Skip to main content

Glycan Microarray Analysis of Tumor-Associated Antibodies

  • Chapter
  • First Online:

Abstract

A change in glycosylation is a common feature of tumor cells and may affect any type of glycoconjugate such as N-glycans and O-glycans on glycoproteins, and oligosaccharides on glycolipids and glycosaminoglycans (Altmann 2007; Hakomori 1985). These changes in glycan structures have marked influence on many diverse biological functions of complex carbohydrates and contribute to the malignant phenotype. Historically, changes in glycan structures on cancer cells have also served as the first biomarkers of cancer from early studies of histo-blood group antigens by immunohistochemistry (Hakomori 1984; Dabelsteen 1996; Kannagi et al. 2001) to more advanced techniques applied today involving mass spectrometry. Throughout the last 40+ years antibodies and, in particular, monoclonal antibodies (mAb) have served as a prominent tool for defining glycan changes in cancer, and a large number of antibodies to different carbohydrate structures have been developed and the fine specificities characterized by a number of different approaches (Heimburg-Molinaro and Rittenhouse-Olson 2009). In this chapter we review representative monoclonal antibodies with cancer-associated reactivity patterns and how their specificities can be analyzed by emerging microarray technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe K, McKibbin JM, Hakomori S (1983) The monoclonal antibody directed to difucosylated type 2 chain (Fucα1→2Galβ1→4[Fucα1→3]GlcNAc; Y determinant). J Biol Chem 258(19):11793–11797

    PubMed  CAS  Google Scholar 

  • Abe K, Levery SB, Hakomori S (1984) The antibody specific to type 1 chain blood group A determinant. J Immunol 132(4):1951–1954

    PubMed  CAS  Google Scholar 

  • Altmann F (2007) The role of protein glycosylation in allergy. Int Arch Allergy Immunol 142(2):99–115

    Article  PubMed  CAS  Google Scholar 

  • Alvarez RA, Blixt O (2006) Identification of ligand specificities for glycan-binding proteins using glycan arrays. Methods Enzymol 415:292–310

    Article  PubMed  CAS  Google Scholar 

  • Berger EG (1999) Tn-syndrome. Biochim Biophys Acta 1455(2–3):255–268

    PubMed  CAS  Google Scholar 

  • Blixt O, Razi N (2006) Chemoenzymatic synthesis of glycan libraries. Methods Enzymol 415:137–153

    Article  PubMed  CAS  Google Scholar 

  • Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101(49):17033–17038

    Article  PubMed  CAS  Google Scholar 

  • Blixt O, Kumagai-Braesch M, Tibell A, Groth CG, Holgersson J (2009) Anticarbohydrate antibody repertoires in patients transplanted with fetal pig Islets revealed by glycan arrays. Am J Transplant 9(1):83–90

    Article  CAS  Google Scholar 

  • Blixt O, Clo E, Nudelman AS, Sorensen KK, Clausen T, Wandall HH, Livingston PO, Clausen H, Jensen KJ (2010) A high-throughput O-glycopeptide discovery platform for seromic profiling. J Proteome Res 9(10):5250–5261

    Article  PubMed  CAS  Google Scholar 

  • Blixt O, Bueti D, Burford B, Allen D, Julien S, Hollingsworth M, Gammerman A, Fentiman I, Taylor-Papadimitriou J, Burchell JM (2011) Autoantibodies to aberrantly glycosylated MUC1 in early stage breast cancer are associated with a better prognosis. Breast Cancer Res 13(2):R25

    Article  PubMed  CAS  Google Scholar 

  • Bohm CM, Mulder MC, Zennadi R, Notter M, Schmitt-Graff A, Finn OJ, Taylor-Papadimitriou J, Stein H, Clausen H, Riecken EO, Hanski C (1997) Carbohydrate recognition on MUC1-expressing targets enhances cytotoxicity of a T cell subpopulation. Scand J Immunol 46(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Breimer ME, Brynger H, Le Pendu J, Oriol R, Rydberg L, Samuelsson BE, Vinas J (1987) Blood group ABO-incompatible kidney transplantation biochemical and immunochemical studies of blood group A glycolipid antigens in human kidney and characterization of the antibody response (antigen specificity and antibody class) in O recipients receiving A2 grafts. Transplant Proc 19(1 Pt 1):226–230

