Skip to main content

The Effects of Cannabinoids on Immune Cells, Responses and Diseases

  • Chapter
  • First Online:
Nerve-Driven Immunity

Abstract

Cannabinoids (CB) are a group of molecules that act upon cannabinoid receptors (CBR) and are divided in three categories: phytocannabinoids (natural terpenophenolic compounds derived from the Cannabis plant species), endocannabinoids (endogenous) and synthetic cannabinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agudelo M, Newton C, Widen R et al (2008) Cannabinoid receptor 2 (CB2) mediates immunoglobulin class switching from IgM to IgE in cultures of murine-purified B lymphocytes. J Neuroimmune Pharmacol 3:35–42

    PubMed  Google Scholar 

  • Alexander SP, Kendall DA (2007) The complications of promiscuity: endocannabinoid action and metabolism. Br J Pharmacol 152:602–623

    PubMed  CAS  Google Scholar 

  • Ashton JC, Wright JL, McPartland JM et al (2008) Cannabinoid CB1 and CB2 receptor ligand specificity and the development of CB2-selective agonists. Curr Med Chem 15:1428–1443

    PubMed  CAS  Google Scholar 

  • Athanasiou A, Clarke AB, Turner AE et al (2007a) Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochem Biophys Res Commun 364:131–137

    PubMed  CAS  Google Scholar 

  • Athanasiou A, Smith PA, Vakilpour S et al (2007b) Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: how vanilloids cause non-vanilloid receptor mediated cell death. Biochem Biophys Res Commun 354:50–55

    PubMed  CAS  Google Scholar 

  • Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431:312–316

    PubMed  CAS  Google Scholar 

  • Baker D, Jackson SJ, Pryce G (2007) Cannabinoid control of neuroinflammation related to multiple sclerosis. Br J Pharmacol 152:649–654

    PubMed  CAS  Google Scholar 

  • Bari M, Battista N, Fezza F et al (2005) Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J Biol Chem 280:12212–12220

    PubMed  CAS  Google Scholar 

  • Bayewitch M, Rhee MH, Avidor-Reiss T et al (1996) (−)Δ9-Tetrahydrocannabinol antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase. J Biol Chem 271:9902–9905

    PubMed  CAS  Google Scholar 

  • Beltramo M, Stella N, Calignano A et al (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097

    PubMed  CAS  Google Scholar 

  • Beltramo M, Bernardini N, Bertorelli R et al (2006) CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur J Neurosci 23:1530–1538

    PubMed  CAS  Google Scholar 

  • Benito C, Nunez E, Tolon RM et al (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141

    PubMed  CAS  Google Scholar 

  • Benito C, Romero JP, Tolón RM et al (2007) Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27:2396–2402

    PubMed  CAS  Google Scholar 

  • Ben-Shabat S, Fride E, Sheskin T et al (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 353:23–31

    PubMed  CAS  Google Scholar 

  • Berdyshev EV (2000) Cannabinoid receptors and the regulation of immune response. Chem Phys Lipids 108:169–190

    PubMed  CAS  Google Scholar 

  • Berdyshev EV, Schmid PC, Krebsbach RJ et al (2001) Role of N-acylethanolamines in cell signaling. World Rev Nutr Diet 88:207–214

    PubMed  CAS  Google Scholar 

  • Bisogno T, Maurelli S, Melck D et al (1997) Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem 272:3315–3323

    PubMed  CAS  Google Scholar 

  • Biswas KK, Sarker KP, Abeyama K et al (2003) Membrane cholesterol but not putative receptors mediates anandamide-induced hepatocyte apoptosis. Hepatology 38:1167–1177

    PubMed  CAS  Google Scholar 

  • Bjarnadottir TK, Fredriksson R, Hoglund PJ et al (2004) The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84:23–33

    PubMed  CAS  Google Scholar 

  • Blake DR, Robson P, Ho M et al (2006) Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology 45:50–52

    PubMed  CAS  Google Scholar 

  • Blankman JL, Simon GM, Cravatt BF (2007) A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol 14:1347–1356

    PubMed  CAS  Google Scholar 

  • Bodor ÁL, Katona I, Nyíri G et al (2005) Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci 25:6845–6856

    PubMed  CAS  Google Scholar 

  • Booth M (2005) Cannabis: a history. Picador, St.Martin's Press, New York

    Google Scholar 

  • Börner C, Höllt V, Kraus J (2007a) Activation of human T cells induces upregulation of cannabinoid receptor type 1 transcription. Neuroimmunomodulation 14:281–286

    PubMed  Google Scholar 

  • Börner C, Höllt V, Sebald W et al (2007b) Transcriptional regulation of the cannabinoid receptor type 1 gene in T cells by cannabinoids. J Leukoc Biol 81:336–343

    PubMed  Google Scholar 

  • Börner C, Bedini A, Höllt V et al (2008) Analysis of promoter regions regulating basal and interleukin-4-inducible expression of the human CB1 receptor gene in T lymphocytes. Mol Pharmacol 73:1013–1019

    PubMed  Google Scholar 

  • Börner C, Smida M, Hollt V, Schraven B, Kraus J (2009) Cannabinoid receptor type 1- and 2-mediated increase in cyclic AMP inhibits T cell receptor-triggered signaling. J Biol Chem 284 (51):35450–35460

    Google Scholar 

  • Breivogel CS, Griffin G, Di Marzo V et al (2001) Evidence for a new G protein-coupled cannabinoid receptor in mouse brain. Mol Pharmacol 60:155–163

    PubMed  CAS  Google Scholar 

  • Buccellato E, Carretta D, Utan A et al (2011) Acute and chronic cannabinoid extracts administration affects motor function in a CREAE model of multiple sclerosis. J Ethnopharmacol 133:1033–1038

    PubMed  CAS  Google Scholar 

  • Buchweitz JP, Karmaus PWF, Williams KJ et al (2008) Targeted deletion of cannabinoid receptors CB1 and CB2produced enhanced inflammatory responses to influenza A/PR/8/34 in the absence and presence of Δ9-tetrahydrocannabinol. J Leukoc Biol 83:785–796

    PubMed  CAS  Google Scholar 

  • Buckley NE, McCoy KL, Mezey E et al (2000) Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB2 receptor. Eur J Pharmacol 396:141–149

    PubMed  CAS  Google Scholar 

  • Bueb JL, Lambert DM, Tschirhart EJ (2001) Receptor-independent effects of natural cannabinoids in rat peritoneal mast cells in vitro. Biochim Biophys Acta 1538:252–259

    PubMed  CAS  Google Scholar 

  • Caberlotto L, Rimondini R, Hansson A et al (2004) Corticotropin-releasing hormone (CRH) mRNA expression in rat central amygdala in cannabinoid tolerance and withdrawal: evidence for an allostatic shift? Neuropsychopharmacology 29:15–22

    PubMed  CAS  Google Scholar 

  • Cabral G, Dove Pettit D (1998) Drugs and immunity: cannabinoids and their role in decreased resistance to infectious diseases. J Neuroimmunol 83:116–123

    PubMed  CAS  Google Scholar 

  • Cabral GA, Staab A (2005) Effects on the immune system. Handb Exp Pharmacol 168:385–423

    PubMed  CAS  Google Scholar 

  • Cabral GA, Toney DM, Fischer-Stenger K et al (1995) Anandamide inhibits macrophage-mediated killing of tumor necrosis factor-sensitive cells. Life Sci 56:2065–2072

    PubMed  CAS  Google Scholar 

  • Cabral GA, Raborn ES, Griffin L et al (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153:240–251

    PubMed  CAS  Google Scholar 

  • Calignano A, La Rana G, Giuffrida A et al (1998) Control of pain initiation by endogenous cannabinoids. Nature 394:277–281

