Skip to main content

Antitumor Vaccines Based on Synthetic Mucin Glycopeptides

  • Chapter
  • First Online:
Anticarbohydrate Antibodies
  • 853 Accesses

Abstract

The interest in tumor-associated glycoconjugate antigens was particularly initiated by Springer, who published in 1984 that glycoproteins on the outer cell-membrane of epithelial tumor cells have an altered glycosylation consisting of the Thomsen-Friedenreich (T-) antigen and its precursor the TN-antigen structure (Springer 1984). He and his coworkers also had found that monoclonal antibodies induced with glycoproteins from tumor cell membranes showed cross-reactivity to desialylated glycophorin A. It was concluded from these observations that the T-and TN-glycoproteins on the epithelial tumor cells must be structurally related to asialoglycophorin A (Springer et al. 1983) (Fig. 11.1a). Glycophorin A is the major sialoglycoprotein on erythrocytes. In the N-terminal domain it contains cryptic T-antigen structures which are covered by sialylation in the 3′- and 6-position. The glycophorin exists in two blood group specificities M and N, which have identical glycoforms, but differ in two of the total 131 amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backes BJ, Virgilio AA, Ellman JA (1996) Activation method to prepare a highly reactive acylsulfonamide “Safety-Catch” linker for solid-phase synthesis. J Am Chem Soc 118:3055–3056

    Article  CAS  Google Scholar 

  • Bardaji E, Torres JL, Clapes P, Albericio F, Barany G, Rodriguez RE (1991) Synthesis and biological activity of O-glycosylated morphiceptin analogs. J Chem Soc Perkin Trans 1:1755

    Article  Google Scholar 

  • Becker T, Dziadek S, Wittrock S, Kunz H (2006) Synthetic glycopeptides from the mucin family as potential tools in cancer immunotherapy. Curr Cancer Drug Targets 6:491–517

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Kaiser A, Kunz H (2009) Synthesis of dendrimeric tumor-associated mucin-type glycopeptide antigens. 2009:1113–1122

    Google Scholar 

  • Bessler WG, Heinewetter L, Wiesmueller KH, Jung G, Baier W, Huber M, Lorenz AR, van der Esche U, Mittenbuhler K, Hoffman P (1998) Bacterial cell wall components as immunomodulators. 1. Lipopeptides as adjuvants for parenteral and oral immunization. Int J Immunopharmacol 19:547–550

    Article  Google Scholar 

  • Braccini I, Derouet C, Esnault J, du Penhoat CH, Mallet JM, Michon V, Sinay P (1993) Conformational analysis of nitrilium intermediates in glycosylation reactions. Carbohydr Res 246:23–41

    Article  CAS  Google Scholar 

  • Brockhausen I, Yang JM, Bruchell J, Whitehouse C, Taylor-Papadimitriou J (1995) Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233:607–17

    Article  PubMed  CAS  Google Scholar 

  • Brockhausen I (1999) Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta Gen Subj 1473:67–95

    Article  CAS  Google Scholar 

  • Burchell JM, Mungul A, Taylor-Papadimitriou J (2001) O-linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 6:355–64

    Article  PubMed  CAS  Google Scholar 

  • Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc 115:4397–8

    Article  CAS  Google Scholar 

  • Dasgupta F, Garegg PJ (1988) Use of sulfenyl halides in carbohydrate reactions. Part I. Alkyl sulfenyl triflate as activator in the thioglycoside-mediated formation of β-glycosidic linkages during oligosaccharide synthesis. Carbohydr Res 177:C13–C17

    Article  CAS  Google Scholar 

  • Dourtoglou V, Gross B, Lambropoulou V, Zioudrou C (1984) O-Benzotriazolyl-N,N,N′, N′-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest. Synthesis 1984:572–4

    Article  Google Scholar 

  • Frechet JMJ, Haque KE (1975) Polymers as protecting groups in organic synthesis. II. Protection of primary alcohol functional groups. Tetrahedron Lett 16:3055–6