    PubMed  CAS  Google Scholar 

  • Canevari S, Fossati G, Balsari A, Sonnino S, Colnaghi MI (1983) Immunochemical analysis of the determinant recognized by a monoclonal antibody (MBr1) which specifically binds to human mammary epithelial cells. Cancer Res 43(3):1301–1305

    PubMed  CAS  Google Scholar 

  • Clausen H, Holmes E, Hakomori S (1986) Novel blood group H glycolipid antigens exclusively expressed in blood group A and AB erythrocytes (type 3 chain H). II. Differential conversion of different H substrates by A1 and A2 enzymes, and type 3 chain H expression in relation to secretor status. J Biol Chem 261(3):1388–1392

    PubMed  CAS  Google Scholar 

  • Clausen H, Stroud M, Parker J, Springer G, Hakomori S (1988) Monoclonal antibodies directed to the blood group A associated structure, galactosyl-A: specificity and relation to the Thomsen-Friedenreich antigen. Mol Immunol 25(2):199–204

    Article  PubMed  CAS  Google Scholar 

  • Coltart DM, Royyuru AK, Williams LJ, Glunz PW, Sames D, Kuduk SD, Schwarz JB, Chen XT, Danishefsky SJ, Live DH (2002) Principles of mucin architecture: structural studies on synthetic glycopeptides bearing clustered mono-, di-, tri-, and hexasaccharide glycodomains. J Am Chem Soc 124(33):9833–9844

    Article  PubMed  CAS  Google Scholar 

  • Cunto-Amesty G, Luo P, Monzavi-Karbassi B, Lees A, Kieber-Emmons T (2001) Exploiting molecular mimicry to broaden the immune response to carbohydrate antigens for vaccine development. Vaccine 19(17–19):2361–2368

    Article  PubMed  CAS  Google Scholar 

  • Dabelsteen E (1996) Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol 179(4):358–369

    Article  PubMed  CAS  Google Scholar 

  • Dausset J, Moullec J, Bernard J (1959) Acquired hemolytic anemia with polyagglutinability of red blood cells due to a new factor present in normal human serum (Anti-Tn). Blood 14:1079–1093

    PubMed  CAS  Google Scholar 

  • Dessureault S, Koven I, Reilly RM, Couture J, Schmocker B, Damani M, Kirsh J, Ichise M, Sidlofsky S, McEwan AJ, Boniface G, Stern H, Gallinger S (1997) Pre-operative assessment of axillary lymph node status in patients with breast adenocarcinoma using intravenous 99mtechnetium mAb-170 H.82 (Tru-Scint AD). Breast Cancer Res Treat 45(1):29–37

    Article  PubMed  CAS  Google Scholar 

  • Fukushi Y, Hakomori S, Nudelman E, Cochran N (1984) Novel fucolipids accumulating in human adenocarcinoma. II. Selective isolation of hybridoma antibodies that differentially recognize mono-, di-, and trifucosylated type 2 chain. J Biol Chem 259(7):4681–4685

    PubMed  CAS  Google Scholar 

  • Fukushi Y, Kannagi R, Hakomori S, Shepard T, Kulander BG, Singer JW (1985) Location and distribution of difucoganglioside (sialyl dimeric Lex) in normal and tumor tissues defined by its monoclonal antibody FH6. Cancer Res 45(8):3711–3717

    PubMed  CAS  Google Scholar 

  • Geng D, Shankar G, Schantz A, Rajadhyaksha M, Davis H, Wagner C (2005) Validation of immunoassays used to assess immunogenicity to therapeutic monoclonal antibodies. J Pharm Biomed Anal 39(3–4):364–375

    Article  PubMed  CAS  Google Scholar 

  • Hakomori SI (1978) Isolation of blood group ABH-active glycolipids from human erythrocyte membranes. Methods Enzymol 50:207–211

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S (1984) Tumor-associated carbohydrate antigens. Annu Rev Immunol 2:103–126

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S (1985) Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res 45(6):2405–2414

