Skip to main content

Determination of Antibody Affinity by Surface Plasmon Resonance

  • Chapter
  • First Online:
Anticarbohydrate Antibodies

Abstract

Over the past two decades surface plasmon resonance (SPR) has emerged as gold standard technology for the analysis of biomolecular interactions. In the monoclonal antibody (mAb) development area SPR is employed from the early screening stages to detailed characterization of binding kinetics and affinities to epitope mapping to final product testing. This label free technology provides high quality kinetic and affinity data and, in some instances, other unique information not obtained by alternative methods such as ELISA. SPR is well-suited to the study of protein-carbohydrate interactions which are often of low affinity and not easily characterized by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk M, Moore JA, Yu Z (2000) Application of surface plasmon resonance toward studies of low-molecular-weight antigen-antibody binding interactions. Methods 20:319–328

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal S (2010) What’s fueling the biotech engine-2009–2010. Nat Biotechnol 28:1165–1171

    Article  PubMed  CAS  Google Scholar 

  • Astronomo RD, Burton DR (2010) Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 9:308–324

    Article  PubMed  CAS  Google Scholar 

  • Blackler RJ, Müller-Loennies S, Brooks CL, Evans DW, Brade L, Kosma P, Brade H, Evans SV (2011) A common NH53K mutation in the combining site of antibodies raised against chlamydial LPS glycoconjugates significantly increases avidity. Biochemistry 50:3357–3368

    Article  PubMed  CAS  Google Scholar 

  • Brade H (1999) Chlamydial lipopolysaccharide. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in health and disease. Marcel Dekker, New York/Basel, pp 229–242

    Google Scholar 

  • Brade L, Holst O, Brade H (1993) An artificial glycoconjugate containing the bisphosphorylated glucosamine disaccharide backbone of lipid A binds lipid A monoclonal antibodies. Infect Immun 61:4514–4517

    PubMed  CAS  Google Scholar 

  • Brade L, Engel R, Christ WJ, Rietschel ET (1997) A nonsubstituted primary hydroxyl group in position 6′ of free lipid A is required for binding of lipid A monoclonal antibodies. Infect Immun 65:3961–3965

    PubMed  CAS  Google Scholar 

  • Brooks CL, Blackler RJ, Gerstenbruch S, Kosma P, Müller-Loennies S, Brade H, Evans SV (2008a) Pseudo-symmetry and twinning in crystals of homologous antibody Fv fragments. Acta Crystallogr D Biol Crystallogr 64:1250–1258

    Article  PubMed  Google Scholar 

  • Brooks CL, Müller-Loennies S, Brade L, Kosma P, Hirama T, MacKenzie CR, Brade H, Evans SV (2008b) Exploration of specificity in germline monoclonal antibody recognition of a range of natural and synthetic epitopes. J Mol Biol 377:450–468

    Article  PubMed  CAS  Google Scholar 

  • Brooks CL, Blackler RJ, Sixta G, Kosma P, Müller-Loennies S, Brade L, Hirama T, MacKenzie CR, Brade H, Evans SV (2010a) The role of CDR H3 in antibody recognition of a synthetic analog of a lipopolysaccharide antigen. Glycobiology 20:138–147

    Article  PubMed  CAS  Google Scholar 

  • Brooks CL, Müller-Loennies S, Borisova SN, Brade L, Kosma P, Hirama T, MacKenzie CR, Brade H, Evans SV (2010b) Antibodies raised against chlamydial lipopolysaccharide antigens reveal convergence in germline gene usage and differential epitope recognition. Biochemistry 49:570–581

    Article  PubMed  CAS  Google Scholar 

  • Brooks CL, Schietinger A, Borisova SN, Kufer P, Okon M, Hirama T, MacKenzie CR, Wang LX, Schreiber H, Evans SV (2010c) Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc Natl Acad Sci U S A 107:10056–10061

    Article  PubMed  CAS  Google Scholar 

  • Bundle DR, Young NM (1992) Carbohydrate-protein interactions in antibodies and lectins. Curr Opin Struct Biol 2:666–673

    Article  CAS  Google Scholar 

  • Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–2071

    Article  PubMed  CAS  Google Scholar 

  • Carver JP (1993) Oligosaccharides: how can flexible molecules act as signals? Pure Appl Chem 65:763–770

    Article  CAS  Google Scholar 

  • Christensen T, Toone EJ (2003) Calorimetric evaluation of protein-carbohydrate affinities. Methods Enzymol 362:486–504