    Article  Google Scholar 

  • Furuhata K, Komiyama K, Ogura H, Hata T (1991) Studies on sialic acids. Part XXIII. Studies on glycosylation of the mitomycins. Syntheses of 7-N-(4-O-glycosylphenyl)-9a-methoxymitosanes. Chem Pharm Bull 39:255–9

    Article  PubMed  CAS  Google Scholar 

  • Gendler S, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peal N, Bruchell J, Pemberton L, Lalani EN, Wilson P (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265:15286–15293

    PubMed  CAS  Google Scholar 

  • Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287–299

    Article  PubMed  CAS  Google Scholar 

  • Hanisch F-G (2001) O-glycosylation of the mucin type. Biol Chem 382:143–149

    Article  PubMed  CAS  Google Scholar 

  • Helferich B, Wedemeyer KF (1949) Preparation of glucosides from acetobromoglucose. Justus Liebigs Ann Chem 563:139–45

    Article  CAS  Google Scholar 

  • Herzner H, Reipen T, Schultz M, Kunz H (2000) Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs. Chem Rev 100:4495–4537

    Article  PubMed  CAS  Google Scholar 

  • Hoffman-Röder A, Kaiser A, Wagner S, Gaidzik N, Kowalczyk D, Westerlind U, Gerlitzki B, Schmitt E, Kunz H (2010) Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine-substituted analogue. Angew Chem Int Ed 4:8498–8503

    Article  Google Scholar 

  • Ingale S, Buskas T, Boons GJ (2006) Synthesis of glyco(lipo)peptides by liposome-mediated native chemical ligation. Org Lett 8:5785–5788

    Article  PubMed  CAS  Google Scholar 

  • Ingale S, Wolfert MA, Gaekwad J, Buskas T, Boons GJ (2007) Robust immune responses elicited by a fully synthetic three-component vaccine. Nat Chem Biol 3:663–667

    Article  PubMed  CAS  Google Scholar 

  • Ingale S, Wolfert MA, Buskas T, Boons GJ (2009) Increasing the antigenicity of synthetic tumor-associated carbohydrate antigens by targeting Toll-like receptors. Chembiochem 10:455–463

    Article  PubMed  CAS  Google Scholar 

  • Jansson AM, Meldal M, Bock K (1992) Solid-phase synthesis and characterization of O-dimannosylated heptadecapeptide analogues of human insuline-like growth factor 1 (IGF-1). J Chem Soc Perkin Trans 1:1699–1707

    Article  Google Scholar 

  • Kaiser A, Gaidzik N, Westerlind U, Kowalczyk D, Hobel A, Schmitt E, Kunz H (2009) A synthetic vaccine consisting of a tumor-associated Sialyl-TN-MUC1 tandem-repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response. Angew Chem Int Ed 48:7551–7555

    Article  CAS  Google Scholar 

  • Kaiser A, Gaidzik N, Becker T, Menge C, Groh K, Cai H, Li YM, Gerlitzki B, Schmitt E, Kunz H (2010) Fully synthetic vaccines consisting of tumor-associated MUC1 glycopeptides and a lipopeptide ligand of the toll-like receptor 2. Angew Chem Int Ed 49:3688

    Article  CAS  Google Scholar 

  • Keil S, Claus C, Dippold W, Kunz H (2001) Towards the development of antitumor vaccines: a synthetic conjugate of a tumor-associated MUC1 glycopeptide antigen and a tetanus toxin epitope. Angew Chem Int Ed 40:366–369

    Article  CAS  Google Scholar 

  • Keil S, Kaiser A, Syed F, Kunz H (2009) Dendrimers of vaccines consisting of tumor-associated glycopeptide antigens and T cell epitope peptides. Synthesis 2009:1355–1369

    Article  Google Scholar 

  • Keller O, Rudinger J (1975) Preparation and some properties of maleimido acids and maleoyl derivatives of peptides. Helv Chim Acta 58:531–541

