Skip to main content

The Role of Janus Kinases in Hematopoietic Malignancies

  • Chapter
  • First Online:
Jak-Stat Signaling : From Basics to Disease

Abstract

The Janus family tyrosine kinases are indispensible for cytokine signaling and play a crucial role in blood cell production. However, their excessive activity causes various hematological phenotypes associated with overproduction of terminally differentiated cells and/or blastic transformation. Here we review the somatic mutations in the Janus family kinases and the associated hematological phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelaide J et al (2006) A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. Leukemia 20:536–537, England

    Article  PubMed  CAS  Google Scholar 

  • Asnafi V et al (2010) JAK1 mutations are not frequent events in adult T-ALL: a GRAALL study. Br J Haematol 148(1):178–179

    Article  PubMed  Google Scholar 

  • Bacher U et al (2006) A combination of cytomorphology, cytogenetic analysis, fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction for establishing clonality in cases of persisting hypereosinophilia. Haematologica 91(6):817–820

    PubMed  CAS  Google Scholar 

  • Bardelli A et al (2003) Mutational analysis of the tyrosine kinome in colorectal cancers. Science 300(5621):949

    Article  PubMed  CAS  Google Scholar 

  • Baxter EJ et al (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365(9464):1054–1061

    PubMed  CAS  Google Scholar 

  • Bercovich D et al (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 372:1484–1492, England

    Article  PubMed  CAS  Google Scholar 

  • Bousquet M et al (2005) The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 24:7248–7252. doi:10.1038/sj.onc.1208850, published online 8 August 2005.: England

    Article  PubMed  CAS  Google Scholar 

  • Campbell PJ, Green AR (2006) The myeloproliferative disorders. N Engl J Med 355(23):2452–2466

    Article  PubMed  CAS  Google Scholar 

  • Carron C et al (2000) TEL-JAK2 transgenic mice develop T-cell leukemia. Blood 95(12):3891–3899

    PubMed  CAS  Google Scholar 

  • Chen AT, Prchal JT (2010) JAK2 kinase inhibitors and myeloproliferative disorders. Curr Opin Hematol 17(2):110–116

    Article  PubMed  CAS  Google Scholar 

  • Cirmena G et al (2008) A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11) in a patient with acute myeloid leukemia. Cancer Genet Cytogenet 183:105–108, 2008 Elsevier Inc.: United States

    Article  PubMed  CAS  Google Scholar 

  • Correa PN, Eskinazi D, Axelrad AA (1994) Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1 in vitro: studies in an improved serum-free medium. Blood 83(1):99–112

    PubMed  CAS  Google Scholar 

  • Dai CH et al (1991) Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest 87(2):391–396

    Article  PubMed  CAS  Google Scholar 

  • Dai CH et al (1992) Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood 80(4):891–899

    PubMed  CAS  Google Scholar 

  • Dargent JL et al (2011) Pathology of the bone marrow and spleen in a case of myelodysplastic/myeloproliferative neoplasm associated with t(8;9)(p22;p24) involving PCM1 and JAK2 genes. Eur J Haematol 86(1):87–90

    Article  PubMed  Google Scholar 

  • De Braekeleer E, Ferec C, De Braekeleer M (2009) RUNX1 translocations in malignant hemopathies. Anticancer Res 29(4):1031–1037

    PubMed  Google Scholar 

  • Delhommeau F et al (2007) Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 109(1):71–77

    Article  PubMed  CAS  Google Scholar 

  • dos Santos NR, Ghysdael J (2006) A transgenic mouse model for TEL-JAK2-induced B-cell lymphoma/leukemia. Leukemia 20:182–185, England

    Article  PubMed  Google Scholar 

  • dos Santos NR et al (2007) Pre-TCR expression cooperates with TEL-JAK2 to transform immature thymocytes and induce T-cell leukemia. Blood 109(9):3972–3981

    Article  PubMed  Google Scholar 

  • Flex E et al (2008) Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 205(4):751–758

    Article  PubMed  CAS  Google Scholar 

  • Gaikwad A et al (2009) Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br J Haematol 144:930–932, England

