Skip to main content

Global Risks and Threats to Humanity from Outer Space: Prospects of Warning and Parrying

  • Chapter
  • First Online:
Global Aerospace Monitoring and Disaster Management

Abstract

On October 8, 2009, an unobserved asteroid approaching the Earth exploded in the upper atmosphere (at height of 15–20 km) directly over South Sulawesi province in Indonesia. According to NASA, this explosion of a 10-m-sized stone object, which entered the dense atmosphere at a speed of more than 20 km/s, realized an energy of 50,000 tons TNT equivalent (three times more powerful than the Hiroshima nuclear blast). The event was detected by the West Ontario University Observatory, at a distance of 16,000 km away from its epicenter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dealing with the threat to earth from asteroids and comets, In: Ivan Bekey, IAA. (ed) p. 140, (2009), http://iaaweb.org/iaa/Communication/announcement_asteroids.pdf

  2. Gehrels, T. (ed.): Hazards due to Comets & Asteroids, p. 1300. University Arizona Press, Tucson (1994)

    Google Scholar 

  3. Chesley, S.R., Ward, S.N.: A quantitative assessment of the human and economic hazard from impact-generated tsunami. Nat. Hazards 38, 355–374 (2006)

    Article  Google Scholar 

  4. Ceplecha, Z.: Meteoroids: an item in the inventory. In: Rettig, T.W., Hahn, J.M., (eds.), Completing the Inventory of the Solar System, Astron. Soc. Pacific Conf. Ser. 107, pp. 75–84 (1996)

    Google Scholar 

  5. Stuart, J.S.: A Near-Earth asteroid population estimate from the LINEAR survey. Science 294, 1691–1693 (2001)

    Article  Google Scholar 

  6. Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S.: Debased orbital and absolute magnitude distribution of the Near-Earth objects. Icarus 156, 399–433 (2002)

    Article  Google Scholar 

  7. Wiegert, P., Tremaine, S.: The evolution of long-period Comets. Icarus 137, 84–121 (1999)

    Article  Google Scholar 

  8. Binzel, R.P., Lupishko, D.F., DiMartino, M., Whiteley, R.J., Hahn, G.J.: Physical properties of Near-Earth objects. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 255–271. University Arizona Press, Tucson (2002)

    Google Scholar 

  9. Weidenschilling, S.J.: Formation of planetesimals and accretion of the terrestrial planets. Space Sci. Rev. 92, 295–310 (2000)

    Article  Google Scholar 

  10. Chambers, J.E., Wetherill, G.W.: Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998)

    Article  Google Scholar 

  11. Morbidelli, A., Petit, J.M., Gladman, B., Chambers, J.: A plausible cause of the late heavy bombardment. Meteorit. Planet. Sci. 36, 371–380 (2001)

    Article  Google Scholar 

  12. Ryder, G.: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res. 107(E4), 5022 (2002), doi: 10.1029/2001JE001583

    Google Scholar 

  13. Gomes, R., Tsiganis, K., Morbidelli, A., Levison, H.F.: The cataclysmic late heavy bombardment triggered by a delayed start of planet migration. Nature, submitted (2005)

    Google Scholar 

  14. Hartmann, W.K.: Megaregolith evolution and cratering cataclysm models–Lunar cataclysm as a misconception (28 years later). Meteorit. Planet. Sci. 38, 579–593 (2003)

    Article  MathSciNet  Google Scholar 

  15. Bottke Jr, W.F., Vokrouhlick, D., Rubincam, D.P., Broz, M.:The effect of Yarkovsky thermal forces on the dynamical evolution of asteroids and meteoroids. In: Bottke Jr, W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids III, pp. 395–408. University Arizona Press, Tucson (2002)

    Google Scholar 

  16. Culler, T.S., Becker, T.A., Muller, R.A., Renne, P.R.: Lunar impact history from 40Ar/39Ar dating of glass spherules. Science 287, 1785–1788 (2000)

    Article  Google Scholar 

  17. Watson, F.: Between the Planets, p. 222. The Blakiston Co, Philadelphia (1941)

    Google Scholar 

  18. Baldwin, R.B.: The Face of the Moon, p. 239. University Chicago Press, Chicago (1949)

    Google Scholar 

  19. Atkinson, H., Tickell, C., Williams, D. (eds.): Report of the Task Force on Potentially Hazardous Near Earth Objects, p. 54. British National Space Centre, London (2000)

    Google Scholar 

  20. Öpik, E.J.: On the catastrophic effect of collisions with celestial bodies. Irish Astron. J. 5(36), 128 (1958)

    Google Scholar 

  21. Morbidelli, A., Jedicke, R., Bottke, W.F., Michel, P., Tedesco, E.F.: From magnitudes to diameters: the albedo distribution of near earth objects and the earth collision hazard. Icarus 158, 329–342 (2002)

