Skip to main content

Exploring Systemic Functions of Lysosomal Proteases: The Perspective of Genetically Modified Mouse Models

  • Chapter
  • First Online:
Proteases: Structure and Function

Abstract

The generation of genetically engineered mouse models (GEM) allows studying the effects of deleting, mutating, or overexpressing proteases and their endogenous inhibitors in a complex living organism. During the past decade this approach has been widely used to investigate endolysosomal proteases, such as the cysteine cathepsins, and their endogenous inhibitors. Here we summarize the findings and discoveries made by the analysis of these GEM in diverse physiological and pathological processes, i.e. skin homeostasis, atherosclerosis, cardiomyopathy, and neurodegeneration. Throughout these diverse subjects we focus on how the normal balance of proteolytic enzymes and their natural inhibitors have been disturbed by the genetic alternations. The phenotypic consequences of these alterations were shown to be highly context-dependent resulting in cell- and tissue-specific pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Awano T, Katz ML, O’Brien DP, Taylor JF, Evans J, Khan S, Sohar I, Lobel P, Johnson GS (2006) A mutation in the cathepsin D gene (CTSD) in American Bulldogs with neuronal ceroid lipofuscinosis. Mol Genet Metab 87:341–348

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Beal MF, Thomas B (2010) Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci 33:541–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellettato CM, Scarpa M (2010) Pathophysiology of neuropathic lysosomal storage disorders. J Inherit Metab Dis 33:347–362

    Article  CAS  PubMed  Google Scholar 

  • Benavides F, Giordano M, Fiette L, Bueno Brunialti AL, Martin Palenzuela N, Vanzulli S, Baldi P, Schmidt R, Dosne Pasqualini C, Guenet J (1999) Nackt (nkt), a new hair loss mutation of the mouse with associated CD4 deficiency. Immunogenetics 49:413–419

    Article  CAS  PubMed  Google Scholar 

  • Benavides F, Venables A, Poetschke Klug H, Glasscock E, Rudensky A, Gomez M, Martin Palenzuela N, Guenet JL, Richie ER, Conti CJ (2001) The CD4 T cell-deficient mouse mutation nackt (nkt) involves a deletion in the cathepsin L (CtsI) gene. Immunogenetics 53:233–242

    Article  CAS  PubMed  Google Scholar 

  • Benavides F, Starost MF, Flores M, Gimenez-Conti IB, Guenet JL, Conti CJ (2002) Impaired hair follicle morphogenesis and cycling with abnormal epidermal differentiation in nackt mice, a cathepsin L-deficient mutation. Am J Pathol 161:693–703

    Article  CAS  PubMed  Google Scholar 

  • Benavides F, Perez C, Blando J, Contreras O, Shen J, Coussens LM, Fischer SM, Kusewitt DF, Digiovanni J, Conti CJ (2012) Protective role of cathepsin L in mouse skin carcinogenesis. Mol Carcinog 51:352–361

    Google Scholar 

  • Bernard D, Mehul B, Thomas-Collignon A, Simonetti L, Remy V, Bernard MA, Schmidt R (2003) Analysis of proteins with caseinolytic activity in a human stratum corneum extract revealed a yet unidentified cysteine protease and identified the so-called “stratum corneum thiol protease” as cathepsin l2. J Invest Dermatol 120:592–600

    Article  CAS  PubMed  Google Scholar 

  • Brix K, Dunkhorst A, Mayer K, Jordans S (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90:194–207

    Article  CAS  PubMed  Google Scholar 

  • Buhling F, Kouadio M, Chwieralski CE, Kern U, Hohlfeld JM, Klemm N, Friedrichs N, Roth W, Deussing JM, Peters C et al (2011) Gene targeting of the cysteine peptidase cathepsin H impairs lung surfactant in mice. PLoS One 6:e26247

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL (2006) Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 281:20483–20493

    Article  CAS  PubMed  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Hitomi K, van Vlijmen-Willems IM, de Jongh GJ, Yamamoto K, Nishi K, Watts C, Reinheckel T, Schalkwijk J, Zeeuwen PL (2006) Cystatin M/E is a high affinity inhibitor of cathepsin V and cathepsin L by a reactive site that is distinct from the legumain-binding site. A novel clue for the role of cystatin M/E in epidermal cornification. J Biol Chem 281:15893–15899

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo ME, Bird PI, Peters C, Reinheckel T, Trapani JA, Sutton VR (2010) Cathepsin H is an additional convertase of pro-granzyme B. J Biol Chem 285:20514–20519