    Article  PubMed  CAS  Google Scholar 

  • Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228(1):273–287

    Article  PubMed  CAS  Google Scholar 

  • Goerttler P et al (2005) The Jak2V617F mutation, PRV-1 overexpression, and EEC formation define a similar cohort of MPD patients. Blood 106(8):2862–2864

    Article  PubMed  CAS  Google Scholar 

  • Gordon GM et al (2010) Transforming JAK1 mutations exhibit differential signalling, FERM domain requirements and growth responses to interferon-gamma. Biochem J 432(2):255–265

    Article  PubMed  CAS  Google Scholar 

  • Greenman C et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158

    Article  PubMed  CAS  Google Scholar 

  • Griesinger F et al (2005) A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 44(3):329–333

    Article  PubMed  CAS  Google Scholar 

  • Grunebach F et al (2006) Detection of a new JAK2 D620E mutation in addition to V617F in a patient with polycythemia vera. Leukemia 20(12):2210–2211

    Article  PubMed  CAS  Google Scholar 

  • Harrison DA et al (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J 14(12):2857–2865

    PubMed  CAS  Google Scholar 

  • Hasle H, Clemmensen IH, Mikkelsen M (2000) Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 355:165–169, England

    Article  PubMed  CAS  Google Scholar 

  • Ho JM et al (1999) Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood 93(12):4354–4364

    PubMed  CAS  Google Scholar 

  • Hoelbl A et al (2010) Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol Med 2(3):98–110

    Article  PubMed  CAS  Google Scholar 

  • James C et al (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148

    Article  PubMed  CAS  Google Scholar 

  • Jamieson CH et al (2006) The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 103(16):6224–6229

    Article  PubMed  CAS  Google Scholar 

  • Jelinek J et al (2005) JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 106(10):3370–3373

    Article  PubMed  CAS  Google Scholar 

  • Jeong EG et al (2008) Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res 14(12):3716–3721

    Article  PubMed  CAS  Google Scholar 

  • Jones AV et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–449

    Article  PubMed  CAS  Google Scholar 

  • Kameda T et al (2010) Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma. Int J Hematol 92(2):320–325

    Article  PubMed  CAS  Google Scholar 

  • Karow A et al (2008) JAK2 mutations other than V617F: a novel mutation and mini review. Leuk Res 32(2):365–366

    Article  PubMed  CAS  Google Scholar 

  • Kawahara A et al (1995) Critical role of the interleukin 2 (IL-2) receptor gamma-chain-associated Jak3 in the IL-2-induced c-fos and c-myc, but not bcl-2, gene induction. Proc Natl Acad Sci USA 92(19):8724–8728

    Article  PubMed  CAS  Google Scholar 

  • Kearney L et al (2009) Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood 113:646–648

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JA et al (2006) Expression of TEL-JAK2 in primary human hematopoietic cells drives erythropoietin-independent erythropoiesis and induces myelofibrosis in vivo. Proc Natl Acad Sci USA 103(45):16930–16935

    Article  PubMed  CAS  Google Scholar 

  • Kilpivaara O et al (2009) A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 41:455–459

    Article  PubMed  CAS  Google Scholar 

  • Kralovics R et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Kratz CP et al (2006) Mutational screen reveals a novel JAK2 mutation, L611S, in a child with acute lymphoblastic leukemia. Leukemia 20:381–383, England

    Article  PubMed  CAS  Google Scholar 

  • Lacout C et al (2006) JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108(5):1652–1660

    Article  PubMed  CAS  Google Scholar 

  • Lacronique V et al (1997) A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278(5341):1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Lai KS et al (1995) A kinase-deficient splice variant of the human JAK3 is expressed in hematopoietic and epithelial cancer cells. J Biol Chem 270(42):25028–25036

    Article  PubMed  CAS  Google Scholar 

  • Lane SW et al (2008) Leukaemia cutis in atypical chronic myeloid leukaemia with a t(9;22) (p24;q11.2) leading to BCR-JAK2 fusion. Br J Haematol 142:503, England