    Article  Google Scholar 

  22. Shoemaker, E.M.: Report of the Near-Earth Objects Survey Working Group, NASA Office of Space Science, Solar System Exploration Office (1995)

    Google Scholar 

  23. Shoemaker, E.M. (ed.): Report of the Near-Earth Objects Survey Working Group, NASA, Washington D.C., (1995)

    Google Scholar 

  24. Koeberl, C., MacLeod, K.G. (eds.): Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Soc. America, Boulder CO, Special Paper 356, 2002, 746pp

    Google Scholar 

  25. Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.): Asteroids III. University Arizona Press, Tucson (2002). 785pp

    Google Scholar 

  26. Chapman, C.R.: The evolution of asteroids as meteorite parent-bodies. In: Delsemme, A.H. (ed.) Comets Asteroids Meteorites: Interrelations, Evolution and Origins. University of Toledo Press, Toledo OH (1977). 265.130

    Google Scholar 

  27. Brown, P., Spalding, R.E., ReVelle, D.O., Tagliaferri, E., Worden, S.P.: The flux of small near-earth objects colliding with the Earth. Nature 420, 294–296 (2002)

    Article  Google Scholar 

  28. Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke, W.F.: The mass disruption of Oort cloud comets. Science 296, 2212–2215 (2002). 129

    Article  Google Scholar 

  29. Jedicke, R., Morbidelli, A., Spahr, T., Petit, J., Bottke, W.F.: Earth and space-based NEO survey simulations: prospects for achieving the spaceguard goal. Icarus 161, 17–33 (2003)

    Article  Google Scholar 

  30. Chapman, C.R.: Space weathering of asteroid surfaces. Ann. Rev. Earth & Planet. Sci. 32, 539–567 (2004)

    Article  Google Scholar 

  31. Bus, S.J., Vilas, F., Barucci, M.A.: Visible-wavelength spectroscopy of asteroids. In: Bottke Jr., W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 169–182. University Arizona Press, Tucson (2002)

    Google Scholar 

  32. “MIT Course precept for movie”, The Tech, MIT, October 30, 1979

    Google Scholar 

  33. Satellite observations of total solar irradiance

    Google Scholar 

  34. Willson, R.C., Hudson, H.S.: The sun's luminosity over a complete solar cycle. Nature 351, 42–44 (1991)

    Article  Google Scholar 

  35. “Solar Forcing of Climate”. Climate Change 2001: Working Group I: The Scientific Basis. http://www.grida.no/climate/ipcc_tar/wg1/244.htm. Retrieved 10 March 2005

  36. Weart, S.: (2006). "The Discovery of Global Warming". In: Weart, S. American Institute of Physics, Retrieved 14 April 2007.

    Google Scholar 

  37. http://acrim.com/TSI%20Monitoring.htm

  38. Willson, R.C., Mordvinov, A.V.: Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30(5), 1199 (2003). doi http://www.agu.org/journals/gl/gl0905/2008GL036307.

  39. “Construction of a Composite Total Solar Irradiance (TSI) Time Series from 1978 to present”. Physikalisch-Meteorologisches Observatorium Davos (PMOD).

    Google Scholar 

  40. Committee on Surface Temperature Reconstructions for the Last 2,000 Years, Board on Atmospheric Sciences and Climate, Division on Earth and Life Studies, National Research Council of the National Academies: climate forcings and climate models. In North, G.R., Biondi, F., Bloomfield, P., et al. (eds) Surface Temperature Reconstructions for the Last 2,000 Years. National Academies Press, Washington, DC (2006). ISBN 0-309-10225-1. Retrieved 19 April 2007

    Google Scholar 

  41. Lean, J.: Evolution of the Sun's spectral irradiance since the maunder minimum. Geophys. Res. Lett. 27(16), 2425–2428 (2000)

    Article  Google Scholar 

  42. Scafetta, N., West, B.J.: Phenomenological solar signature in 400 years of reconstructed northern hemisphere temperature record. Geophys. Res. Lett. 33, L17718 (2006)

    Article  Google Scholar 

  43. Arctowski, H.: On solar faculae and solar constant variations(PDF). Proc. Natl. Acad. Sci. U.S.A. 26(6), 406–411 (1940)

    Article  Google Scholar 

  44. Fritts, H.C.: Tree Rings and Climate. Academic Press, Boston (1976). ISBN 0-12-268450

    Google Scholar 

  45. "William Herschel (1738–1822)". High Altitude Observatory. Retrieved 27 Feb 2008

    Google Scholar 

  46. Camp, C.D., Tung, Ka-Kit., Quinif, Y., Kaufman, O., Van Ruymbeke, M., Vandiepenbeeck, M., Camelbeeck, T.: (2006). The Influence of the Solar Cycle and QBO on the Late Winter Stratospheric Polar Vortex" (PDF). EOS Trans. AGU 87 (52): Fall Meet. Suppl., Abstract #A11B–0862. Retrieved 28 April 2009.