    PubMed  CAS  Google Scholar 

  • Heimburg J, Yan J, Morey S, Glinskii OV, Huxley VH, Wild L, Klick R, Roy R, Glinsky VV, Rittenhouse-Olson K (2006) Inhibition of spontaneous breast cancer metastasis by anti-Thomsen-Friedenreich antigen monoclonal antibody JAA-F11. Neoplasia 8(11):939–948

    Article  PubMed  CAS  Google Scholar 

  • Heimburg-Molinaro J, Rittenhouse-Olson K (2009) Development and characterization of antibodies to carbohydrate antigens. Methods Mol Biol 534:341–357

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa J, Tsuboi K, Sato K, Kobayashi M, Watanabe S, Takakura A, Imai Y, Ito Y, Fukuda M, Kawashima H (2010) Novel anti-carbohydrate antibodies reveal the cooperative function of sulfated N- and O-glycans in lymphocyte homing. J Biol Chem 285(52):40864–40878

    Article  PubMed  CAS  Google Scholar 

  • Hirohashi S, Clausen H, Yamada T, Shimosato Y, Hakomori S (1985) Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and −81 expressed in cancer of blood group O or B individuals: its identification as Tn antigen. Proc Natl Acad Sci USA 82(20):7039–7043

    Article  PubMed  CAS  Google Scholar 

  • Huang CY, Thayer DA, Chang AY, Best MD, Hoffmann J, Head S, Wong CH (2006) Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc Natl Acad Sci USA 103(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Inagaki Y, Xu H, Nakata M, Seyama Y, Hasegawa K, Sugawara Y, Tang W, Kokudo N (2009) Clinicopathology of sialomucin: MUC1, particularly KL-6 mucin, in gastrointestinal, hepatic and pancreatic cancers. Biosci Trends 3(6):220–232

    PubMed  Google Scholar 

  • Jacob F, Goldstein DR, Bovin NV, Pochechueva T, Spengler M, Caduff R, Fink D, Vuskovic MI, Huflejt ME, Heinzelmann-Schwarz V (2011) Serum anti-glycan antibody detection of non-mucinous ovarian cancers by using a printed glycan array. Int J Cancer, in press

    Google Scholar 

  • Kaltgrad E, Sen Gupta S, Punna S, Huang CY, Chang A, Wong CH, Finn MG, Blixt O (2007) Anti-carbohydrate antibodies elicited by polyvalent display on a viral scaffold. Chembiochem 8(12):1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Kannagi R, Hakomori S (2001) A guide to monoclonal antibodies directed to glycotopes. Adv Exp Med Biol 491:587–630

    Article  PubMed  CAS  Google Scholar 

  • Kannagi R, Nudelman E, Levery SB, Hakomori S (1982) A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen SSEA-1. J Biol Chem 257(24):14865–14874

    PubMed  CAS  Google Scholar 

  • Karsten U, Butschak G, Cao Y, Goletz S, Hanisch FG (1995) A new monoclonal-antibody (A78-G/A7) to the Thomsen-Friedenreich pantumor antigen. Hybridoma 14(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Takeuchi H, Ohki T, Waki M, Usami K, Hassan H, Clausen H, Irimura T (2008) A lectin recognizes differential arrangements of O-glycans on mucin repeats. Biochem Biophys Res Commun 371(4):698–701

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen T, Clausen H, Hirohashi S, Ogawa T, Iijima H, Hakomori S (1988) Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2 → 6α-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res 48(8):2214–2220

    PubMed  CAS  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  PubMed  Google Scholar 

  • Koprowski H, Herlyn M, Steplewski Z, Sears HF (1981) Specific antigen in serum of patients with colon carcinoma. Science 212(4490):53–55

    Article  PubMed  CAS  Google Scholar 

  • Kracun SK, Clo E, Clausen H, Levery SB, Jensen KJ, Blixt O (2010) Random glycopeptide bead libraries for seromic biomarker discovery. J Proteome Res 9(12):6705–6714

    Article  PubMed  CAS  Google Scholar 

  • Kurosaka A, Kitagawa H, Fukui S, Numata Y, Nakada H, Funakoshi I, Kawasaki T, Ogawa T, Iijima H, Yamashina I (1988) A monoclonal antibody that recognizes a cluster of a disaccharide, NeuAc alpha(2–6)GalNAc, in mucin-type glycoproteins. J Biol Chem 263(18):8724–8726