    Article  PubMed  Google Scholar 

  • Lee JW et al (2006) The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 25(9):1434–1436

    Article  PubMed  CAS  Google Scholar 

  • Levine RL et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397

    Article  PubMed  CAS  Google Scholar 

  • Levine RL et al (2006) X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 107(10):4139–4141

    Article  PubMed  CAS  Google Scholar 

  • Li Z et al (2007) Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem 282(6):3428–3432

    Article  PubMed  CAS  Google Scholar 

  • Lindauer K et al (2001) Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng 14(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • Luo H et al (1997) Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol 17(3):1562–1571

    PubMed  CAS  Google Scholar 

  • Ma W et al (2009) Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J Mol Diagn 11(1):49–53

    Article  PubMed  CAS  Google Scholar 

  • Ma W et al (2010) JAK2 exon 14 deletion in patients with chronic myeloproliferative neoplasms. PLoS One 5(8):e12165

    Article  PubMed  Google Scholar 

  • Malinge S et al (2006) Activation of the NF-kappaB pathway by the leukemogenic TEL-Jak2 and TEL-Abl fusion proteins leads to the accumulation of antiapoptotic IAP proteins and involves IKKalpha. Oncogene 25(25):3589–3597

    Article  PubMed  CAS  Google Scholar 

  • Malinge S et al (2007) Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood 109(5):2202–2204

    Article  PubMed  CAS  Google Scholar 

  • Malinge S et al (2008) Activating mutations in human acute megakaryoblastic leukemia. Blood 112(10):4220–4226

    Article  PubMed  CAS  Google Scholar 

  • Mark HF et al (2006) Chronic idiopathic myelofibrosis (CIMF) resulting from a unique 3;9 translocation disrupting the janus kinase 2 (JAK2) gene. Exp Mol Pathol 81(3):217–223

    Article  PubMed  CAS  Google Scholar 

  • Migone TS et al (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269(5220):79–81

    Article  PubMed  CAS  Google Scholar 

  • Minegishi Y et al (2006) Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25(5):745–755

    Article  PubMed  CAS  Google Scholar 

  • Mullighan CG et al (2009) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 106(23):9414–9418

    Article  PubMed  CAS  Google Scholar 

  • Murati A et al (2005) PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation. Leukemia 19:1692–1696, England

    Article  PubMed  CAS  Google Scholar 

  • Najfeld V et al (2007) Numerical gain and structural rearrangements of JAK2, identified by FISH, characterize both JAK2617V>F-positive and -negative patients with Ph-negative MPD, myelodysplasia, and B-lymphoid neoplasms. Exp Hematol 35(11):1668–1676

    Article  PubMed  CAS  Google Scholar 

  • Nebral K et al (2009) Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23(1):134–143

    Article  PubMed  CAS  Google Scholar 

  • Nguyen MH et al (2001) TEL-JAK2 mediates constitutive activation of the phosphatidylinositol 3′-kinase/protein kinase B signaling pathway. J Biol Chem 276(35):32704–32713

    Article  PubMed  CAS  Google Scholar 

  • Olcaydu D et al (2009a) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454

    Article  PubMed  CAS  Google Scholar 

  • Olcaydu D et al (2009b) The ‘GGCC’ haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera. Leukemia 23:1924–1926

    Article  PubMed  CAS  Google Scholar 

  • Pardanani A et al (2008) Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood 111(5):2785–2789

    Article  PubMed  CAS  Google Scholar 

  • Peeters P et al (1997) Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90(7):2535–2540

    PubMed  CAS  Google Scholar 

  • Poitras JL et al (2008) Novel SSBP2-JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre-B acute lymphocytic leukemia. Genes Chromosomes Cancer 47(10):884–889

    Article  PubMed  CAS  Google Scholar 

  • Prchal JF, Axelrad AA (1974) Letter: bone-marrow responses in polycythemia vera. N Engl J Med 290(24):1382

    PubMed  CAS  Google Scholar 

  • Reiter A et al (2005) The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 65:2662–2667, United States