    Google Scholar 

  47. http://www.pmodwrc.ch/pmod.php?topic = tsi/composite/SolarConstant

  48. Willson, R.C., Mordvinov, A.V.: Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 30(5), 1199 (2003)

    Article  Google Scholar 

  49. DeWitte, S., Crommelynck, D., Mekaoui, S., Joukoff, A.: Measurement and uncertainty of the long-term total solar irradiance trend. Sol. Phys. 224, 209–216 (2004)

    Article  Google Scholar 

  50. Fröhlich, C., Lean, J.: Solar radiative output and its variability: evidence and mechanisms. Astronomy and Astrophysical Reviews 12, 273–320 (2004)

    Article  Google Scholar 

  51. Eddy, J.A.: "Samuel P. Langley (1834–1906)", J. Hist. Astron. 21: 111–20 (1990)

    Google Scholar 

  52. Foukal, P.V., Mack, P.E., Vernazza, J.E.: The effect of sunspots and faculae on the solar constant. Astrophys. J. 215, 952 (1977)

    Article  Google Scholar 

  53. Willson, R.C., Gulkis, S., Janssen, M., Hudson, H.S., Chapman, G.A.: Observations of solar irradiance variability. Science 211(4483), 700–702 (1981)

    Article  Google Scholar 

  54. Usoskin, I.G., Solanki, S.K., Schüssler, M., Mursula, K.,; Alanko, K.: A millennium scale sunspot number reconstruction: evidence for an unusually active sun since the 1940’s (PDF). Physical Review Letters. (2003)

  55. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: Unusual activity of the sun during recent decades compared to the previous 11,000 years (PDF). Nature 431(7012), 1084–1087 (2004). Retrieved 17 April 2007.,“11,000 Year Sunspot Number Reconstruction”. Global Change Master Directory

    Article  Google Scholar 

  56. Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: Grand minima and maxima of solar activity: new observational constraints (PDF). Astron. Astrophys. 471, 301–309 (2007)

    Article  Google Scholar 

  57. Lean, J.: Contribution of ultraviolet irradiance variations to changes in the sun's total irradiance science. Science 244(4901), 197 (1989). 14 April

    Article  Google Scholar 

  58. Damon, P.E., Laut, P.: Pattern of strange errors plagues solar activity and terrestrial climate data (PDF). Eos 85(39), 370–374 (2004). Retrieved October 5, 2005

    Article  Google Scholar 

  59. Tinsley, B.A., Yu, F.: Atmospheric ionization and clouds as links between solar activity and climate. In: Pap, J.M., Fox, P.A. (eds.) Solar Variability and its Effects on Climate, vol. 141, pp. 321–339. American Geophysical Union, Washington, DC (2004). Retrieved 19 April 2007

    Chapter  Google Scholar 

  60. Svensmark, H.: Influence of cosmic rays on earth's climate (PDF). Phys. Rev. Lett. 81, 5027–5030 (1998). Retrieved 19 April 2007

    Article  Google Scholar 

  61. Pallé, E., Butler, C.J., O'Brien, K.: The possible connection between ionization in the atmosphere by cosmic rays and low level clouds (PDF). J. Atmos. Sol-Terr. Phy 66(18), 1779 (2004)

    Article  Google Scholar 

  62. Pallé, E.: Possible satellite perspective effects on the reported correlations between solar activity and clouds (PDF). Geophysical Research Letters 32 (3): L03802.1–4 (2005)

    Google Scholar 

  63. “Astronomy: On the Sunspot Cycle”. Retrieved 27 Feb 2008

    Google Scholar 

  64. Houghton, J.T., Ding, Y., Griggs, D.J., et al. (eds) (2001). “6.11 Total Solar Irradiance—Figure 6.6: Global, annual mean radiative forcings (1750 to present)”. Climate Change 2001: Working Group I: The Scientific Basis. Intergovernmental Panel on Climate Change. Retrieved 15 April 2007

    Google Scholar 

  65. Kessler, D.: Upper limit on the spatial density of asteroidal debris. AIAA Journal 6(12), 2450–2450 (1968)

    Article  Google Scholar 

  66. Weart, S (2003). “Changing Sun, Changing Climate?”. The Discovery of Global Warming. Harvard University Press. ISBN 0674011570. Retrieved 17 April, 2008

    Google Scholar 

  67. Scafetta, N., Willson, R.: ACRIM-gap and Total Solar Irradiance (TSI) trend issue resolved using a surface magnetic flux TSI proxy model. Geophysical Research Letter 36: L05701 (2009)

    Google Scholar 

  68. Oswald, M., Stabroth, S., Wiedemann, C., Wegener, P., and C. Martin: “Upgrade of the MASTER Model”, Final Report of ESA Contract No. 18014/03/D/HK(SC), Braunschweig(2006).