    PubMed  CAS  Google Scholar 

  • Carlisle SJ, Marciano-Cabral F, Staab A et al (2002) Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int Immunopharmacol 2:69–82

    PubMed  CAS  Google Scholar 

  • Carracedo A, Lorente M, Egia A et al (2006) The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9:301–312

    PubMed  CAS  Google Scholar 

  • Carrier EJ, Kearn CS, Barkmeier AJ et al (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65:999–1007

    PubMed  CAS  Google Scholar 

  • Carrier EJ, Patel S, Hillard CJ (2005) Endocannabinoids in neuroimmunology and stress. Curr Drug Targets CNS Neurol Disord 4:657–665

    PubMed  CAS  Google Scholar 

  • Cavuoto P, McAinch AJ, Hatzinikolas G et al (2007) The expression of receptors for endocannabinoids in human and rodent skeletal muscle. Biochem Biophys Res Commun 364:105–110

    PubMed  CAS  Google Scholar 

  • Cencioni MT, Chiurchiu V, Catanzaro G et al (2010) Anandamide suppresses proliferation and cytokine release from primary human T-lymphocytes mainly via CB2 receptors. PLoS One 5:e8688

    PubMed  Google Scholar 

  • Chanda PK, Gao Y, Mark L et al (2010) Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol Pharmacol 78:996–1003

    PubMed  CAS  Google Scholar 

  • Chang YH, Lee ST, Lin WW (2001) Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. J Cell Biochem 81:715–723

    PubMed  CAS  Google Scholar 

  • Chapman KD (2000) Emerging physiological roles for N-acylphosphatidylethanolamine metabolism in plants: signal transduction and membrane protection. Chem Phys Lipids 108:221–229

    PubMed  CAS  Google Scholar 

  • Chen Y, Buck J (2000) Cannabinoids protect cells from oxidative cell death: a receptor- independent mechanism. J Pharmacol Exp Ther 293:807–812

    PubMed  CAS  Google Scholar 

  • Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    PubMed  CAS  Google Scholar 

  • Condie R, Herring A, Koh WS et al (1996) Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2. J Biol Chem 271:13175–13183

    PubMed  CAS  Google Scholar 

  • Correa F, Docagne F, Mestre L et al (2009) A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochem Pharmacol 77:86–100

    PubMed  CAS  Google Scholar 

  • Correa F, Hernangomez M, Mestre L et al (2010) Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB. GLIA 58:135–147

    PubMed  Google Scholar 

  • Cota D (2008) The role of the endocannabinoid system in the regulation of hypothalamic-pituitary-adrenal axis activity. J Neuroendocrinol 20:35–38

    PubMed  CAS  Google Scholar 

  • Craddock D, Thomas A (2006) Cytokines and late-life depression. Essent Psychopharmacol 7:42–52

    PubMed  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP et al (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    PubMed  CAS  Google Scholar 

  • Croxford JL (2003) Therapeutic potential of cannabinoids in CNS disease. CNS Drugs 17:179–202

    PubMed  CAS  Google Scholar 

  • Croxford JL, Miller SD (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)WIN55,212. J Clin Invest 111:1231–1240

    PubMed  CAS  Google Scholar 

  • Croxford JL, Yamamura T (2005) Cannabinoids and the immune system: potential for the treatment of inflammatory diseases? J Neuroimmunol 166:3–18

    PubMed  CAS  Google Scholar 

  • Croxford JL, Pryce G, Jackson SJ et al (2008) Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J Neuroimmunol 193:120–129

    PubMed  CAS  Google Scholar 

  • Daaka Y, Friedman H, Klein TW (1996) Cannabinoid receptor proteins are increased in Jurkat, human T-cell line after mitogen activation. J Pharmacol Exp Ther 276:776–783

    PubMed  CAS  Google Scholar 

  • D'Argenio G, Valenti M, Scaglione G et al (2006) Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J 20:568–570

    PubMed  Google Scholar 

  • De Filippis D, D’Amico A, Iuvone T (2008a) Cannabinomimetic control of mast cell mediator release: new perspective in chronic inflammation. J Neuroendocrinol 20:20–25

    PubMed  Google Scholar 

  • De Filippis D, Russo A, D’Amico A et al (2008b) Cannabinoids reduce granuloma-associated angiogenesis in rats by controlling transcription and expression of mast cell protease-5. Br J Pharmacol 154:1672–1679

    PubMed  Google Scholar 

  • De Filippis D, Iuvone T, D'Amico A et al (2008c) Effect of cannabidiol on sepsis-induced motility disturbances in mice: involvement of CB1 receptors and fatty acid amide hydrolase. Neurogastroenterol Motil 20:919–927

    PubMed  Google Scholar 

  • De Filippis D, Esposito G, Cipriano M, Scuderi C, De Man J, Iuvone T (2009) Canabidiol controls intestinal inflammation through modulation of enteric glial cells. In: International cannabinoid research society 19th symposium, St. Charles, 7–12 July 2009

    Google Scholar 

  • De Petrocellis L, Di Marzo V (2009) An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab 23:1–15

    PubMed  Google Scholar 

  • De Winter BY, De Man JG (2010) Interplay between inflammation, immune system and neuronal pathways: effect on gastrointestinal motility. World J Gastroenterol 16:5523–5535

    PubMed  Google Scholar 

  • Derocq JM, Bouaboula M, Marchand J et al (1998) The endogenous cannabinoid anandamide is a lipid messenger activating cell growth via a cannabinoid receptor-independent pathway in hematopoietic cell lines. FEBS Lett 425:419–425

    PubMed  CAS  Google Scholar 

  • Deusch E, Kraft B, Nahlik G et al (2003) No evidence for direct modulatory effects of Δ9- tetrahydrocannabinol on human polymorphonuclear leukocytes. J Neuroimmunol 141:99–103

    PubMed  CAS  Google Scholar 

  • Devane WA, Dysarz Iii FA, Johnson MR et al (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    PubMed  CAS  Google Scholar 

  • Di Filippo C, Rossi F, Rossi S et al (2004) Cannabinoid CB2 receptor activation reduces mouse myocardial ischemia-reperfusion injury: involvement of cytokine/chemokines and PMN. J Leukoc Biol 75:453–459

    PubMed  Google Scholar 

  • Di Marzo V (2006) A brief history of cannabinoid and endocannabinoid pharmacology as inspired by the work of British scientists. Trends Pharmacol Sci 27:134–140

    PubMed  Google Scholar 

  • Di Marzo V, De Petrocellis L (2010) Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem 17:1430–1449

    PubMed  Google Scholar 

  • Di Marzo V, De Petrocellis L, Sepe N et al (1996) Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. Biochem J 316:977–984

    PubMed  Google Scholar 

  • Di Marzo V, De Petrocellis L, Bisogno T (2005) The biosynthesis, fate and pharmacological properties of endocannabinoids. Handb Exp Pharmacol 168:147–185

    PubMed  Google Scholar 

  • Dinh TP, Carpenter D, Leslie FM et al (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 99:10819–10824

    PubMed  CAS  Google Scholar 

  • Do Y, McKallip RJ, Nagarkatti M et al (2004) Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol 173:2373–2382

    PubMed  CAS  Google Scholar 

  • Dol-Gleizes F, Paumelle R, Visentin V et al (2009) Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 29:12–18

    PubMed  CAS  Google Scholar 

  • Downer EJ, Fogarty MP, Campbell VA (2003) Tetrahydrocannabinol-induced neurotoxicity depends on CB1 receptor-mediated c-Jun N-terminal kinase activation in cultured cortical neurons. Br J Pharmacol 140:547–557

    PubMed  CAS  Google Scholar 

  • Dunn AJ (2000) Cytokine activation of the HPA axis. Ann NY Acad Sci 917:608–617

    PubMed  CAS  Google Scholar 

  • Eisenstein TK, Meissler JJ, Wilson Q et al (2007) Anandamide and Delta9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. J Neuroimmunol 189:17–22