    Article  PubMed  Google Scholar 

  • Dennemarker J, Lohmuller T, Mayerle J, Tacke M, Lerch MM, Coussens LM, Peters C, Reinheckel T (2010a) Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis. Oncogene 29:1611–1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dennemarker J, Lohmuller T, Muller S, Aguilar SV, Tobin DJ, Peters C, Reinheckel T (2010b) Impaired turnover of autophagolysosomes in cathepsin L deficiency. Biol Chem 391:913–922

    Article  PubMed  Google Scholar 

  • Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felbor U, Kessler B, Mothes W, Goebel HH, Ploegh HL, Bronson RT, Olsen BR (2002) Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci U S A 99:7883–7888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frels WI, Bluestone JA, Hodes RJ, Capecchi MR, Singer DS (1985) Expression of a microinjected porcine class I major histocompatibility complex gene in transgenic mice. Science 228:577–580

    Article  CAS  PubMed  Google Scholar 

  • Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K (2003) Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest 111:1733–1745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Touchard A, Henry TD, Sangiorgi G, Spagnoli LG, Mauriello A, Conover C, Schwartz RS (2005) Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol 25:1119–1127

    Article  CAS  PubMed  Google Scholar 

  • Gondo Y, Fukumura R, Murata T, Makino S (2009) Next-generation gene targeting in the mouse for functional genomics. BMB Rep 42:315–323

    Article  CAS  PubMed  Google Scholar 

  • Green EL (1954) The genetics of a new hair deficiency, furless, in the house mouse. J Hered 45:115–118

    CAS  Google Scholar 

  • Hagemann S, Gunther T, Dennemarker J, Lohmuller T, Bromme D, Schule R, Peters C, Reinheckel T (2004) The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. Eur J Cell Biol 83:775–780

    Article  CAS  PubMed  Google Scholar 

  • Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenbuerger M, Reinheckel T, Domschke W, Lippert H, Peters C, Deussing J (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106:773–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houseweart MK, Pennacchio LA, Vilaythong A, Peters C, Noebels JL, Myers RM (2003) Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1). J Neurobiol 56:315–327

    Article  CAS  PubMed  Google Scholar 

  • Hsing LC, Rudensky AY (2005) The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol Rev 207:229–241

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Mohan P, Pawlik M, DeRosa S, Fajiculay J, Che S, Grubb A, Ginsberg SD, Nixon RA, Levy E (2010) Cystatin C rescues degenerating neurons in a cystatin B-knockout mouse model of progressive myoclonus epilepsy. Am J Pathol 177:2256–2267

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto S, Sukhova GK, Sun J, Yang M, Libby P, Love V, Duramad P, Sun C, Zhang Y, Yang X et al (2007) Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation 115:2065–2075

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y, Schulz-Schaeffer W, Watanabe T, Waguri S, Kametaka S et al (2000) Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 20:6898–6906

    CAS  PubMed  Google Scholar 

  • Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N et al (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 167:1713–1728

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  • Korolchuk VI, Menzies FM, Rubinsztein DC (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 584:1393–1398

    Article  CAS  PubMed  Google Scholar 

  • Lalioti MD, Mirotsou M, Buresi C, Peitsch MC, Rossier C, Ouazzani R, Baldy-Moulinier M, Bottani A, Malafosse A, Antonarakis SE (1997) Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1). Am J Hum Genet 60:342–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lieuallen K, Pennacchio LA, Park M, Myers RM, Lennon GG (2001) Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum Mol Genet 10:1867–1871

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sukhova GK, Yang JT, Sun J, Ma L, Ren A, Xu WH, Fu H, Dolganov GM, Hu C et al (2006) Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184:302–311

    Article  CAS  PubMed  Google Scholar 

  • Lutgens E, Lutgens SP, Faber BC, Heeneman S, Gijbels MM, de Winther MP, Frederik P, van der Made I, Daugherty A, Sijbers AM et al (2006) Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113:98–107

    Article  CAS  PubMed  Google Scholar 

  • Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J, McNeish JD, Eastman SE, Howard ED, Clarke SR et al (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–217

    Article  CAS  PubMed  Google Scholar 

  • Neufeld EF (1991) Lysosomal storage diseases. Annu Rev Biochem 60:257–280

    Article  CAS  PubMed  Google Scholar 

  • Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85:1–31

    Article  CAS  PubMed  Google Scholar 

  • Nicholl SM, Roztocil E, Davies MG (2006) Plasminogen activator system and vascular disease. Curr Vasc Pharmacol 4:101–116

    Article  CAS  PubMed  Google Scholar 

  • Ondr JK, Pham CT (2004) Characterization of murine cathepsin W and its role in cell-mediated cytotoxicity. J Biol Chem 279:27525–27533

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio LA, Lehesjoki AE, Stone NE, Willour VL, Virtaneva K, Miao J, D’Amato E, Ramirez L, Faham M, Koskiniemi M et al (1996) Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 271:1731–1734