    Article  PubMed  CAS  Google Scholar 

  • Cygler M, Rose DR, Bundle DR (1991) Recognition of a cell-surface oligosaccharide of pathogenic Salmonella by an antibody Fab fragment. Science 253:442–445

    Article  PubMed  CAS  Google Scholar 

  • Di Padova FE, Brade H, Barclay GR, Poxton IR, Liehl E, Schuetze E, Kocher HP, Ramsay G, Schreier MH, McClelland DB, Rietschel ETh (1993) A broadly cross-protective monoclonal antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect Immun 61:3863–3872

    PubMed  Google Scholar 

  • Englebienne P, van Hoonacker A, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17:255–273

    Article  CAS  Google Scholar 

  • Evans DW, Müller-Loennies S, Brooks CL, Brade L, Kosma P, Brade H, Evans SV (2011) Structural insights into parallel strategies for germline antibody recognition of LPS from Chlamydia. Glycobiology 21:1049–1059

    Google Scholar 

  • Farrugia W, Scott AM, Ramsland PA (2009) A possible role for metallic ions in the carbohydrate cluster recognition displayed by a Lewis Y specific antibody. PLoS One 4(11):e7777

    Article  PubMed  Google Scholar 

  • Foote J, Eisen HN (2000) Breaking the affinity ceiling for antibodies and T cell receptors. Proc Natl Acad Sci U S A 97:10679–10681

    Article  PubMed  CAS  Google Scholar 

  • Gerstenbruch S, Brooks CL, Kosma P, Brade L, MacKenzie CR, Evans SV, Brade H, Müller-Loennies S (2010) Analysis of cross-reactive and specific anti-carbohydrate antibodies against lipopolysaccharide from Chlamydophila psittaci. Glycobiology 20:461–472

    Article  PubMed  CAS  Google Scholar 

  • Harrison BA, MacKenzie R, Hirama T, Lee KK, Altman E (1998) A kinetics approach to the characterization of an IgM specific for the glycolipid asialo-GM1. J Immunol Methods 212:29–39

    Article  PubMed  CAS  Google Scholar 

  • Holst O, Müller-Loennies S (2007) Microbial polysaccharide structures. In: Kamerling JP, Boons GJ, Lee Y, Suzuki A, Taniguchi N, Voragen AG (eds) Comprehensive glycoscience. Elsevier, New York, pp 123–179

    Chapter  Google Scholar 

  • Homans SW (2007) Dynamics and thermodynamics of ligand-protein interactions. Top Curr Chem 272:51–82

    Article  CAS  Google Scholar 

  • Kalergis AM, Boucheron N, Doucey MA, Palmieri E, Goyarts EC, Vegh Z, Luescher IF, Nathenson SG (2001) Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nat Immunol 2:229–234

    Article  PubMed  CAS  Google Scholar 

  • Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit 17:151–161

    Article  PubMed  CAS  Google Scholar 

  • Karlsson R, Fält A (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 200:121–133

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie CR, Hirama T, Deng SJ, Bundle DR, Narang SA, Young NM (1996) Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J Biol Chem 271:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie CR, Jennings HJ (2003) Characterization of polysaccharide conformational epitopes by surface plasmon resonance. Methods Enzymol 363:340–354

    Article  PubMed  CAS  Google Scholar 

  • Malissen B (2001) Les liaisons dangereuses. Nat Immunol 2:196–198

    Article  PubMed  CAS  Google Scholar 

  • Müller-Loennies S, MacKenzie CR, Patenaude SI, Evans SV, Kosma P, Brade H, Brade L, Narang S (2000) Characterization of high affinity monoclonal antibodies specific for chlamydial lipopolysaccharide. Glycobiology 10:121–130

    Article  PubMed  Google Scholar 

  • Müller-Loennies S, Brade L, MacKenzie CR, Di Padova FE, Brade H (2003) Identification of a cross-reactive epitope widely present in lipopolysaccharide from enterobacteria and recognized by the cross-protective monoclonal antibody WN1 222-5. J Biol Chem 278:25618–25627

    Article  PubMed  Google Scholar 

  • Müller-Loennies S, Gronow S, Brade L, MacKenzie R, Kosma P, Brade H (2006) A monoclonal antibody against a carbohydrate epitope in lipopolysaccharide differentiates Chlamydophila psittaci from Chlamydophila pecorum, Chlamydophila pneumoniae, and Chlamydia trachomatis. Glycobiology 16:184–196