    Google Scholar 

  69. Hoots, F., Schumacher Jr, P.,.Glover, R.: History of analytical orbit modeling in the U. S. space surveillance system J. Guid. Control Dynam. 27(2), 174–185 (2004)

    Google Scholar 

  70. Kessler, 1981, 1991, 2001, 2009

    Google Scholar 

  71. Schefter 1982, p. 48.

    Google Scholar 

  72. Hoffman, M.:“It's getting crowded up there.” Space News, 3 April 2009.

    Google Scholar 

  73. Orbital Debris: A Technical Assessment 1995, http://www.nap.edu/openbook.php?isbn=0309051258

  74. Liou, J.-C., Johnson, N.L.: Risks in space from orbiting debris. Science 311(5759), 340–341 (2006)

    Article  Google Scholar 

  75. Lovgren, S.: “Space Junk Cleanup Needed, NASA Experts Warn.” National Geographic News, 19 January 2006.

    Google Scholar 

  76. Milne, A.: Sky Static: The Space Debris Crisis. Greenwood Publishing Group, Santa Barbara, CA (2002). 86

    Google Scholar 

  77. Wang, Y‐.M., Lean, J.L., Sheeley Jr., N.R.: Modeling the sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (May 2005)

    Article  Google Scholar 

  78. “Orbital Debris: A Technical Assessment” 1995, p. 7.

    Google Scholar 

  79. Carroll, J.: Space Transport Development Using Orbital Debris. niac.usra.edu, 2 December 2002, p. 3.

    Google Scholar 

  80. McKie, R., Day, M.: Warning of catastrophe from mass of ‘space junk’. The Observer, 24 February 2008.

    Google Scholar 

  81. Ford, M.: Orbiting space junk heightens risk of satellite catastrophes. Ars Technica, 27 February 2009.

    Google Scholar 

  82. What are hypervelocity impacts? ESA, 19 February 2009.

    Google Scholar 

  83. Collocation Strategy and Collision Avoidance for the Geostationary Satellites at 19 Degrees West. CNES Symposium on Space Dynamics, 6–10 November 1989.

    Google Scholar 

  84. Hanada, T.: Developing a low-velocity collision model based on the NASA standard breakup model. Space Debris 2(4), 233–247 (2000)

    Article  Google Scholar 

  85. Van der Ha, J.C., Hechler, M.: The Collision Probability of Geostationary Satellites. 32nd International Astronautical Congress, 1981, p. 23.

    Google Scholar 

  86. Project Icarus

    Google Scholar 

  87. Notification for Express-AM11 satellite users in connection with the spacecraft failure. Russian Satellite Communications Company, 19 April 2006.

    Google Scholar 

  88. Iannotta B., Malik, T.: U.S. Satellite Destroyed in Space Collision, space.com, 11 February 2009

    Google Scholar 

  89. Marks, P.: Satellite collision 'more powerful than China's ASAT test. New Scientist, 13 February 2009. Note: The collision speed was 42,120 kilometers per hour (11.7 km/s).

    Google Scholar 

  90. Two big satellites collide 500 miles over Siberia. yahoo.com, 11 February 2009. Retrieved 11 Feb 2009.

    Google Scholar 

  91. UCS Satellite Database. Union of Concerned Scientists, 16 July 2009.

    Google Scholar 

  92. Wright, D.: Debris in Brief: Space Debris from Anti-Satellite Weapons. Union of Concerned Scientists, December 2007.

    Google Scholar 

  93. David, L.,. China's Anti-Satellite Test: Worrisome Debris Cloud Circles Earth. space.com, 2 February 2007.

    Google Scholar 

  94. Fengyun 1 C - Orbit Data. Heavens Above.

    Google Scholar 

  95. Burger, B.: NASA's Terra Satellite Moved to Avoid Chinese ASAT Debris. space.com. Retrieved: 6 July 2007.

    Google Scholar 

  96. Pentagon: Missile Scored Direct Hit on Satellite. npr.org, 21 February 2008.

    Google Scholar 

  97. Wolf, J.: US satellite shootdown debris said gone from space. uk.reuters.com, 27 February 2008.

    Google Scholar 

  98. Anz-Meador, P., Matney, M.: An assessment of the NASA explosion fragmentation model to 1 mm characteristic sizes. Adv. Space Res. 34(5), 987–992 (2004)

    Article  Google Scholar 

  99. Debris from explosion of Chinese rocket detected by University of Chicago satellite instrument. University of Chicago press release, 10 August 2000.