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio LA, Bouley DM, Higgins KM, Scott MP, Noebels JL, Myers RM (1998) Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 20:251–258

    Article  CAS  PubMed  Google Scholar 

  • Petermann I, Mayer C, Stypmann J, Biniossek ML, Tobin DJ, Engelen MA, Dandekar T, Grune T, Schild L, Peters C et al (2006) Lysosomal, cytoskeletal, and metabolic alterations in cardiomyopathy of cathepsin L knockout mice. FASEB J 20:1266–1268

    Article  CAS  PubMed  Google Scholar 

  • Pham CT, Ley TJ (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci U S A 96:8627–8632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    Article  PubMed  Google Scholar 

  • Reinheckel T, Deussing J, Roth W, Peters C (2001) Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem 382:735–741

    CAS  PubMed  Google Scholar 

  • Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N, Peters C (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118:3387–3395

    Article  CAS  PubMed  Google Scholar 

  • Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rendl M, Lewis L, Fuchs E (2005) Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol 3:e331

    Article  PubMed Central  PubMed  Google Scholar 

  • Roth W, Deussing J, Botchkarev VA, Pauly-Evers M, Saftig P, Hafner A, Schmidt P, Schmahl W, Scherer J, Anton-Lamprecht I et al (2000) Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J 14:2075–2086

    Article  CAS  PubMed  Google Scholar 

  • Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, Koster A, Hess B, Evers M, von Figura K et al (1995) Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 14:3599–3608

    CAS  PubMed  Google Scholar 

  • Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A 95:13453–13458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sevenich L, Pennacchio LA, Peters C, Reinheckel T (2006) Human cathepsin L rescues the neurodegeneration and lethality in cathepsin B/L double-deficient mice. Biol Chem 387:885–891

    Article  CAS  PubMed  Google Scholar 

  • Sevenich L, Schurigt U, Sachse K, Gajda M, Werner F, Muller S, Vasiljeva O, Schwinde A, Klemm N, Deussing J et al (2010) Synergistic antitumor effects of combined cathepsin B and cathepsin Z deficiencies on breast cancer progression and metastasis in mice. Proc Natl Acad Sci U S A 107:2497–2502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi GP, Sukhova GK, Grubb A, Ducharme A, Rhode LH, Lee RT, Ridker PM, Libby P, Chapman HA (1999) Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest 104:1191–1197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siintola E, Partanen S, Stromme P, Haapanen A, Haltia M, Maehlen J, Lehesjoki AE, Tyynela J (2006) Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain 129:1438–1445

    Article  PubMed  Google Scholar 

  • Spira D, Stypmann J, Tobin DJ, Petermann I, Mayer C, Hagemann S, Vasiljeva O, Gunther T, Schule R, Peters C et al (2007) Cell type-specific functions of the lysosomal protease cathepsin L in the heart. J Biol Chem 282:37045–37052

    Article  CAS  PubMed  Google Scholar 

  • Stahl S, Reinders Y, Asan E, Mothes W, Conzelmann E, Sickmann A, Felbor U (2007) Proteomic analysis of cathepsin B- and L-deficient mouse brain lysosomes. Biochim Biophys Acta 1774:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Bruck W, Saftig P, Gartner J (2006) Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet 78:988–998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stypmann J, Glaser K, Roth W, Tobin DJ, Petermann I, Matthias R, Monnig G, Haverkamp W, Breithardt G, Schmahl W et al (2002) Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci U S A 99:6234–6239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sukhova GK, Shi GP (2006) Do cathepsins play a role in abdominal aortic aneurysm pathogenesis? Ann N Y Acad Sci 1085:161–169

    Article  CAS  PubMed  Google Scholar 

  • Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102:576–583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M, Kodama T, Tsimikas S, Witztum JL, Lu ML et al (2003) Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 111:897–906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sukhova GK, Wang B, Libby P, Pan JH, Zhang Y, Grubb A, Fang K, Chapman HA, Shi GP (2005) Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circ Res 96:368–375

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhang J, Lindholt JS, Sukhova GK, Liu J, He A, Abrink M, Pejler G, Stevens RL, Thompson RW et al (2009) Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation 120:973–982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Sukhova GK, Zhang J, Chen H, Sjoberg S, Libby P, Xiang M, Wang J, Peters C, Reinheckel T et al (2011) Cathepsin L activity is essential to elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 31:2500–2508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang CH, Lee JW, Galvez MG, Robillard L, Mole SE, Chapman HA (2006) Murine cathepsin f deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Mol Cell Biol 26:2309–2316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Q, Cai J, Shen D, Bian Z, Yan L, Wang YX, Lan J, Zhuang GQ, Ma WZ, Wang W (2009) Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3beta signaling. J Mol Med 87:249–260

