van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen C, Arts P, Rosentul DC, Carmichael AJ, Smits-van der Graaf CA et al (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61

    Article  PubMed  Google Scholar 

  • Vinkemeier U (2004) Getting the message across, STAT! design principles of a molecular signaling circuit. J Cell Biol 167:197–201

    Article  PubMed  CAS  Google Scholar 

  • Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell JE Jr (1996) DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J 15:5616–5626

    PubMed  CAS  Google Scholar 

  • Vinkemeier U, Moarefi I, Darnell JE Jr, Kuriyan J (1998) Structure of the amino-terminal protein interaction domain of STAT-4. Science 279:1048–1052

    Article  PubMed  CAS  Google Scholar 

  • Vogt M, Domoszlai T, Kleshchanok D, Lehmann S, Schmitt A, Poli V, Richtering W, Muller-Newen G (2011) The role of the N-terminal domain in dimerization and nucleocytoplasmic shuttling of latent STAT3. J Cell Sci 124:900–909

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Cherukuri P, Luo J (2005) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280:11528–11534

    Article  PubMed  CAS  Google Scholar 

  • Wenta N, Strauss H, Meyer S, Vinkemeier U (2008) Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. Proc Natl Acad Sci USA 105:9238–9243

    Article  PubMed  CAS  Google Scholar 

  • Wojciak JM, Martinez-Yamout MA, Dyson HJ, Wright PE (2009) Structural basis for recruitment of CBP/p300 coactivators by STAT1 and STAT2 transactivation domains. EMBO J 28:948–958

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Sun YL, Hoey T (1996) Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273:794–797

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Shibata F, Miyasaka N, Miura O (2002) The human perforin gene is a direct target of STAT4 activated by IL-12 in NK cells. Biochem Biophys Res Commun 297:1245–1252

    Article  PubMed  CAS  Google Scholar 

  • Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307:269–273

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Darnell JE Jr (2001) Functional importance of Stat3 tetramerization in activation of the alpha 2-macroglobulin gene. J Biol Chem 276:33576–33581

    Article  PubMed  CAS  Google Scholar 

  • Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE Jr (1996) Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci USA 93:15092–15096

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Badgwell D, Bevers J, Schlessinger K, Murray P, Levy D, Watowich S (2006) IL-6 signaling via the STAT3/SOCS3 pathway: functional analysis of the conserved STAT3 N-domain. Mol Cell Biochem 288:179–189

    Article  PubMed  CAS  Google Scholar 

  • Zhong M, Henriksen MA, Takeuchi K, Schaefer O, Liu B, ten Hoeve J, Ren Z, Mao X, Chen X, Shuai K, Darnell JE Jr (2005) Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc Natl Acad Sci USA 102:3966–3971

    Article  PubMed  CAS  Google Scholar 

  • Zimnik S, Gaestel M, Niedenthal R (2009) Mutually exclusive STAT1 modifications identified by Ubc9/substrate dimerization-dependent SUMOylation. Nucleic Acids Res 37:e30

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. N. Wenta for informative discussions and the gifts of purified STAT proteins; and F. Antunes for data collection and figure preparation. This work was supported by grants from Biotechnology and Biological Sciences Research Council (BB/GO019290/1) and Deutsche Forschungsgemeinschaft (UV218/2-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Vinkemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Droescher, M., Vinkemeier, U. (2012). Self-association of STAT Proteins from Monomers to Paracrystals. In: Decker, T., Müller, M. (eds) Jak-Stat Signaling : From Basics to Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0891-8_4

Download citation

Publish with us

Policies and ethics