    Article  PubMed  CAS  Google Scholar 

  • Kihlberg J, Elofsson M (1997) Solid-phase synthesis of glycopeptides: immunological studies with T cell stimulating glycopeptides. Curr Med Chem 4:85–116

    CAS  Google Scholar 

  • Koenigs W, Knorr E (1901) Derivatives of grape sugar and galactose. Ber Dtsch Chem Ges 34:957–981

    Article  Google Scholar 

  • Kunz H, Birnbach S (1986) Synthesis of tumor associated TN- and T-antigen type O-glycopeptides and their conjugation to bovine serum albumin. Angew Chem Int Ed 25:360–362

    Article  Google Scholar 

  • Kunz H (1987) Synthesis of glycopeptides, partial structures of biological recognition components. Angew Chem Int Ed 26:294–308

    Article  Google Scholar 

  • Kunz H, Birnbach S, Wernig P (1990) Synthesis of glycopeptides with the TN and T antigen structures, and their coupling to bovine serum albumin. Carbohydr Res 202:207–23

    Article  PubMed  CAS  Google Scholar 

  • Kunz H (1997) O- and N-glycopeptides: synthesis of selectively deprotected building blocks. In: Hanessian S (ed) Preparative carbohydrate chemistry. Marcel Dekker, New York, pp 265–281

    Google Scholar 

  • Lee D, Danishefsky SJ (2009) ‘Biologic’ level structures through chemistry: a total synthesis of a unimolecular pentavalent MUCI glycopeptide construct. Tetrahedron Lett 50:2167–2170

    Article  PubMed  CAS  Google Scholar 

  • Lemieux RU (1963) Tetra-O-acetyl-d-glucopyranosyl bromide. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry, vol 2. Academic, New York, pp 221–223

    Google Scholar 

  • Lemieux RU, Ratcliffe RM (1979) The azidonitration of tri-O-acetyl-d-galactal. Can J Chem 57:1244–51

    Article  CAS  Google Scholar 

  • Lergenmüller M, Ito Y, Ogawa T (1998) Use of dichlorophthaloyl (DCPhth) group as an amino protecting group in oligosaccharide synthesis. Tetrahedron 54:1381–1394

    Article  Google Scholar 

  • Liakatos A, Kunz H (2007) Synthetic glycopeptides for the development of cancer vaccines. Curr Opin Mol Ther 9:35–44

    PubMed  CAS  Google Scholar 

  • Liebe B, Kunz H (1994) Synthesis of Sialyl-Tn antigen. Regioselective sialylation of a galactosamine threonine conjugate unblocked in the carbohydrate portion. Tetrahedron Lett 35:8777–8

    Article  CAS  Google Scholar 

  • Liebe B, Kunz H (1997a) Solid-phase synthesis of a tumor-associated sialyl-TN antigen glycopeptide with a partial sequence of the “tandem repeat” of the MUC-1 mucin. Angew Chem Int Ed 36:618–621

    Article  CAS  Google Scholar 

  • Liebe B, Kunz H (1997b) Solid-phase synthesis of a sialyl-Tn-glycoundecapeptide of the MUC1 repeating unit. Helv Chim Acta 80:1473–1482

    Article  CAS  Google Scholar 

  • Lloyd KO, Burchell J, Kudryashov V, Yin BWT, Taylor-Papadimitriou J (1996) Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 271:33325–33334

    Article  PubMed  CAS  Google Scholar 

  • Loenn H, Stenvall K (1992) Exceptionally high yield in glycosylation with sialic acid. Synthesis of a GM3 glycoside. Tetrahedron Lett 33:115–16

    Article  CAS  Google Scholar 

  • Marra A, Sinay P (1989) Stereoselective synthesis of 2-thioglycosides of N-acetylneuraminic acid. Carbohydr Res 187:35–42