    Article  PubMed  CAS  Google Scholar 

  • Royer Y et al (2005) Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem 280(29):27251–27261

    Article  PubMed  CAS  Google Scholar 

  • Saharinen P, Silvennoinen O (2002) The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 277(49):47954–47963

    Article  PubMed  CAS  Google Scholar 

  • Santos SC et al (2001) Involvement of the NF-kappaB pathway in the transforming properties of the TEL-Jak2 leukemogenic fusion protein. FEBS Lett 497:148–152, Netherlands

    Article  PubMed  CAS  Google Scholar 

  • Schwaller J et al (1998) Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J 17(18):5321–5333

    Article  PubMed  CAS  Google Scholar 

  • Schwaller J et al (2000) Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 6:693–704, United States

    Article  PubMed  CAS  Google Scholar 

  • Scott LM et al (2005) The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood 106(8):2920–2921

    Article  PubMed  CAS  Google Scholar 

  • Scott LM et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356(5):459–468

    Article  PubMed  CAS  Google Scholar 

  • Sozer S et al (2009) Human CD34+ cells are capable of generating normal and JAK2V617F positive endothelial like cells in vivo. Blood Cells Mol Dis 43(3):304–312

    Article  PubMed  CAS  Google Scholar 

  • Steensma DP et al (2005) The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both. Blood 106(4):1207–1209

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A, Vardiman J (2007) Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22:14–22

    Article  PubMed  Google Scholar 

  • Teofili L et al (2011) Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood 117(9):2700–2707

    Article  PubMed  CAS  Google Scholar 

  • Tiedt R et al (2008) Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111(8):3931–3940

    Article  PubMed  CAS  Google Scholar 

  • Tirado CA et al (2010) Novel JAK2 rearrangement resulting from a t(9;22)(p24;q11.2) in B-acute lymphoblastic leukemia. Leuk Res 34(12):1674–1676

    Article  PubMed  CAS  Google Scholar 

  • Tortolani PJ et al (1995) Regulation of JAK3 expression and activation in human B cells and B cell malignancies. J Immunol 155(11):5220–5226

    PubMed  CAS  Google Scholar 

  • Van Roosbroeck K et al (2011) JAK2 rearrangements, including the novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood 117(15):4056–4064

    Article  PubMed  Google Scholar 

  • Vardiman JW (2010) The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem Biol Interact 184(1–2):16–20

    Article  PubMed  CAS  Google Scholar 

  • Verma A et al (2003) Jak family of kinases in cancer. Cancer Metastasis Rev 22(4):423–434

    Article  PubMed  CAS  Google Scholar 

  • Walters D (2006) Activating alleles of JAK3 in acute megakaryoblast…. Cancer Cell 10:65–75, PubMed result

    Article  PubMed  CAS  Google Scholar 

  • Wang W et al (2010) AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood 116(2):254–266

    Article  PubMed  CAS  Google Scholar 

  • Wernig G et al (2006) Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107(11):4274–4281

    Article  PubMed  CAS  Google Scholar 

  • Wernig G et al (2008) The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 111(7):3751–3759

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z et al (2008) Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood 111(9):4809–4812

    Article  PubMed  CAS  Google Scholar 

  • Xu X et al (1995) Constitutive activation of different Jak tyrosine kinases in human T cell leukemia virus type 1 (HTLV-1) tax protein or virus-transformed cells. J Clin Invest 96(3):1548–1555

    Article  PubMed  CAS  Google Scholar 

  • Zhang SJ et al (2007) The investigation of JAK2 mutation in Chinese myeloproliferative diseases-identification of a novel C616Y point mutation in a PV patient. Int J Lab Hematol 29(1):71–72

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kralovics .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Wien

About this chapter

Cite this chapter

Olcaydu, D., Kralovics, R. (2012). The Role of Janus Kinases in Hematopoietic Malignancies. In: Decker, T., Müller, M. (eds) Jak-Stat Signaling : From Basics to Disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0891-8_14

Download citation

Publish with us

Policies and ethics