    Google Scholar 

  100. Rocket Explosion. Spaceweather.com, 22 February 2007. Retrieved: 21 Feb 2007.

    Google Scholar 

  101. Than, K.: Rocket Explodes Over Australia, Showers Space with Debris. Space.com, 21 February 2007. Retrieved 21 Feb 2007.

    Google Scholar 

  102. Recent Debris Events. celestrak.com, 16 March 2007.

    Google Scholar 

  103. Spate of rocket breakups creates new space junk. NewScientist.com, 17 January 2007. Retrieved 16 March 2007.

    Google Scholar 

  104. Smirnov, V.M., et al.: Study of micrometeoroid and orbital debris effects on the solar panels retrieved from the space station ‘MIR’. Space Debris 2(1), 1–7 (2000)

    Article  Google Scholar 

  105. Orbital Debris FAQ: How did the Mir space station fare during its 15-year stay in Earth orbit? NASA, July 2009.

    Google Scholar 

  106. Matson, R.: Satellite Encounters. Visual Satellite Observer's Home Page.

    Google Scholar 

  107. Christiansen, E.L., Hydeb, J.L., Bernhard, R.P.: Space shuttle debris and meteoroid impacts. Adv. Space Res. 34(5), 1097–1103 (2004)

    Article  Google Scholar 

  108. Kelly, J.: Debris is Shuttle's Biggest Threat. space.com, 5 March 2005.

    Google Scholar 

  109. Debris Danger. Aviation Week & Space Technology, Volume 169, Number 10, 15 September 2008, p. 18.

    Google Scholar 

  110. Harwood, W.: Improved odds ease NASA's concerns about space debris. CBS News, 16 April 2009.

    Google Scholar 

  111. Investigation of Shuttle Radiator Micro-Meteoroid & Orbital Debris Damage.

    Google Scholar 

  112. Lear, D., et al.: STS-118 Radiator Impact Damage, NASA

    Google Scholar 

  113. Thoma, K., Wicklein, M., Schneider, E., Danesy, D. (eds): Abstract New Protection Concepts for Meteoroid/Debris Shields. Proceedings of the 4th European Conference on Space Debris (ESA SP-587), 18–20 April 2005 in Darmstadt, Germany, ESA/ESOC, August 2005, p. 445

    Google Scholar 

  114. Nahra, H.: Effect of Micrometeoroid and Space Debris Impacts on the Space Station Freedom Solar Array Surfaces. Presented at the 1989 Spring Meeting of the Materials Research Society, NASA TR-102287. 24–29 April 1989

    Google Scholar 

  115. Junk alert for space station crew. BBC News, 12 March 2009.

    Google Scholar 

  116. Haines, L.: ISS spared space junk avoidance manoeuvre. The Register, 17 March 2009.

    Google Scholar 

  117. NASA – Part I – The History of Skylab. NASA's Marshall Space Flight Center and Kennedy Space Center, 16 March 2009.

    Google Scholar 

  118. NASA - John F. Kennedy Space Center Story. NASA Kennedy Space Center, 16 March 2009.

    Google Scholar 

  119. PAM-D Debris Falls in Saudi Arabia. The Orbital Debris Quarterly News, 6(2)

    Google Scholar 

  120. Debris Photos. NASA.

    Google Scholar 

  121. Debris Warning. NASA.

    Google Scholar 

  122. Gibson, J.: Jet's flaming space junk scare. The Sydney Morning Herald, 28 March 2007.

    Google Scholar 

  123. Today in Science History. todayinsci.com. Retrieve 8 March 2006.

    Google Scholar 

  124. Orbital Debris FAQ: How much orbital debris is currently in Earth orbit? NASA, July 2009.

    Google Scholar 

  125. Orbital debris: Optical Measurements. NASA Orbital Debris Program Office

    Google Scholar 

  126. Stokes, GH., von Braun, C., Sridharan, R., Harrison, D., Sharma, J.: The Space-Based Visible Program. MIT Lincoln Laboratory. Retrieved 8 March 2006.

    Google Scholar 

  127. Klinkrad, H.: Monitoring Space – Efforts Made by European Countries. fas.org. Retrieved 8 March 2006.

    Google Scholar 

  128. MIT Haystack Observatory. haystack.mit.edu. Retrieved 8 March 2006.

    Google Scholar 

  129. AN/FPS-108 COBRA DANE. fas.org. Retrieved 8 March 2006.

    Google Scholar 

  130. UN Space Debris Mitigation Guidelines.

    Google Scholar 

  131. Anselmo, L., Pardini, C.: Collision risk mitigation in geostationary orbit. Space Debris 2(2), 67–82 (2000)

    Article  Google Scholar 

  132. de Selding, P.B.: CNES Begins Deorbiting Spot-1 Earth Observation Satellite. Space News, 20 February 2009

    Google Scholar 

  133. Christensen, B.: The Terminator Tether Aims to Clean Up Low Earth Orbit. space.com. Retrieved 8 March 2006.

    Google Scholar 

  134. Amos, J.: How satellites could 'sail' home. BBC News, 3 May 2009.

    Google Scholar 

  135. Campbell, J.: Using Lasers in Space: Laser Orbital Debris Removal and Asteroid Deflection. Occasional Paper No. 20, Air University, Maxwell Air Force Base, December 2000.