    Article  CAS  Google Scholar 

  • Meinjohanns E, Meldal M, Schleyer A, Paulsen H, Bock K (1996) Efficient syntheses of core 1, core 2, core 3 and core 4 building blocks for SPS of mucin O-glycopeptides based on the N-Dts-method. J Chem Soc Perkin Trans 1:985–993

    Article  Google Scholar 

  • Meldal M (1994) Glycopeptide synthesis. Neoglycoconjugates: Prep Appl 1994:145–98

    Article  Google Scholar 

  • Paulsen H, Hoelck JP (1982) Building blocks of oligosaccharides. Part XV. Synthesis of O-β-d-galactopyranosyl-(1→3)-O-(α-d-2-acetamido-2-deoxy-α-d-galactopyranosyl)-(1→3)-l-serine and -l-threonine glycopeptides. Carbohydr Res 109:89–107

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Bielfeldt T, Meldal M, Bock K, Paulsen H (1992) Multiple-column solid-phase glycopeptide synthesis. J Chem Soc Perkin Trans 1:1163–1171

    Article  Google Scholar 

  • Ragupathi G, Koide F, Livingstone PO, Cho YS, Endo A, Wan Q, Spassova M, Keding S, Allen J, Ouerfelli O, Wilson RM, Danishefsky SJ (2006) Preparation and evaluation of unimolecular pentavalent and hexavalent antigenic constructs targeting prostate and breast cancer: a synthetic route to anticancer vaccine candidates. J Am Chem Soc 128:2715–2725

    Article  PubMed  CAS  Google Scholar 

  • Rosen T, Lico IM, Chu DTW (1988) A convenient and highly chemoselective method for the reductive acetylation of azides. J Org Chem 53:1580–2

    Article  CAS  Google Scholar 

  • Schmidt RR, Behrendt M, Toepfer A (1990) Glycosyl imidates. 48. Nitriles as solvents in glycosylation reactions: highly selective β-glycoside synthesis. Synlett 1990:694–6

    Article  Google Scholar 

  • Schuster M, Wang P, Paulson JC, Wong CH (1994) Solid-phase chemical-enzymic synthesis of glycopeptides and oligosaccharides. J Am Chem Soc 116:1135–1136

    Article  CAS  Google Scholar 

  • Seitz O, Kunz H (1997) HYCRON, an allylic anchor for high-efficiency solid phase synthesis of protected peptides and glycopeptides. J Org Chem 62:813–826

    Article  CAS  Google Scholar 

  • Shafizadeh F (1963) Galactal. In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry, vol 2. Academic, New York, pp 409–410

    Google Scholar 

  • Shin I, Jung HJ, Lee MR (2001) Chemoselective ligation of maleimidosugars to peptides/protein for the preparation of neoglycopeptides/neoglycoprotein. Tetrahedron Lett 42:1325–1328

    Article  CAS  Google Scholar 

  • Sjölin P, Elofsson M, Khilberg J (1996) Removal of acyl protecting groups from glycopeptides: base does not epimerize peptide stereocenters, and β-elimination is slow. J Org Chem 61:560–565

    Article  PubMed  Google Scholar 

  • Smith M, Rammler DH, Goldberg IH, Khorana HG (1962) Polynucleotides. XIV. Specific synthesis of the C3′-C5′ internucleotide linkage. Synthesis of uridylyl(3′→5′)-uridine and uridylyl-(3′→5′)-adenosine. J Am Chem Soc 84:430–40

    Article  CAS  Google Scholar 

  • Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham J, Taylor-Papadimitriou J, Hollingsworth MA, Burchell J, Clausen H (2006) Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 16:96–107

    Article  PubMed  CAS  Google Scholar 

  • Springer GF, Desai RR, Fry WA, Goodale RL, Shearen JG, Scanlon EF (1983) T antigen, a tumor marker against which breast, lung and pancreas carcinoma patients mount immune responses. Cancer Detect Prev 6:111–118

    PubMed  CAS  Google Scholar 

  • Springer GF (1984) T and Tn, general carcinoma autoantigens. Science 224:1198–206