    PubMed  CAS  Google Scholar 

  • El-Gohary M, Eid MA (2004) Effect of cannabinoid ingestion (in the form of bhang) on the immune system of high school and university students. Hum Exp Toxicol 23:149–156

    PubMed  CAS  Google Scholar 

  • Eljaschewitsch E, Witting A, Mawrin C et al (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49:67–79

    PubMed  CAS  Google Scholar 

  • Elphick MR, Egertova M (2001) The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 356:381–408

    PubMed  CAS  Google Scholar 

  • Facci L, Dal Toso R, Romanello S et al (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 92:3376–3380

    PubMed  CAS  Google Scholar 

  • Fernández-Ruiz J, Romero J, Velasco G et al (2007) Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci 28:39–45

    PubMed  Google Scholar 

  • Ferre S, Baler R, Bouvier M et al (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134

    PubMed  CAS  Google Scholar 

  • Fezza F, Battista N, Bari M et al (2006) Methods to assay anandamide hydrolysis and transport in synaptosomes. Methods Mol Med 123:163–168

    PubMed  CAS  Google Scholar 

  • Finn DP (2010) Endocannabinoid-mediated modulation of stress responses: physiological and pathophysiological significance. Immunobiology 215:629–646

    PubMed  CAS  Google Scholar 

  • Fischer-Stenger K, Updegrove AW, Cabral GA (1992) Δ9-Tetrahydrocannabinol decreases cytotoxic T lymphocyte activity to herpes simplex virus Type 1-infected cells. Proc Soc Exp Biol Med 200:422–430

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Holt S, Tiger G (2003) Acidic nonsteroidal anti-inflammatory drugs inhibit rat brain fatty acid amide hydrolase in a pH-dependent manner. J Enzyme Inhib Med Chem 18:55–58

    PubMed  CAS  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG et al (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    PubMed  CAS  Google Scholar 

  • Freeman-Anderson NE, Pickle TG, Netherland CD et al (2008) Cannabinoid (CB2) receptor deficiency reduces the susceptibility of macrophages to oxidized LDL/oxysterol-induced apoptosis. J Lipid Res 49:2338–2346

    PubMed  CAS  Google Scholar 

  • Galiegue S, Mary S, Marchand J et al (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    PubMed  CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Google Scholar 

  • Garcia Mdel C, Adler-Graschinsky E, Celuch SM (2009) Enhancement of the hypotensive effects of intrathecally injected endocannabinoids by the entourage compound palmitoylethanolamide. Eur J Pharmacol 610:75–80

    PubMed  Google Scholar 

  • Gardner B, Zu LX, Sharma S et al (2002) Autocrine and paracrine regulation of lymphocyte CB2 receptor expression by TGF-β. Biochem Biophys Res Comm 290:91–96

    PubMed  CAS  Google Scholar 

  • George KL, Saltman LH, Stein GS et al (2008) Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells. J Cell Physiol 214:714–720

    PubMed  CAS  Google Scholar 

  • Giudice ED, Rinaldi L, Passarotto M et al (2007) Cannabidiol, unlike synthetic cannabinoids, triggers activation of RBL-2 H3 mast cells. J Leukoc Biol 81:1512–1522

    PubMed  Google Scholar 

  • Glass M, Northup JK (1999) Agonist selective regulation of G proteins by cannabinoid CB1 and CB2 receptors. Mol Pharmacol 56:1362–1369

    PubMed  CAS  Google Scholar 

  • Graham ES, Angel CE, Schwarcz LE et al (2010) Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol 23:25–34

    PubMed  CAS  Google Scholar 

  • Griebel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biological Psychiatry 57:261–267

    PubMed  CAS  Google Scholar 

  • Griffin G, Fernando SR, Ross RA et al (1997) Evidence for the presence of CB2-1ike cannabinoid receptors on peripheral nerve terminals. Eur J Pharmacol 339:53–61

    PubMed  CAS  Google Scholar 

  • Guzman M, Sanchez C (1999) Effects of cannabinoids on energy metabolism. Life Sci 65:657–664

    PubMed  CAS  Google Scholar 

  • Halttunen T, Maki M (1999) Serum immunoglobulin A from patients with celiac disease inhibits human T84 intestinal crypt epithelial cell differentiation. Gastroenterology 116:566–572

    PubMed  CAS  Google Scholar 

  • Hanus LO, Mechoulam R (2010) Novel natural and synthetic ligands of the endocannabinoid system. Curr Med Chem 17:1341–1359

    PubMed  CAS  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13:127–137

    PubMed  CAS  Google Scholar 

  • He F, Qiao ZH, Cai J et al (2007) Involvement of the 90-kDa heat shock protein (Hsp-90) in CB2 cannabinoid receptor-mediated cell migration: a new role of Hsp-90 in migration signaling of a G protein-coupled receptor. Mol Pharmacol 72:1289–1300

    PubMed  CAS  Google Scholar 

  • Hegde VL, Hegde S, Cravatt BF et al (2008) Attenuation of experimental autoimmune hepatitis by exogenous and endogenous cannabinoids: involvement of regulatory T cells. Mol Pharmacol 74:20–33

    PubMed  CAS  Google Scholar 

  • Henquet C, Di Forti M, Morrison P et al (2008) Gene-environment interplay between cannabis and psychosis. Schizophr Bull 34:1111–1121

    PubMed  Google Scholar 

  • Herring AC, Kaminski NE (1999) Cannabinol-mediated inhibition of nuclear factor-[kappa]B, cAMP response element-binding protein, and interleukin-2 secretion by activated thymocytes. J Pharmacol Exp Ther 291:1156–1163

    PubMed  CAS  Google Scholar 

  • Herring AC, Koh WS, Kaminski NE (1998) Inhibition of the cyclic AMP signaling cascade and nuclear factor binding to CRE and κB elements by cannabinol, a minimally CNS-active cannabinoid. Biochem Pharmacol 55:1013–1023

    PubMed  CAS  Google Scholar 

  • Hill MN, McLaughlin RJ, Morrish AC et al (2009) Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology 34:2733–2745

    PubMed  CAS  Google Scholar 

  • Hill MN, McLaughlin RJ, Bingham B et al (2010) Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci USA 107:9406–9411

    PubMed  CAS  Google Scholar 

  • Hollister LE (1986) Health aspects of cannabis. Pharmacol Rev 38:1–20

    PubMed  CAS  Google Scholar 

  • Howlett AC, Mukhopadhyay S (2000) Cellular signal transduction by anandamide and 2-arachidonoylglycerol. Chem Phys Lipids 108:53–70

    PubMed  CAS  Google Scholar 

  • Howlett AC, Barth F, Bonner TI et al (2002) International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    PubMed  CAS  Google Scholar 

  • Howlett AC, Blume LC, Dalton GD (2010) CB1 cannabinoid receptors and their associated proteins. Curr Med Chem 17:1382–1393

    PubMed  CAS  Google Scholar 

  • Huang C, Hepler JR, Chen LT et al (1997) Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell 8:2365–2378

    PubMed  CAS  Google Scholar 

  • Ignatowska-Jankowska B, Jankowski M, Glac W et al (2009) Cannabidiol-induced lymphopenia does not involve NKT and NK cells. J Physiol Pharmacol 60(Suppl 3):99–103

    PubMed  Google Scholar 

  • Ihenetu K, Molleman A, Parsons ME et al (2003) Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids. Eur J Pharmacol 458:207–215

    PubMed  CAS  Google Scholar 

  • Izzo AA, Camilleri M (2008) Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects. Gut 57:1140–1155

    PubMed  CAS  Google Scholar 

  • Izzo AA, Camilleri M (2009) Cannabinoids in intestinal inflammation and cancer. Pharmacol Res 60:117–125