    Google Scholar 

  136. Bekey, I.: Project Orion: Orbital Debris Removal Using Ground-Based Sensors and Lasers. Second European Conference on Space Debris, ESA-SP 393, p. 699 (1997)

    Google Scholar 

  137. Mullins, J.: A clean sweep: NASA plans to carry out a spot of housework. New Scientist, 16 August 2000.

    Google Scholar 

  138. Carlson, E., et al.: Final design of a space debris removal system. NASA/CR-189976, 1990.

    Google Scholar 

  139. Michaels, D.: A cosmic question: how to get rid of all that orbiting space junk? Wall Street J., 11 March 2009.

    Google Scholar 

  140. Hitchens, T.: COPUOS Wades into the Next Great Space Debate. The Bulletin of the Atomic Scientists, 26 June 2008.

    Google Scholar 

  141. Orbital Debris – Important Reference Documents.

    Google Scholar 

  142. Air Force Regulation 200–2

    Google Scholar 

  143. Armando Simon, A.: The Zeitgeist of the UFO Phenomenon. UFO phenomena and the behavioral scientist (Scarecrow Press) (1979)

    Google Scholar 

  144. Vallée, J.: Alien Contact by Human Deception. Anomalist Books, New York (1990). ISBN 1-933665-30-0

    Google Scholar 

  145. Menzel, D.H., Taves, E.H.: The UFO Enigma. Doubleday, Garden City (NY, USA) (1977)

    Google Scholar 

  146. Sagan, C., Page, T.: UFOs: a scientific debate. Barnes & Noble. pp. 310. ISBN 978076070916. (1995)

    Google Scholar 

  147. McDonald, J.E.: Statement on Unidentified Flying Objects submitted to the House Committee on Science and Astronautics at July 29, 1968, Symposium on Unidentified Flying Objects, Rayburn Bldg, Washington, D.C (1968)

    Google Scholar 

  148. COMETA Report: http://www.ufoevidence.org/topics/Cometa.htm

  149. Politicking and Paradigm Shifting: James E. McDonald and the UFO Case Study http://www.project1947.com/shg/mccarthy/shgintro.html

  150. http://news-service.stanford.edu/news/1998/july1/ufostudy71.html

  151. Cross, A.: The flexibility of scientific rhetoric: a case study of UFO researchers. Qualitative Sociology 27(1), 3–34 (2004)

    Article  Google Scholar 

  152. Project Blue Book Special Report #14

    Google Scholar 

  153. (CIA history of their involvement in UFOs)

    Google Scholar 

  154. Site du GEIPAN

    Google Scholar 

  155. Interview with GEIPAN director Yves Sillard; public statements of SEPRA director Jean-Jacques Velasco; 1978 GEPAN report by director Claude Poher.

    Google Scholar 

  156. COMETA Report (English), part1; COMETA Report, part2; COMETA Report summary by Gildas Bourdais; Summary by Mark Rodeghier, director of CUFOS

    Google Scholar 

  157. UK National Archives

    Google Scholar 

  158. news.bbc.co.uk Files released on UFO sightings

    Google Scholar 

  159. AFP Article: Britons 'spotted' UFOs, records say

    Google Scholar 

  160. BBC News Airliner had near miss with UFO

    Google Scholar 

  161. 'El Pais', Montevideo,Uruguay, June 6, 2009; English translation by Scott Corrales

    Google Scholar 

  162. Catalog of Project Blue Book unknowns

    Google Scholar 

  163. Hynek's photos in Hynek, The UFO Experience, 1972, p. 52

    Google Scholar 

  164. Herb/Hynek amateur astronomer poll results reprinted in International UFO Reporter (CUFOS), May 2006, pp. 14–16

    Google Scholar 

  165. Hendry, A.: UFO the Handbook: A Guide to Investigating, Evaluating, and Reporting UFO Sightings. Doubleday & Co., Garden City, N.Y (1979). ISBN 0-385-14348-6

    Google Scholar 

  166. Scientific Study of Unidentified Flying Objects, Section II Summary of the Study, Edward U. Condon, University of Colorado

    Google Scholar 

  167. Document quoted and published in Timothy Good (2007), 106–107, 115; USAFE Item 14, TT 1524, (Top Secret), 4 November 1948, declassified in 1997, National Archives, Washington D.C.