    PubMed  CAS  Google Scholar 

  • Kurtenkov O, Klaamas K, Rittenhouse-Olson K, Vahter L, Sergejev B, Miljukhina L, Shljapnikova L (2005) IgG immune response to tumor-associated carbohydrate antigens (TF, Tn, αGal) in patients with breast cancer: impact of neoadjuvant chemotherapy and relation to the survival. Exp Oncol 27(2):136–140

    PubMed  CAS  Google Scholar 

  • Larkin M, Knapp W, Stoll MS, Mehmet H, Feizi T (1991) Monoclonal antibodies VIB-E3, IB5 and HB9 to the leucocyte/epithelial antigen CD24 resemble BA-1 in recognizing sialic acid-dependent epitope(s). Evidence that VIB-E3 recognizes NeuAcα2-6GalNAc and NeuAcα2-6Gal sequences. Clin Exp Immunol 85(3):536–541

    Article  PubMed  CAS  Google Scholar 

  • Lawrie CH, Marafioti T, Hatton CS, Dirnhofer S, Roncador G, Went P, Tzankov A, Pileri SA, Pulford K, Banham AH (2006) Cancer-associated carbohydrate identification in Hodgkin’s lymphoma by carbohydrate array profiling. Int J Cancer 118(12):3161–3166

    Article  PubMed  CAS  Google Scholar 

  • Le Pendu J, Marionneau S, Cailleau-Thomas A, Rocher J, Le Moullac-Vaidye B, Clement M (2001) ABH and Lewis histo-blood group antigens in cancer. APMIS 109(1):9–31

    Article  PubMed  Google Scholar 

  • Li Q, Anver MR, Butcher DO, Gildersleeve JC (2009) Resolving conflicting data on expression of the Tn antigen and implications for clinical trials with cancer vaccines. Mol Cancer Ther 8(4):971–979

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Rodriguez LG, Farnsworth DF, Gildersleeve JC (2010) Effects of hapten density on the induced antibody repertoire. Chembiochem 11(12):1686–1691

    Article  PubMed  CAS  Google Scholar 

  • Magnani JL, Brockhaus M, Smith DF, Ginsburg V, Blaszczyk M, Mitchell KF, Steplewski Z, Koprowski H (1981) A monosialoganglioside is a monoclonal antibody-defined antigen of colon carcinoma Science 212:55–6

    Google Scholar 

  • Magnani JL, Nilsson B, Brockhaus M, Zopf D, Steplewski Z, Koprowski H, Ginsburg V (1982) A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem 257(23):14365–14369

    PubMed  CAS  Google Scholar 

  • Mandel U, Petersen OW, Sorensen H, Vedtofte P, Hakomori S, Clausen H, Dabelsteen E (1991) Simple mucin-type carbohydrates in oral stratified squamous and salivary gland epithelia. J Invest Dermatol 97(4):713–721

    Article  PubMed  CAS  Google Scholar 

  • Mandel U, Langkilde NC, Orntoft TF, Therkildsen MH, Karkov J, Reibel J, White T, Clausen H, Dabelsteen E (1992) Expression of histo-blood-group-A/B-gene-defined glycosyltransferases in normal and malignant epithelia: correlation with A/B-carbohydrate expression. Int J Cancer 52(1):7–12

    Article  PubMed  CAS  Google Scholar 

  • Nakada H, Inoue M, Numata Y, Tanaka N, Funakoshi I, Fukui S, Mellors A, Yamashina I (1993) Epitopic structure of Tn glycophorin A for an anti-Tn antibody (MLS 128). Proc Natl Acad Sci USA 90(6):2495–2499

    Article  PubMed  CAS  Google Scholar 

  • Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9(10):767–774

    Article  PubMed  CAS  Google Scholar 

  • Nemoto Y, Izumi Y, Tezuka K, Tamatani T, Irimura T (1998) Comparison of 16 human colon carcinoma cell lines for their expression of sialyl LeX antigens and their E-selectin-dependent adhesion. Clin Exp Metastasis 16(6):569–576