    PubMed  CAS  Google Scholar 

  • Izzo AA, Sharkey KA (2010) Cannabinoids and the gut: new developments and emerging concepts. Pharmacol Ther 126:21–38

    PubMed  CAS  Google Scholar 

  • Jan TR, Su ST, Wu HY et al (2007) Suppressive effects of cannabidiol on antigen-specific antibody production and functional activity of splenocytes in ovalbumin-sensitized BALB/c mice. Int Immunopharmacol 7:773–780

    PubMed  CAS  Google Scholar 

  • Jara LJ, Navarro C, Medina G et al (2006) Immune-neuroendocrine interactions and autoimmune diseases. Clin Dev Immunol 13:109–123

    PubMed  CAS  Google Scholar 

  • Jean-Gilles L, Feng S, Tench CR et al (2009) Plasma endocannabinoid levels in multiple sclerosis. J Neurol Sci 287:212–215

    PubMed  CAS  Google Scholar 

  • Jean-Gilles L, Gran B, Constantinescu CS (2010) Interaction between cytokines, cannabinoids and the nervous system. Immunobiology 215:606–610

    PubMed  CAS  Google Scholar 

  • Jeon YJ, Yang KH, Pulaski JT et al (1996) Attenuation of inducible nitric oxide synthase gene expression by Δ9- tetrahydrocannabinol is mediated through the inhibition of NF- κB/Rel activation. Mol Pharmacol 50:334–341

    PubMed  CAS  Google Scholar 

  • Jhaveri MD, Richardson D, Robinson I et al (2008) Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain. Neuropharmacology 55:85–93

    PubMed  CAS  Google Scholar 

  • Jiang S, Zagozdzon R, Jorda MA et al (2010) Endocannabinoids are expressed in bone marrow stromal niches and play a role in interactions of hematopoietic stem and progenitor cells with the bone marrow microenvironment. J Biol Chem 285:35471–35478

    PubMed  CAS  Google Scholar 

  • Jiang S, Alberich-Jorda M, Zagozdzon R et al (2011) Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hematopoietic stem and progenitor cell mobilization. Blood 117:827–838

    PubMed  CAS  Google Scholar 

  • Jonsson KO, Vandevoorde S, Lambert DM et al (2001) Effects of homologues and analogues of palmitoylethanolamide upon the inactivation of the endocannabinoid anandamide. Br J Pharmacol 133:1263–1275

    PubMed  CAS  Google Scholar 

  • Jonsson KO, Holt S, Fowler CJ (2006a) The endocannabinoid system: current pharmacological research and therapeutic possibilities. Basic Clin Pharmacol Toxicol 98:124–134

    PubMed  CAS  Google Scholar 

  • Jonsson KO, Persson E, Fowler CJ (2006b) The cannabinoid CB2 receptor selective agonist JWH133 reduces mast cell oedema in response to compound 48/80 in vivo but not the release of beta-hexosaminidase from skin slices in vitro. Life Sci 78:598–606

    PubMed  CAS  Google Scholar 

  • Jordà MA, Verbakel SE, Valk PJM et al (2002) Hematopoietic cells expressing the peripheral cannabinoid receptor migrate in response to the endocannabinoid 2-arachidonoylglycerol. Blood 99:2786–2793

    PubMed  Google Scholar 

  • Jordà MA, Rayman N, Tas M et al (2004) The peripheral cannabinoid receptor Cb2, frequently expressed on AML blasts, either induces a neutrophilic differentiation block or confers abnormal migration properties in a ligand-dependent manner. Blood 104:526–534

    Google Scholar 

  • Kaczocha M, Glaser ST, Chae J et al (2010) Lipid droplets are novel sites of N-acylethanolamine inactivation by fatty acid amide hydrolase-2. J Biol Chem 285:2796–2806

    PubMed  CAS  Google Scholar 

  • Kaminski NE, Abood ME, Kessler FK et al (1992) Identification of a functionally relevant cannabinoid receptor on mouse spleen cells that is involved in cannabinoid-mediated immune modulation. Mol Pharmacol 42:736–742

    PubMed  CAS  Google Scholar 

  • Kaminski NE, Koh WS, Yang KH et al (1994) Suppression of the humoral immune response by cannabinoids is partially mediated through inhibition of adenylate cyclase by a pertussis toxin-sensitive G-protein coupled mechanism. Biochem Pharmacol 48:1899–1908

    PubMed  CAS  Google Scholar 

  • Kano M, Ohno-Shosaku T, Hashimotodani Y et al (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380

    PubMed  CAS  Google Scholar 

  • Kaplan BLF, Springs AEB, Kaminski NE (2008) The profile of immune modulation by cannabidiol (CBD) involves deregulation of nuclear factor of activated T cells (NFAT). Biochem Pharmacol 76:726–737

    PubMed  CAS  Google Scholar 

  • Kaufmann I, Schelling G, Eisner C et al (2008) Anandamide and neutrophil function in patients with fibromyalgia. Psychoneuroendocrinology 33:676–685

    PubMed  CAS  Google Scholar 

  • Kenakin T (2001) Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J 15:598–611

    PubMed  CAS  Google Scholar 

  • Klein TW (2003) The cannabinoid system and immune modulation. J Leukoc Biol 74:486–496

    PubMed  CAS  Google Scholar 

  • Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5:400–411

    PubMed  CAS  Google Scholar 

  • Klein TW, Cabral GA (2006) Cannabinoid-induced immune suppression and modulation of antigen-presenting cells. J Neuroimmune Pharmacol 1:50–64

    PubMed  Google Scholar 

  • Klein TW, Kawakami Y, Newton C et al (1991) Marijuana components suppress induction and cytolytic function of murine cytotoxic T cells in vitro and in vivo. J Toxicol Environ Heal 32:465–477

    CAS  Google Scholar 

  • Klein TW, Newton C, Widen R et al (1993) Δ9Tetrahydrocannabinol injection induces cytokine-mediated mortality of mice infected with L pneumophila. J Pharm Exp Ther 267:635–640

    CAS  Google Scholar 

  • Klein T, Newton C, Friedman H (1998) Cannabinoid receptors and immunity. Immunol Today 19:373–381

    PubMed  CAS  Google Scholar 

  • Klein TW, Lane B, Newton CA et al (2000) The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 225:1–8

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Arai S, Waku K et al (2001) Activation by 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, of p42/44 mitogen-activated protein kinase in HL-60 cells. J Biochem 129:665–669

    PubMed  CAS  Google Scholar 

  • Koh WS, Jeon YJ, Herring AC et al (1997) Transient CRE- and κB site-binding is cross-regulated by cAMP-dependent protein kinase and a protein phosphatase in mouse splenocytes. Life Sci 60:425–432

    PubMed  CAS  Google Scholar 

  • Kraft B, Wintersberger W, Kress HG (2004) Cannabinoid receptor-independent suppression of the superoxide generation of human neutrophils (PMN) by CP55 940, but not by anandamide. Life Sci 75:969–977

    PubMed  CAS  Google Scholar 

  • Kubajewska I, Constantinescu CS (2010) Cannabinoids and experimental models of multiple sclerosis. Immunobiology 215:647–657

    PubMed  CAS  Google Scholar 

  • Lastres-Becker I, Fernández-Ruiz J (2006) An overview of Parkinson’s disease and the cannabinoid system and possible benefits of cannabinoid-based treatments. Curr Med Chem 13:3705–3718

    PubMed  CAS  Google Scholar 

  • Lau RJ, Tubergen DG, Barr M Jr (1976) Phytohemagglutinin induced lymphocyte transformation in humans receiving Δ9 tetrahydrocannabinol. Science 192:805–807

    PubMed  CAS  Google Scholar 

  • Lee M, Kyu Hwan Y, Kaminski NE (1995) Effects of putative cannabinoid receptor ligands, anandamide and 2- arachidonyl-glycerol, on immune function in B6C3F1 mouse splenocytes. J Pharmacol ExpTher 275:529–536