    Article  PubMed  Google Scholar 

  • Müller-Loennies S, Brade L, Brade H (2007) Neutralizing and cross-reactive antibodies against enterobacterial lipopolysaccharide. Int J Med Microbiol 297:321–340

    Article  PubMed  Google Scholar 

  • Murthy BN, Sinha S, Surolia A, Indi SS, Jayaraman N (2008) SPR and ITC determination of the kinetics and the thermodynamics of bivalent versus monovalent sugar ligand-lectin interactions. Glycoconj J 25:313–321

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HP, Seto NO, MacKenzie CR, Brade L, Kosma P, Brade H, Evans SV (2003) Germline antibody recognition of distinct carbohydrate epitopes. Nat Struct Biol 10:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • O’Shannessy DJ (1994) Determination of kinetic rate and equilibrium binding constants for macromolecular interactions: a critique of the surface plasmon resonance literature. Curr Opin Biotechnol 5:65–71

    Article  PubMed  Google Scholar 

  • Ramsland PA, Farrugia W, Bradford TM, Mark HP, Scott AM (2004) Structural convergence of antibody binding of carbohydrate determinants in Lewis Y tumor antigens. J Mol Biol 340:809–818

    Article  PubMed  CAS  Google Scholar 

  • Rich RL, Myszka DG (2010) Grading the commercial optical biosensor literature-Class of 2008: ‘The Mighty Binders’. J Mol Recognit 23:1–64

    Article  PubMed  CAS  Google Scholar 

  • Schietinger A, Philip M, Schreiber H (2008) Specificity in cancer immunotherapy. Semin Immunol 20:276–285

    Article  PubMed  CAS  Google Scholar 

  • Thomas R, Patenaude SI, MacKenzie CR, To R, Hirama T, Young NM, Evans SV (2002) Structure of an anti-blood group A Fv and improvement of its binding affinity without loss of specificity. J Biol Chem 277:2059–2064

    Article  PubMed  CAS  Google Scholar 

  • Toone EJ (1994) Structure and energetics of protein-carbohydrate complexes. Curr Opin Struct Biol 4:719–728

    Article  CAS  Google Scholar 

  • Van Regenmortel MHV (2002) Reductionism and the search for structure-function relationships in antibody molecules. J Mol Recognit 15:240–247

    Article  PubMed  Google Scholar 

  • Van Roon AM, Pannu NS, de Vrind JP, van der Marel GA, van Boom JH, Hokke CH, Deelder AM, Abrahams JP (2004) Structure of an anti-Lewis X Fab fragment in complex with its Lewis X antigen. Structure 12:1227–1236

    Article  PubMed  Google Scholar 

  • Villeneuve S, Souchon H, Riottot MM, Mazie JC, Lei P, Glaudemans CP, Kovac P, Fournier JM, Alzari PM (2000) Crystal structure of an anti-carbohydrate antibody directed against Vibrio cholerae O1 in complex with antigen: molecular basis for serotype specificity. Proc Natl Acad Sci U S A 97:8433–8438

    Article  PubMed  CAS  Google Scholar 

  • Vulliez-Le Normand B, Saul FA, Phalipon A, Belot F, Guerreiro C, Mulard LA, Bentley GA (2008) Structures of synthetic O-antigen fragments from serotype 2a Shigella flexneri in complex with a protective monoclonal antibody. Proc Natl Acad Sci U S A 105:9976–9981

    Article  PubMed  CAS  Google Scholar 

  • Vyas NK, Vyas MN, Chervenak MC, Bundle DR, Pinto BM, Quiocho FA (2003) Structural basis of peptide-carbohydrate mimicry in an antibody-combining site. Proc Natl Acad Sci USA 100:15023–15028

    Article  PubMed  CAS  Google Scholar 

  • Zou W, Mackenzie R, Therien L, Hirama T, Yang Q, Gidney MA, Jennings HJ (1999) Conformational epitope of the type III group B Streptococcus capsular polysaccharide. J Immunol 163:820–825

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger MacKenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

MacKenzie, R., Müller-Loennies, S. (2012). Determination of Antibody Affinity by Surface Plasmon Resonance. In: Kosma, P., Müller-Loennies, S. (eds) Anticarbohydrate Antibodies. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0870-3_17

Download citation

Publish with us

Policies and ethics