    Article  PubMed  CAS  Google Scholar 

  • Nuti M, Teramoto YA, Mariani-Costantini R, Hand PH, Colcher D, Schlom J (1982) A monoclonal antibody (B72.3) defines patterns of distribution of a novel tumor-associated antigen in human mammary carcinoma cell populations. Int J Cancer 29(5):539–545

    Article  PubMed  CAS  Google Scholar 

  • Ohyabu N, Hinou H, Matsushita T, Izumi R, Shimizu H, Kawamoto K, Numata Y, Togame H, Takemoto H, Kondo H, Nishimura S (2009) An essential epitope of anti-MUC1 monoclonal antibody KL-6 revealed by focused glycopeptide library. J Am Chem Soc 131(47):17102–17109

    Article  PubMed  CAS  Google Scholar 

  • Ozawa H, Kotani M, Kawashima I, Tai T (1992) Generation of one set of monoclonal antibodies specific for b-pathway ganglio-series gangliosides. Biochim Biophys Acta 1123(2):184–190

    Article  PubMed  CAS  Google Scholar 

  • Reddish MA, Jackson L, Koganty RR, Qiu D, Hong W, Longenecker BM (1997) Specificities of anti-sialyl-Tn and anti-Tn monoclonal antibodies generated using novel clustered synthetic glycopeptide epitopes. Glycoconj J 14(5):549–560

    Article  PubMed  CAS  Google Scholar 

  • Rillahan CD, Paulson JC (2010) Glycan microarrays for decoding the glycome. Annu Rev Biochem 2011(80):797–823

    Google Scholar 

  • Rinaldi S, Brennan KM, Goodyear CS, O'Leary C, Schiavo G, Crocker PR, Willison HJ (2009) Analysis of lectin binding to glycolipid complexes using combinatorial glycoarrays. Glycobiology 19(7):789–796

    Article  PubMed  CAS  Google Scholar 

  • Rouger P, Tsikas G, Gane P, Oriol R, Salmon C (1987) Immunological approach of anti-H (9), anti-Lewis (6), anti-P (3) and anti-Pr (1) monoclonal antibodies. Rev Fr Transfus Immunohematol 30(5):663–669

    Article  PubMed  CAS  Google Scholar 

  • Sawada R, Sun SM, Wu X, Hong F, Ragupathi G, Livingston PO, Scholz WW (2011) Human monoclonal antibodies to sialyl-LewisA (CA19.9) with potent CDC, ADCC, and antitumor activity. Clin Cancer Res 17(5):1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Seeberger PH (2008) Automated oligosaccharide synthesis. Chem Soc Rev 37(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Shitara K, Hanai N, Yoshida H (1987) Distribution of lung adenocarcinoma-associated antigens in human tissues and sera defined by monoclonal antibodies KM-52 and KM-93. Cancer Res 47(5):1267–1272

    PubMed  CAS  Google Scholar 

  • Singhal AK, Orntoft TF, Nudelman E, Nance S, Schibig L, Stroud MR, Clausen H, Hakomori S (1990) Profiles of Lewisx-containing glycoproteins and glycolipids in sera of patients with adenocarcinoma Cancer Res 50:1375–80

    Google Scholar 

  • Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, Burchell J, Clausen H (2006) Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 16(2):96–107

    Article  PubMed  CAS  Google Scholar 

  • Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224(4654):1198–1206

    Article  PubMed  CAS  Google Scholar 

  • Springer GF (1989) Tn epitope (N-acetyl-d-galactosamine α-O-serine/threonine) density in primary breast carcinoma: a functional predictor of aggressiveness. Mol Immunol 26(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Springer GF (1997) Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 75(8):594–602

    Article  PubMed  CAS  Google Scholar 

  • Takada A, Ohmori K, Takahashi N, Tsuyuoka K, Yago A, Zenita K, Hasegawa A, Kannagi R (1991) Adhesion of human cancer cells to vascular endothelium mediated by a carbohydrate antigen, sialyl Lewis A. Biochem Biophys Res Commun 179(2):713–719

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Kato K, Denda-Nagai K, Hanisch FG, Clausen H, Irimura T (2002) The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialyl α 2-3galactosyl β1-3 N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat. J Immunol Methods 270(2):199–209