    CAS  Google Scholar 

  • Lee SF, Newton C, Widen R et al (2001) Differential expression of cannabinoid CB2 receptor mRNA in mouse immune cell subpopulations and following B cell stimulation. Eur J Pharmacol 423:235–241

    PubMed  CAS  Google Scholar 

  • Leonard BE (2006) HPA and immune axes in stress: involvement of the serotonergic system. Neuroimmunomodulation 13:268–276

    PubMed  CAS  Google Scholar 

  • Levite M (2008) Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr Opin Pharmacol 8:460–471

    PubMed  CAS  Google Scholar 

  • Li X, Kaminski NE, Fischer LJ (2001) Examination of the immunosuppressive effect of Δ9tetrahydrocannabinol in streptozotocin-induced autoimmune diabetes. Int Immunopharmacol 1:699–712

    PubMed  CAS  Google Scholar 

  • Lim G, Sung B, Ji RR et al (2003) Upregulation of spinal cannabinoid-1-receptors following nerve injury enhances the effects of Win 55,212-2 on neuropathic pain behaviors in rats. Pain 105:275–283

    PubMed  CAS  Google Scholar 

  • Liu J, Wang L, Harvey-White J et al (2006) A biosynthetic pathway for anandamide. Proc Natl Acad Sci USA 103:13345–13350

    PubMed  CAS  Google Scholar 

  • Loría F, Petrosino S, Mestre L et al (2008) Study of the regulation of the endocannabinoid system in a virus model of MS reveals a therapeutic effect of palmitoylethanolamide. Eur J Neurosci 28:633–641

    PubMed  Google Scholar 

  • Loría F, Petrosino S, Hernangómez M et al (2010) An endocannabinoid tone limits excitotoxicity in vitro and in a model of multiple sclerosis. Neurobiol Dis 37:166–176

    PubMed  Google Scholar 

  • Lu Q, Straiker A, Maguire G (2000) Expression of CB2 cannabinoid receptor mRNA in adult rat retina. Vis Neurosci 17:91–95

    PubMed  CAS  Google Scholar 

  • Lu T, Newton C, Perkins I et al (2006) Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection. J Pharmacol Exp Ther 319:269–276

    PubMed  CAS  Google Scholar 

  • Lunn CA, Fine JS, Rojas-Triana A et al (2006) A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther 316:780–788

    PubMed  CAS  Google Scholar 

  • Lynn AB, Herkenham M (1994) Localization of cannabinoid receptors and nonsaturable high-density cannabinoid binding sites in peripheral tissues of the rat: implications for receptor-mediated immune modulation by cannabinoids. J Pharmacol Exp Ther 268:1612–1623

    PubMed  CAS  Google Scholar 

  • Maccarrone M, Valensise H, Bari M et al (2001a) Progesterone up-regulates anandamide hydrolase in human lymphocytes: role of cytokines and implications for fertility. J Immunol 166:7183–7189

    PubMed  CAS  Google Scholar 

  • Maccarrone M, De Petrocellis L, Bari M et al (2001b) Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. Arch Biochem Biophys 393:321–328

    PubMed  CAS  Google Scholar 

  • Maccarrone M, Dainese E, Oddi S (2010a) Intracellular trafficking of anandamide: new concepts for signaling. Trends Biochem Sci 35:601–608

    PubMed  CAS  Google Scholar 

  • Maccarrone M, Gasperi V, Catani MV et al (2010b) The endocannabinoid system and its relevance for nutrition. Annu Rev Nutr 30:423–440

    PubMed  CAS  Google Scholar 

  • Mach F, Steffens S (2008) The role of the endocannabinoid system in atherosclerosis. J Neuroendocrinol 20:53–57

    PubMed  CAS  Google Scholar 

  • Mackie K (2005a) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325

    PubMed  CAS  Google Scholar 

  • Mackie K (2005b) Cannabinoid receptor homo- and heterodimerization. Life Sci 77:1667–1673

    PubMed  CAS  Google Scholar 

  • Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20:10–14

    PubMed  CAS  Google Scholar 

  • Maestroni GJ (2004) The endogenous cannabinoid 2-arachidonoyl glycerol as in vivo chemoattractant for dendritic cells and adjuvant for Th1 response to a soluble protein. FASEB J 18:1914–1916

    PubMed  CAS  Google Scholar 

  • Mageed RA, Adams G, Woodrow D et al (1998) Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor. Gene Ther 5:1584–1592

    PubMed  CAS  Google Scholar 

  • Malfait AM, Gallily R, Sumariwalla PF et al (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci USA 97:9561–9566

    PubMed  CAS  Google Scholar 

  • Mallat A, Teixeira-Clerc F, Deveaux V et al (2007) Cannabinoid receptors as new targets of antifibrosing strategies during chronic liver diseases. Expert Opin Ther Targets 11:403–409

    PubMed  Google Scholar 

  • Maresz K, Carrier EJ, Ponomarev ED et al (2005) Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95:437–445

    PubMed  CAS  Google Scholar 

  • Massa F, Marsicano G, Hermana H et al (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Investig 113:1202–1209

    PubMed  CAS  Google Scholar 

  • Massi P, Patrini G, Rubino T et al (1997) Changes in rat spleen cannabinoid receptors after chronic CP-55,940: an autoradiographic study. Pharmacol Biochem Behav 58:73–78

    PubMed  CAS  Google Scholar 

  • Massi P, Sacerdote P, Ponti W et al (1998) Immune function alterations in mice tolerant to Δ9 tetrahydrocannabinol: functional and biochemical parameters. J Neuroimmunol 92:60–66

    PubMed  CAS  Google Scholar 

  • Massi P, Vaccani A, Parolaro D (2006) Cannabinoids, immune system and cytokine network. Curr Pharm Des 12:3135–3146

    PubMed  CAS  Google Scholar 

  • Mastorakos G, Ilias I (2006) Interleukin-6: a cytokine and/or a major modulator of the response to somatic stress. Ann NY Acad Sci 1088:373–381

    PubMed  CAS  Google Scholar 

  • Matias I (2002) Presence and regulation of the endocannabinoid system in human dendritic cells. Eur J Biochem 269:3771–3778

    PubMed  CAS  Google Scholar 

  • Matias I, Pochard P, Orlando P et al (2002) Presence and regulation of the endocannabinoid system in human dendritic cells. Eur J Biochem 269:3771–3778

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ et al (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    PubMed  CAS  Google Scholar 

  • McDougall JJ, Yu V, Thomson J (2008) In vivo effects of CB2 receptor-selective cannabinoids on the vasculature of normal and arthritic rat knee joints. Br J Pharmacol 153:358–366

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    PubMed  CAS  Google Scholar 

  • Melamede R (2005) Harm reduction – the cannabis paradox. Harm Reduct J 2:17

    PubMed  Google Scholar 

  • Michalik L, Auwerx J, Berger JP et al (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741

    PubMed  CAS  Google Scholar 

  • Miller AM, Stella N (2008) CB2 receptor-mediated migration of immune cells: it can go either way. Br J Pharmacol 153:299–308

    PubMed  CAS  Google Scholar 

  • Milligan G (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    PubMed  CAS  Google Scholar 

  • Molina-Holgado E, Vela JM, Arévalo-Martín A et al (2002) Cannabinoids promote oligodendrocyte progenitor survival: involvement of cannabinoid receptors and phosphatidylinositol-3 kinase/Akt signaling. J Neurosci 22:9742–9753

    PubMed  CAS  Google Scholar 

  • Montecucco F, Matias I, Lenglet S et al (2009) Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 205:433–441

    PubMed  CAS  Google Scholar 

  • Moser B, Wolf M, Walz A et al (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84