    Article  CAS  PubMed  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  CAS  PubMed  Google Scholar 

  • Tobin DJ, Foitzik K, Reinheckel T, Mecklenburg L, Botchkarev VA, Peters C, Paus R (2002) The lysosomal protease cathepsin L is an important regulator of keratinocyte and melanocyte differentiation during hair follicle morphogenesis and cycling. Am J Pathol 160:1807–1821

    Article  CAS  PubMed  Google Scholar 

  • Tsukuba T, Okamoto K, Okamoto Y, Yanagawa M, Kohmura K, Yasuda Y, Uchi H, Nakahara T, Furue M, Nakayama K et al (2003) Association of cathepsin E deficiency with development of atopic dermatitis. J Biochem 134:893–902

    Article  CAS  PubMed  Google Scholar 

  • Turk B, Turk V (2009) Lysosomes as “suicide bags” in cell death: myth or reality? J Biol Chem 284:21783–21787

    Article  CAS  PubMed  Google Scholar 

  • Tyynela J, Sohar I, Sleat DE, Gin RM, Donnelly RJ, Baumann M, Haltia M, Lobel P (2000) A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J 19:2786–2792

    Article  CAS  PubMed  Google Scholar 

  • Walz M, Kellermann S, Bylaite M, Andree B, Ruther U, Paus R, Kloepper JE, Reifenberger J, Ruzicka T (2007) Expression of the human Cathepsin L inhibitor hurpin in mice: skin alterations and increased carcinogenesis. Exp Dermatol 16:715–723

    Article  CAS  PubMed  Google Scholar 

  • Wilson HM, Barker RN, Erwig LP (2009) Macrophages: promising targets for the treatment of atherosclerosis. Curr Vasc Pharmacol 7:234–243

    Article  CAS  PubMed  Google Scholar 

  • Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y et al (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134:258–277

    Article  PubMed  Google Scholar 

  • Yu W, Liu J, Shi MA, Wang J, Xiang M, Kitamoto S, Wang B, Sukhova GK, Murphy GF, Orasanu G et al (2010) Cystatin C deficiency promotes epidermal dysplasia in K14-HPV16 transgenic mice. PLoS One 5:e13973

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeeuwen PL, van Vlijmen-Willems IM, Hendriks W, Merkx GF, Schalkwijk J (2002) A null mutation in the cystatin M/E gene of ichq mice causes juvenile lethality and defects in epidermal cornification. Hum Mol Genet 11:2867–2875

    Article  CAS  PubMed  Google Scholar 

  • Zeeuwen PL, Ishida-Yamamoto A, van Vlijmen-Willems IM, Cheng T, Bergers M, Iizuka H, Schalkwijk J (2007) Colocalization of cystatin M/E and cathepsin V in lamellar granules and corneodesmosomes suggests a functional role in epidermal differentiation. J Invest Dermatol 127:120–128

    Article  CAS  PubMed  Google Scholar 

  • Zeeuwen PL, Cheng T, Schalkwijk J (2009) The biology of cystatin M/E and its cognate target proteases. J Invest Dermatol 129:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Zeeuwen PL, van Vlijmen-Willems IM, Cheng T, Rodijk-Olthuis D, Hitomi K, Hara-Nishimura I, John S, Smyth N, Reinheckel T, Hendriks WJ et al (2010) The cystatin M/E-cathepsin L balance is essential for tissue homeostasis in epidermis, hair follicles, and cornea. FASEB J 24:3744–3755

    Article  CAS  PubMed  Google Scholar 

  • Zeeuwen PL, van Vlijmen-Willems IM, Cheng T, Rodijk-Olthuis D, Hitomi K, Hara-Nishimura I, John S, Smyth N, Reinheckel T, Hendriks WJ et al (2011) The cystatin M/E-cathepsin L balance is essential for tissue homeostasis in epidermis, hair follicles, and cornea. FASEB J 24:3744–3755

    Article  Google Scholar 

Download references

Acknowledgement

The work of the laboratory is supported by the Deutsche Forschungsgemeinschaft SFB 850 Project B7, the Centre of Chronic Immunodeficiency (CCI) Freiburg grant TP8, the Excellence Initiative of the German Federal and State Governments (EXC 294), and the European Union Framework Program (FP7 “MICROENVIMET” No 201279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Reinheckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Gansz, M., Kern, U., Peters, C., Reinheckel, T. (2013). Exploring Systemic Functions of Lysosomal Proteases: The Perspective of Genetically Modified Mouse Models. In: Brix, K., Stöcker, W. (eds) Proteases: Structure and Function. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0885-7_6

Download citation

Publish with us

Policies and ethics