    Article  PubMed  CAS  Google Scholar 

  • Swallow DM, Gendler S, Griffiths B, Corney G, Taylor-Papadimitriou J, Bramwell ME (1987) The human tumor-associated epithelial mucins are coded by an expressed hypervariable gene locus PUM. Nature 328:82–4

    Article  PubMed  CAS  Google Scholar 

  • Tam JP (1988) Methionine ligation strategy in the biomimetic synthesis of parathyroid hormones. Proc Natl Acad Sci USA 85:5409–13

    Article  PubMed  CAS  Google Scholar 

  • Tarp MA, Sorensen AL, Mandel U, Paulsen H, Burchell J, Taylor-Papadimitriou J, Clausen H (2007) Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 17:197–209

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M (1999) MUC1 and cancer. Biochim Biophys Act, Mol Basis Dis 1455:301–313

    Article  CAS  Google Scholar 

  • Tietze LF, Arlt M, Beller M, Gluesenkamp KH, Jaehde E, Rajewsky MF (1991) Conjugation of p-aminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Chem Ber 124:1215–21

    Article  CAS  Google Scholar 

  • Tomita M, Marchesi VF (1975) Amino acid sequence and oligosaccharide attachment sites of human erythrocyte glycophorin. Proc Natl Acad Sci USA 72:2964–2968

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Dziadek S, Kunz H (2003) The (2-phenyl-2-trimethylsilyl)ethyl-(PTMSEL)-linker in the synthesis of glycopeptide partial structures of complex cell surface glycoproteins. Chem Eur J 9:6018–6030

    Article  PubMed  CAS  Google Scholar 

  • Wang SS (1973) p-Alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J Am Chem Soc 95:1328–33

    PubMed  CAS  Google Scholar 

  • Westerlind U, Hobel A, Gaidzik N, Schmitt E, Kunz H (2008) Synthetic vaccines consisting of tumor-associated MUC1 glycopeptide antigens and a T-cell epitope for the induction of a highly specific humoral immune response. Angew Chem Int Ed 47:7551–7556

    Article  CAS  Google Scholar 

  • Westerlind U, Schröder H, Hobel A, Gaidzik N, Kaiser A, Niemeyer CM, Schmitt E, Waldmann H, Kunz H (2009) Tumor-associated MUC1 tandem-repeat glycopeptide microarrays to evaluate serum- and monoclonal-antibody specificity. Angew Chem Int Ed 48:8263–8267

    Article  CAS  Google Scholar 

  • Wilkinson BL, Day S, Malins LR, Apostolopoulos V, Payne RJ (2011) Self-adjuvanting multicomponent cancer vaccine candidates combining per-glycosylated MUC1 glycopeptides and the toll-like receptor 2 agonist Pam3CysSer. Angew Chem Int Ed 50:1635–1639

    Article  CAS  Google Scholar 

  • Wittrock S, Becker T, Kunz H (2007) Synthetic vaccines of tumor-associated glycopeptide antigens by immune-compatible thioether linkage to bovine serum albumin. Angew Chem Int Ed 46:5226–5230

    Article  CAS  Google Scholar 

  • Zemplén G, Kuntz A (1923) The sodium compounds of glucose and the saponification of the acylated sugars. Chem Ber 56B:1705–1710

    CAS  Google Scholar 

  • Zhu J, Wan Q, Lee D, Yang G, Spassova M, Ouerfelli O, Ragupathi G, Damani P, Livingstone PO, Danishefsky SJ (2009) From synthesis to biologics: preclinical data on a chemistry derived anticancer vaccine. J Am Chem Soc 131:9298–9303

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Kunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Westerlind, U., Kunz, H. (2012). Antitumor Vaccines Based on Synthetic Mucin Glycopeptides. In: Kosma, P., Müller-Loennies, S. (eds) Anticarbohydrate Antibodies. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0870-3_11

Download citation

Publish with us

Policies and ethics