    PubMed  CAS  Google Scholar 

  • Muccioli GG (2010) Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today 15:474–483

    PubMed  CAS  Google Scholar 

  • Muccioli GG, Stella N (2008) Microglia produce and hydrolyze palmitoylethanolamide. Neuropharmacology 54:16–22

    PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    PubMed  CAS  Google Scholar 

  • Nagarkatti M, Rieder SA, Hegde VL et al (2010) Do cannabinoids have a therapeutic role in transplantation? Trends Pharmacol Sci 31:345–350

    PubMed  CAS  Google Scholar 

  • Nagayama T, Sinor AD, Simon RP et al (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19:2987–2995

    PubMed  CAS  Google Scholar 

  • Nahas GG, Osserman EF (1991) Altered serum immunoglobulin concentration in chronic marijuana smokers. Adv Exp Med Biol 288:25–32

    PubMed  CAS  Google Scholar 

  • Nahas GG, Morishima A, Desoize B (1977) Effects of cannabinoids on macromolecular synthesis and replication of cultured lymphocytes. Fed Proc 36:1748–1752

    PubMed  CAS  Google Scholar 

  • Newton CA, Chou PJ, Perkins I et al (2009) CB(1) and CB(2) cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J Neuroimmune Pharmacol 4:92–102

    PubMed  Google Scholar 

  • Ni X, Geller EB, Eppihimer MJ et al (2004) Win 55212-2, a cannabinoid receptor agonist, attenuates leukocyte/endothelial interactions in an experimental autoimmune encephalomyelitis model. Mult Scler 10:158–164

    PubMed  CAS  Google Scholar 

  • Nong L, Newton C, Cheng Q et al (2002) Altered cannabinoid receptor mRNA expression in peripheral blood mononuclear cells from marijuana smokers. J Neuroimmunol 127:169–176

    PubMed  CAS  Google Scholar 

  • Norrod AG, Puffenbarger RA (2007) Genetic polymorphisms of the endocannabinoid system. Chem Biodivers 4:1926–1932

    PubMed  CAS  Google Scholar 

  • Nunn AVW, Guy GW, Bell JD (2010) Endocannabinoids, FOXO and the metabolic syndrome: redox, function and tipping point – the view from two systems. Immunobiology 215:617–628

    PubMed  CAS  Google Scholar 

  • Nyíri G, Cserép C, Szabadits E et al (2005) CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience 136:811–822

    PubMed  Google Scholar 

  • Oddi S, Spagnuolo P, Bari M et al (2007) Differential modulation of type 1 and type 2 cannabinoid receptors along the neuroimmune axis. Int Rev Neurobiol 82:327–337

    PubMed  CAS  Google Scholar 

  • Ofek O, Karsak M, Leclerc N et al (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA 103:696–701

    PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP et al (2006a) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann NY Acad Sci 1074:514–536

    PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Sejal P et al (2006b) Methods to study the behavioral effects and expression of CB2 cannabinoid receptor and its gene transcripts in the chronic mild stress model of depression. Methods Mol Med 123:291–298

    PubMed  CAS  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP et al (2008) Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects. PLoS One 3:e1640

    PubMed  Google Scholar 

  • Oz M (2006) Receptor-independent effects of endocannabinoids on ion channels. Curr Pharm Des 12:227–239

    PubMed  CAS  Google Scholar 

  • Palazuelos J, Aguado T, Egia A et al (2006) Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20:2405–2407

    PubMed  CAS  Google Scholar 

  • Pandey R, Mousawy K, Nagarkatti M et al (2009) Endocannabinoids and immune regulation. Pharmacol Res 60:85–92

    PubMed  CAS  Google Scholar 

  • Parker LA, Kwiatkowska M, Burton P et al (2004) Effect of cannabinoids on lithium-induced vomiting in the Suncus murinus (house musk shrew). Psychopharmacology 171:156–161

    PubMed  CAS  Google Scholar 

  • Parker J, Atez F, Rossetti RG et al (2008) Suppression of human macrophage interleukin-6 by a nonpsychoactive cannabinoid acid. Rheumatol Int 28:631–635

    PubMed  CAS  Google Scholar 

  • Patel S, Hillard CJ (2006) Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J Pharmacol Exp Ther 318:304–311

    PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ et al (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic-pituitary-adrenal axis. Endocrinology 145:5431–5438

    PubMed  CAS  Google Scholar 

  • Patinkin D, Milman G, Breuer A et al (2008) Endocannabinoids as positive or negative factors in hematopoietic cell migration and differentiation. Eur J Pharmacol 595:1–6

    PubMed  CAS  Google Scholar 

  • Patrini G, Sacerdote P, Fuzio D et al (1997) Regulation of immune functions in rat splenocytes after acute and chronic in vivo treatment with CP-55,940, a synthetic cannabinoid compound. J Neuroimmunol 80:143–148

    PubMed  CAS  Google Scholar 

  • Pereira JP, An J, Xu Y et al (2009) Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat Immunol 10:403–411

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2006) The pharmacology of cannabinoid receptors and their ligands: an overview. Int J Obes (Lond) 30(Suppl 1):S13–S18

    CAS  Google Scholar 

  • Pertwee RG (2008a) Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addict Biol 13:147–159

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2008b) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2010) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Chem 17:1360–1381

    PubMed  CAS  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB and CB. Pharmacol Rev 62:588–631

    PubMed  CAS  Google Scholar 

  • Pestonjamasp VK, Burstein SH (1998) Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system. Biochim Biophys Acta 1394:249–260

    PubMed  CAS  Google Scholar 

  • Porter AC, Sauer JM, Knierman MD et al (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301:1020–1024

    PubMed  CAS  Google Scholar 

  • Pulvirenti N, Nasca MR, Micali G (2007) Topical adelmidrol 2% emulsion, a novel aliamide, in the treatment of mild atopic dermatitis in pediatric subjects: a pilot study. Acta Dermatovenerol Croat 15:80–83

    PubMed  CAS  Google Scholar 

  • Raborn ES, Marciano-Cabral F, Buckley NE et al (2008) The cannabinoid delta-9-tetrahydrocannabinol mediates inhibition of macrophage chemotaxis to RANTES/CCL5: linkage to the CB2 receptor. J NeuroImmune Pharmacol 3:117–129

    PubMed  Google Scholar 

  • Rachelefsky GS, Opelz G, Mickey MR (1976) Intact humoral and cell mediated immunity in chronic marijuana smoking. J Allergy Clin Immunol 58:483–490

    PubMed  CAS  Google Scholar 

  • Racke MK, Dhib-Jalbut S, Cannella B et al (1991) Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-β1. J Immunol 146:3012–3017

    PubMed  CAS  Google Scholar 

  • Racz I, Nadal X, Alferink J et al (2008) Interferon-γ is a critical modulator of CB2 cannabinoid receptor signaling during neuropathic pain. J Neurosci 28:12136–12145

    PubMed  CAS  Google Scholar 

  • Raduner S, Majewska A, Chen JZ et al (2006) Alkylamides from Echinacea are a new class of cannabinomimetics: cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J Biol Chem 281:14192–14206

    PubMed  CAS  Google Scholar 

  • Ramirez BG, Blazquez C, Gomez del Pulgar T et al (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 25:1904–1913

    PubMed  CAS  Google Scholar 

  • Randall MD (2007) Endocannabinoids and the haematological system. Br J Pharmacol 152:671–675

    PubMed  CAS  Google Scholar 

  • Reggio PH (2002) Endocannabinoid structure-activity relationships for interaction at the cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 66:143–160

    PubMed  CAS  Google Scholar 

  • Ribeiro A, Ferraz-de-Paula V, Pinheiro ML et al (2010) Anandamide prior to sensitization increases cell-mediated immunity in mice. Int Immunopharmacol 10:431–439