    Article  PubMed  CAS  Google Scholar 

  • Tan HT, Low J, Lim SG, Chung MC (2009) Serum autoantibodies as biomarkers for early cancer detection. FEBS J 276(23):6880–6904

    Article  PubMed  CAS  Google Scholar 

  • Thurin J, Thurin M, Herlyn M, Elder DE, Steplewski Z, Clark WH Jr, Koprowski H (1986) GD2 ganglioside biosynthesis is a distinct biochemical event in human melanoma tumor progression. FEBS Lett 208(1):17–22

    Article  PubMed  CAS  Google Scholar 

  • Thurnher M, Clausen H, Sharon N, Berger EG (1993) Use of O-glycosylation-defective human lymphoid cell lines and flow cytometry to delineate the specificity of Moluccella laevis lectin and monoclonal antibody 5 F4 for the Tn antigen (GalNAc α1-O-Ser/Thr). Immunol Lett 36(3):239–243

    Article  PubMed  CAS  Google Scholar 

  • Tarp MA, Sorensen AL, Mandel U, Paulsen H, Burchell J, Taylor-Papadimitriou J, Clausen H (2007) Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat Glycobiology 17:197–209

    Google Scholar 

  • von Gunten S, Smith DF, Cummings RD, Riedel S, Miescher S, Schaub A, Hamilton RG, Bochner BS (2009) Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J Allergy Clin Immunol 123(6):1268–1276

    Article  Google Scholar 

  • Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP, Mandel U, Ragupathi G, Livingston PO, Hollingsworth MA, Papadimitriou JT, Burchell J, Clausen H (2010) Autoantibody signatures to aberrant O-glycopeptide epitopes serve as undiscovered biomarkers of cancer. Cancer Res 70(4):1306–1313

    Article  PubMed  CAS  Google Scholar 

  • Wang CC, Huang YL, Ren CT, Lin CW, Hung JT, Yu JC, Yu AL, Wu CY, Wong CH (2008) Glycan microarray of Globo H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci USA 105(33):11661–11666

    Article  PubMed  CAS  Google Scholar 

  • Wondimu A, Zhang T, Kieber-Emmons T, Gimotty P, Sproesser K, Somasundaram R, Ferrone S, Tsao CY, Herlyn D (2008) Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice. Cancer Immunol Immunother 57(7):1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Gendler SJ, Franco A (2004) Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas. J Exp Med 199(5):707–716

    Article  PubMed  CAS  Google Scholar 

  • Young WW Jr, MacDonald EM, Nowinski RC, Hakomori SI (1979) Production of monoclonal antibodies specific for two distinct steric portions of the glycolipid ganglio-N-triosylceramide (asialo GM2). J Exp Med 150(4):1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Young WW Jr, Portoukalian J, Hakomori S (1981) Two monoclonal anticarbohydrate antibodies directed to glycosphingolipids with a lacto-N-glycosyl type II chain. J Biol Chem 256(21):10967–10972

    PubMed  CAS  Google Scholar 

  • Yuasa N, Zhang W, Goto T, Sakaue H, Matsumoto-Takasaki A, Kimura M, Ohshima H, Tsuchida Y, Koizumi T, Sakai K, Kojima T, Yamamoto K, Nakata M, Fujita-Yamaguchi Y (2010) Production of anti-carbohydrate antibodies by phage display technologies: potential impairment of cell growth as a result of endogenous expression. J Biol Chem 285(40):30587–30597

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhang HS, Reuter VE, Slovin SF, Scher HI, Livingston PO (1998) Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clin Cancer Res 4(2):295–302

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of General Medical Sciences Grant GM62116 to the Consortium for Functional Glycomics, The Carlsberg Foundation, The Benzon Foundation, The Velux Foundation, The Danish Research Council, The Danish Agency for Science, Technology and Innovation (FTP), NIH PO1 CA052477 NIH (1U01CA128437-01), EU FP7-HEALTH-2007-A 201381, and University of Copenhagen Programme of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola Blixt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Blixt, O., Boos, I., Mandel, U. (2012). Glycan Microarray Analysis of Tumor-Associated Antibodies. In: Kosma, P., Müller-Loennies, S. (eds) Anticarbohydrate Antibodies. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0870-3_12

Download citation

Publish with us

Policies and ethics