    Google Scholar 

  168. Schuessler, J.L.: Statements about Flying Saucers and Extraterrestrial Life Made by Prof. Hermann Oberth, German Rocket Scientist" 2002; Oberth's American Weekly article appeared in a number of newspaper Sunday supplements, e.g., Washington Post and Times Herald

    Google Scholar 

  169. Copy of FBI FOIA document; Text quotation in essay by Bruce Maccabee on military/CIA ETH opinions circa 1952

    Google Scholar 

  170. Dolan, 189; Good, 287, 337; Ruppelt, Chapt. 16

    Google Scholar 

  171. David Saunders, UFOs? Yes

    Google Scholar 

  172. Velasco quoted in La Dépêche du Midi, Toulouse, France, April 18, 2004

    Google Scholar 

  173. Vallée, J.: Dimensions: A Casebook of Alien Contact. Ballantine Books, New York (1989). ISBN 0345360028

    Google Scholar 

  174. Peter, F.: Coleman has advanced a theory that some UFOs may be instances of visible combustion of a fuel (e.g., natural gas) inside an atmospheric vortex. See Weather, p. 31, 1993; J. Sci. Explor. 20, 215–238 (2006), and his book Great balls of Fire–a unified theory of ball lightning, UFOs, Tunguska and other anomalous lights, Fireshine Press

    Google Scholar 

  175. Cook, N. (Narrator and Writer): An Alien History of Planet Earth. History Channel (2006)

    Google Scholar 

  176. Sturrock Panel abstract & summary; Sturrock Panel report on physical evidence; Other links to Sturrock Panel

    Google Scholar 

  177. Investigation and explanations of Belgium case

    Google Scholar 

  178. Fawcett & Greenwood, 81–89

    Google Scholar 

  179. Oberth's UFO antigravity opinion as to propulsion and atmospheric air flow control also quoted by Donald Keyhoe in his 1955 book Flying Saucer Conspiracy

    Google Scholar 

  180. Зaйцeв A.B. Meждунapoднaя cиcтeмa плaнeтapнoй зaщиты « Цитaдeль-1». (in Russian).

    Google Scholar 

  181. Report of the Task Force on potentially hazardous Near Earth Objects. British National Space Center. http://www.spacecentre.co.uk/neo/report.html(2008). Retrieved 21 October 2008p. 12.

  182. Morrison, D.: The Spaceguard Survey: Report of the NASA International Near-Earth-Object Detection Workshop. NASA, Washington, D.C (1992)

    Google Scholar 

  183. National Academy of Sciences. 2010. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies: Final Report. Washington, DC: The National Academies Press. Available at: http://books.nap.edu/catalog.php?record_id = 12842.

  184. Stokes, G., Evans, J. (18–25 July 2004): Detection and discovery of near-earth asteroids by the linear program. 35th COSPAR Scientific Assembly. Paris, France. p. 4338. http://adsabs.harvard.edu/abs/2004cosp…35.4338. Retrieved 23 October 2007

  185. Lincoln Near-Earth Asteroid Research (LINEAR). National Aeronautics and Space Administration. http://neo.jpl.nasa.gov/programs/linear.html. Retrieved 23 October 2007

  186. The Spacewatch Project. http://spacewatch.lpl.arizona.edu/index.html. Retrieved 23 October 2007

  187. Near-Earth Objects Search Program. National Aeronautics and Space Administration.. http://neo.jpl.nasa.gov/programs/. Retrieved 23 October 2007

  188. NASA Releases Near-Earth Object Search Report. National Aeronautics and Space Administration. http://neo.jpl.nasa.gov/neo/report.html. Retrieved 23 October 2007

  189. Morrison, D.: NASA NEO Workshop. National Aeronautics and Space Administration.

    Google Scholar 

  190. Charter, H.: Near-Earth Objects: Status of the Survey Program and Review of NASA's 2007 Report to Congress | SpaceRef Canada - Your Daily Source of Canadian Space News

    Google Scholar 

  191. We Saw It Coming: Asteroid Monitored from Outer Space to Ground Impact. Newswise, Retrieved 26 March 2009

    Google Scholar 

  192. Predicting Apophis' Earth Encounters in 2029 and 2036

    Google Scholar 

  193. Why we have Asteroid “Scares”. Spaceguard UK. http://www.spaceguarduk.com/scares.htm.

  194. Cole, D.M., Cox, D.W.: Islands in Space, pp. 126–127. Philadelphia, Chilton Books (1964)

    Google Scholar 

  195. Kleiman Louis, A.: Project Icarus: an MIT Student Project in Systems Engineering. MIT Press, Cambridge, Massachusetts (1968)

    Google Scholar 

  196. Systems Engineering: Avoiding an Asteroid, Time Magazine, June 16, 1967.

    Google Scholar 

  197. Day, D.A.: Giant bombs on giant rockets: Project Icarus, The Space Review (2004), Monday, July 5,

    Google Scholar 

  198. UCAR (September 13, 2006). Changes in Solar Brightness Too Weak to Explain Global Warming. Press release, Retrieved 18 April 2007.