    PubMed  CAS  Google Scholar 

  • Richardson D, Pearson RG, Kurian N et al (2008) Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Res Ther 10:R43

    PubMed  Google Scholar 

  • Rieder SA, Chauhan A, Singh U et al (2010) Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. Immunobiology 215:598–605

    PubMed  CAS  Google Scholar 

  • Roche M, Diamond M, Kelly JP et al (2006) In vivo modulation of LPS-induced alterations in brain and peripheral cytokines and HPA axis activity by cannabinoids. J Neuroimmunol 181:57–67

    PubMed  CAS  Google Scholar 

  • Roche M, Kelly JP, O'Driscoll M et al (2008) Augmentation of endogenous cannabinoid tone modulates lipopolysaccharide- induced alterations in circulating cytokine levels in rats. Immunology 125:263–271

    PubMed  CAS  Google Scholar 

  • Rossi S, Bernardi G, Centonze D (2010) The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Exp Neurol 224:92–102

    PubMed  CAS  Google Scholar 

  • Roth MD, Baldwin GC, Tashkin DP (2002) Effects of delta-9-tetrahydrocannabinol on human immune function and host defense. Chem Phys Lipids 121:229–239

    PubMed  CAS  Google Scholar 

  • Ryan D, Drysdale AJ, Lafourcade C et al (2009) Cannabidiol targets mitochondria to regulate intracellular ca2+ levels. J Neurosci 29:2053–2063

    PubMed  CAS  Google Scholar 

  • Ryberg E, Larsson N, Sjögren S et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    PubMed  CAS  Google Scholar 

  • Sacerdote P, Martucci C, Vaccani A et al (2005) The nonpsychoactive component of marijuana cannabidiol modulates chemotaxis and IL-10 and IL-12 production of murine macrophages both in vivo and in vitro. J Neuroimmunol 159:97–105

    PubMed  CAS  Google Scholar 

  • Salzet M, Breton C, Bisogno T et al (2000) Comparative biology of the endocannabinoid system possible role in the immune response. Eur J Biochem 267:4917–4927

    PubMed  CAS  Google Scholar 

  • Schuelert N, McDougall JJ (2008) Cannabinoid-mediated antinociception is enhanced in rat osteoarthritic knees. Arthritis Rheum 58:145–153

    PubMed  CAS  Google Scholar 

  • Schwarz H, Blanco FJ, Lotz M (1994) Anadamide, an endogenous cannabinoid receptor agonist inhibits lymphocyte proliferation and induces apoptosis. J Neuroimmunol 55:107–115

    PubMed  CAS  Google Scholar 

  • Scotter EL, Abood ME, Glass M (2010) The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol 160:480–498

    PubMed  CAS  Google Scholar 

  • Shay AH, Choi R, Whittaker K et al (2003) Impairment of antimicrobial activity and NO production in alveolar macrophages from smokers of marijuana and cocaine. J Infect Dis 187:700–704

    PubMed  CAS  Google Scholar 

  • Sherwood TA, Nong L, Agudelo M et al (2009) Identification of transcription start sites and preferential expression of select CB2 transcripts in mouse and human B lymphocytes. J NeuroImmune Pharmacol 4:476–488

    PubMed  Google Scholar 

  • Shoemaker JL, Ruckle MB, Mayeux PR et al (2005) Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther 315:828–838

    PubMed  CAS  Google Scholar 

  • Shohami E, Gallily R, Mechoulam R et al (1997) Cytokine production in the brain following closed head injury: dexanabinol (HU-211) is a novel TNF-α inhibitor and an effective neuroprotectant. J Neuroimmunol 72:169–177

    PubMed  CAS  Google Scholar 

  • Sidney S, Beck JE, Tekawa IS et al (1997) Marijuana use and mortality. Am J Pub Health 87:585–590

    CAS  Google Scholar 

  • Sinha D, Bonner TI, Bhat NR et al (1998) Expression of the CB1 cannabinoid receptor in macrophage-like cells from brain tissue: immunochemical characterization by fusion protein antibodies. J Neuroimmunol 82:13–21

    PubMed  CAS  Google Scholar 

  • Smid SD (2008) Gastrointestinal endocannabinoid system: multifaceted roles in the healthy and inflamed intestine. Clin Exp Pharmacol Physiol 35:1383–1387

    PubMed  CAS  Google Scholar 

  • Smith SR, Terminelli C, Denhardt G (2000) Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J Pharmacol Exp Ther 293:136–150

    PubMed  CAS  Google Scholar 

  • Smith SR, Terminelli C, Denhardt G (2001) Modulation of cytokine responses in Corynebacterium parvum-primed endotoxemic mice by centrally administered cannabinoid ligands. Eur J Pharmacol 425:73–83

    PubMed  CAS  Google Scholar 

  • Song ZH, Zhong M (2000) CB1 cannabinoid receptor-mediated cell migration. J Pharmacol Exp Ther 294:204–209

    PubMed  CAS  Google Scholar 

  • Specter SC, Klein TW, Newton C et al (1986) Marijuana effects on immunity: suppression of human natural killer cell activity of delta-9-tetrahydrocannabinol. Int J Immunopharmacol 8:741–745

    PubMed  CAS  Google Scholar 

  • Springs AE, Karmaus PW, Crawford RB et al (2008) Effects of targeted deletion of cannabinoid receptors CB1 and CB2 on immune competence and sensitivity to immune modulation by Delta9-tetrahydrocannabinol. J Leukoc Biol 84:1574–1584

    PubMed  CAS  Google Scholar 

  • Stefano GB, Liu Y, Goligorsky MS (1996) Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes. J Biol Chem 271:19238–19242

    PubMed  CAS  Google Scholar 

  • Steffens S, Veillard NR, Arnaud C et al (2005) Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434:782–786

    PubMed  CAS  Google Scholar 

  • Stella N (2004) Cannabinoid signaling in glial cells. GLIA 48:267–277

    PubMed  Google Scholar 

  • Stella N (2009) Endocannabinoid signaling in microglial cells. Neuropharmacology 56:244–253

    PubMed  CAS  Google Scholar 

  • Storr MA, Keenan CM, Emmerdinger D et al (2008) Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors. J Mol Med 86:925–936

    PubMed  CAS  Google Scholar 

  • Storr M, Emmerdinger D, Diegelmann J et al (2009) The role of fatty acid hydrolase gene variants in inflammatory bowel disease. Aliment Pharmacol Ther 29:542–551

    PubMed  CAS  Google Scholar 

  • Sugamura K, Sugiyama S, Nozaki T et al (2009) Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 119:28–36

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A et al (1995) 2-arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Comm 215:89–97

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kishimoto S, Oka S et al (2006) Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res 45:405–446

    PubMed  CAS  Google Scholar 

  • Szabo I, Chen XH, Xin L et al (2002) Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci USA 99:10276–10281

    PubMed  CAS  Google Scholar 

  • Szallasi A, Di Marzo V (2000) New perspectives on enigmatic vanilloid receptors. Trends Neurosci 23:491–497

    PubMed  CAS  Google Scholar 

  • Tanasescu R, Constantinescu CS (2010) Cannabinoids and the immune system: an overview. Immunobiology 215:588–597

    PubMed  CAS  Google Scholar 

  • Tanikawa T, Kurohane K, Imai Y (2007) Induction of preferential chemotaxis of unstimulated B-lymphocytes by 2-arachidonoylglycerol in immunized mice. Microbiol Immunol 51:1013–1019

    PubMed  CAS  Google Scholar 

  • Tashkin DP, Baldwin GC, Sarafian T et al (2002) Respiratory and immunologic consequences of marijuana smoking. J Clin Pharmacol 42:71S–81S

    PubMed  CAS  Google Scholar 

  • Tasker J (2004) Endogenous cannabinoids take the edge off neuroendocrine responses to stress. Endocrinology 145:5429–5430

    PubMed  CAS  Google Scholar 

  • Terabe M, Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28:491–496

    PubMed  CAS  Google Scholar 

  • Toth CC, Jedrzejewski NM, Ellis CL et al (2010) Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain. Mol Pain 6:16

    PubMed  Google Scholar 

  • Triantaphyllopoulos KA, Williams RO, Tailor H et al (1999) Amelioration of collagen-induced arthritis and suppression of interferon-γ interleukin-12, and tumor necrosis factor α production by interferon-β gene therapy. Arthritis Rheum 42:90–99

    PubMed  CAS  Google Scholar 

  • Tsuboi K, Zhao LY, Okamoto Y et al (2007) Predominant expression of lysosomal N-acylethanolamine-hydrolyzing acid amidase in macrophages revealed by immunochemical studies. Biochim Biophys Acta 1771:623–632

    PubMed  CAS  Google Scholar 

  • Valk P, Verbakel S, Vankan Y et al (1997) Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells. Blood 90:1448–1457

    PubMed  CAS  Google Scholar 

  • Van Diepen H, Schlicker E, Michel MC (2008) Prejunctional and peripheral effects of the cannabinoid CB1 receptor inverse agonist rimonabant (SR 141716). Naunyn-Schmiedebergs Arch Pharmacol 378:345–369

    PubMed  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ et al (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332

    PubMed  Google Scholar 

  • Vannacci A, Giannini L, Passani MB et al (2004) The endocannabinoid 2-arachidonylglycerol decreases the immunological activation of Guinea pig mast cells: involvement of nitric oxide and eicosanoids. J Pharmacol Exp Ther 311:256–264

    PubMed  CAS  Google Scholar 

  • Varga K, Wagner JA, Bridgen DT et al (1998) Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J 12:1035–1044

    PubMed  CAS  Google Scholar 

  • Vogt AB, Spindeldreher S, Kropshofer H (2002) Clustering of MHC-peptide complexes prior to their engagement in the immunological synapse: lipid raft and tetraspan microdomains. Immunol Rev 189:136–151

    PubMed  CAS  Google Scholar 

  • Wacnik PW, Luhr KM, Hill RH et al (2008) Cannabinoids affect dendritic cell (DC) potassium channel function and modulate DC T cell stimulatory capacity. J Immunol 181:3057–3066

    PubMed  CAS  Google Scholar 

  • Wager-Miller J, Westenbroek R, Mackie K (2002) Dimerization of G protein-coupled receptors: CB1 cannabinoid receptors as an example. Chem Phys Lipids 121:83–89

    PubMed  CAS  Google Scholar 

  • Walsh SK, Hepburn CY, Kane KA et al (2010) Acute administration of cannabidiol in vivo suppresses ischaemia-induced cardiac arrhythmias and reduces infarct size when given at reperfusion. Br J Pharmacol 160:1234–1242

    PubMed  CAS  Google Scholar 

  • Walter L, Franklin A, Witting A et al (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23:1398–1405

    PubMed  CAS  Google Scholar 

  • Wang J, Zhao LY, Uyama T et al (2008) Amino acid residues crucial in pH regulation and proteolytic activation of N-acylethanolamine-hydrolyzing acid amidase. Biochim Biophys Acta 1781:710–717

    PubMed  CAS  Google Scholar 

  • Wei BQ, Mikkelsen TS, McKinney MK et al (2006) A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem 281:36569–36578

    PubMed  CAS  Google Scholar 

  • Weibel GL, Joshi MR, Alexander ET et al (2009) Overexpression of human 15(S)-lipoxygenase-1 in RAW macrophages leads to increased cholesterol mobilization and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 29:837–842

    PubMed  CAS  Google Scholar 

  • White SC, Brin SC, Janicki BW (1975) Mitogen induced blastogenic responses of lymphocytes from marihuana smokers. Science 188:71–72

    PubMed  CAS  Google Scholar 

  • Woelkart K, Marth E, Suter A et al (2006) Bioavailability and pharmacokinetics of Echinacea purpurea preparations and their interaction with the immune system. Int J Clin Pharmacol Ther 44:401–408

    PubMed  CAS  Google Scholar 

  • Woelkart K, Salo-Ahen OM, Bauer R (2008) CB receptor ligands from plants. Curr Top Med Chem 8:173–186

    PubMed  CAS  Google Scholar 

  • Wolf SA, Ullrich O (2008a) Endocannabinoids and the brain immune system: new neurones at the horizon? J Neuroendocrinol 20:15–19

    PubMed  CAS  Google Scholar 

  • Wolf SA, Ullrich O (2008b) Endocannabinoids and the brain immune system: new neurones at the horizon? J Neuroendocrinol 20(Suppl 1):15–19

    PubMed  CAS  Google Scholar 

  • Wotherspoon G, Fox A, McIntyre P et al (2005) Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience 135:235–245

    PubMed  CAS  Google Scholar 

  • Wright K, Rooney N, Feeney M et al (2005) Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 129:437–453

    PubMed  Google Scholar 

  • Wright KL, Duncan M, Sharkey KA (2008) Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol 153:263–270

    PubMed  CAS  Google Scholar 

  • Yang HYT, Karoum F, Felder C et al (1999) GC/MS analysis of anandamide and quantification of N- arachidonoylphosphatidylethanolamides in various brain regions, spinal cord, testis, and spleen of the rat. J Neurochem 72:1959–1968

    PubMed  CAS  Google Scholar 

  • Yao BB, Mukherjee S, Fan Y et al (2006) In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? Br J Pharmacol 149:145–154

    PubMed  CAS  Google Scholar 

  • Yea SS, Yang KH, Kaminski NE (2000) Role of nuclear factor of activated T-cells and activator protein-1 in the inhibition of interleukin-2 gene transcription by cannabinol in EL4 T- cells. J Pharmacol Exp Ther 292:597–605

    PubMed  CAS  Google Scholar 

  • Yuan M (2002) [Delta]9-Tetrahydrocannabinol regulates TH1/TH2 cytokine balance in activated human T cells. J Neuroimmunol 133:124–131

    PubMed  CAS  Google Scholar 

  • Yuan M, Kiertscher SM, Cheng Q et al (2002) Δ9Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells. J Neuroimmunol 133:124–131

    PubMed  CAS  Google Scholar 

  • Zhang ZF, Morgenstern H, Spitz MR et al (1999) Marijuana use and increased risk of squamous cell carcinoma of the head and neck. Cancer Epidemiol Biomark Prev 8:1071–1078

    CAS  Google Scholar 

  • Zhao LY, Tsuboi K, Okamoto Y et al (2007) Proteolytic activation and glycosylation of N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme involved in the endocannabinoid metabolism. Biochim Biophys Acta 1771:1397–1405

    PubMed  CAS  Google Scholar 

  • Zhao P, Leonoudakis D, Abood ME et al (2010) Cannabinoid receptor activation reduces TNFα-Induced surface localization of AMPAR-type glutamate receptors and excitotoxicity. Neuropharmacology 58:551–558

    PubMed  CAS  Google Scholar 

  • Ziring D, Wei B, Velazquez P et al (2006) Formation of B and T cell subsets require the cannabinoid receptor CB2. Immunogenetics 58:714–725

    PubMed  CAS  Google Scholar 

  • Zoppi S, Pérez Nievas BG, Madrigal JL, Manzanares J, Leza JC, García-Bueno B (2011) Regulatory role of cannabinoid receptor 1 in stress-induced excitotoxicity and neuroinflammation. Neuropsychopharmacology 36(4):805–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cris S. Constantinescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Constantinescu, C.S., Tanasescu, R. (2012). The Effects of Cannabinoids on Immune Cells, Responses and Diseases. In: Levite, M. (eds) Nerve-Driven Immunity. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0888-8_11

Download citation

Publish with us

Policies and ethics