    Google Scholar 

  199. Great Moments in the History of Solar Physics 1. Great Moments in the History of Solar Physics. Retrieved 19 March 2006

    Google Scholar 

  200. Perry, C.A., Hsu, K.J.: Geophysical, archaeological, and historical evidence support a solar-output model for climate change (PDF). Proc. Natl. Acad. Sci. U.S.A. 97(23), 12433–12438 (2000)

    Article  Google Scholar 

  201. Wang, Y.-M., Lean, J.L., Sheeley, N.R.: Modeling the sun's magnetic field and irradiance since 1713. Astrophys. J. 625(1), 522–538 (2005)

    Article  Google Scholar 

  202. Krivova, N.A., Balmaceda, L., Solanki, S.K.: Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. A&A 467, 335–346 (2007)

    Article  Google Scholar 

  203. Steinhilber, F., Beer, J., Fröhlich, C.: Total solar irradiance during the holocene. Geophys. Res. Lett. 36, L19704 (2009)

    Article  Google Scholar 

  204. Lean, J.L., Wang, Y-M., Sheeley Jr, N.R.: The effect of increasing solar activity on the sun’s total and open magnetic flux during multiple cycles: implications for solar forcing of climate. Geophys. Res. Lett. 29 (24), 77–1 ~ 77–4 (2002)

    Google Scholar 

  205. Foukal, P., Fröhlich, C., Spruit, H., Wigley, T.M.L.: Variations in solar luminosity and their effect on the earth’s climate (PDF). Nature 443(7108), 161 (2006)

    Article  Google Scholar 

  206. Lockwood, M., Fröhlich, C.: Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature (PDF). Proceedings of the Royal Society A 463, 2447–2460 (2007)

    Article  Google Scholar 

  207. Benestad, R.E., Schmidt, G.A.: Solar trends and global warming. J. Geophys. Res., 114, D14101, doi:10.1029/2008JD011639. (2009), http://pubs.giss.nasa.gov/abs/be02100q.html

  208. Scafetta, N., West, B.J.:Phenomenological reconstructions of the solar signature in the Northern Hemisphere, surface temperature records since 1600. J. Geophys. Res. 112: D24S03 (2007)

    Google Scholar 

  209. Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., Karlén, W., Lauritzen, S.E.: Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433(7026), 613–617 (2005)

    Article  Google Scholar 

  210. Clark, P.: Space Debris Incidents Involving Soviet/Russian Launches. friends-partners.org.

    Google Scholar 

  211. Iannotta, B.: U.S. Satellite Destroyed in Space Collision. Space.com, 11 February 2009. Retrieved 11 Feb 2009.

    Google Scholar 

  212. Reichhardt, T.: Satellite Smashers. Air & Space Magazine (2008), 1 March

    Google Scholar 

Further Reading

  1. MeньШиков, B.A., Пepминов, A.H., О.M. Уpличич Γлобальныe пpоблeмы чeловeчecтва и коcмоcа – M.: HИИ KC имeни A.A. Mакcимова, 2010. (Russian) – 570c.

    Google Scholar 

  2. A.H. Пepминов, B.A. MeньШиков “Kоcмоc и бeэопаcноcть чeловeчecтва.”. – M: HИИ KC имeни A.A. Mакcимова, 2009. (Russia) – 48 c.

    Google Scholar 

  3. Ranganath Navalgund, Valery Menshikov, Joseph Akinyede Space-Based disaster Managment: the Weed for international cooperation IAA, Bengalor-Paris, 2010, 80 p. (Heads of space Agencies Summit on November 17, 2010 in Washington)

    Google Scholar 

  4. Degtyar V. G., Volkov V. A., Kalashnikov S. T. “Development of principles fro adaptation of space and rocket complexes to be used for missions of mitigation of asteroids and comets threat.” by book “Space for Security and Prosperity of the Peoples.”, editors Contant J.-M., Menshikov V., IAA,- 2010, p. 189–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery A. Menshikov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Menshikov, V.A., Perminov, A.N., Urlichich, Y.M. (2012). Global Risks and Threats to Humanity from Outer Space: Prospects of Warning and Parrying. In: Global Aerospace Monitoring and Disaster Management. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0810-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0810-9_3

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0809-3

  • Online ISBN: 978-3-7091-0810-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics