Skip to main content

White Noise Analysis for Stochastic Partial Differential Equations

  • Chapter
  • First Online:
Numerical and Symbolic Scientific Computing

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Stochastic partial differential equations arise when modelling uncertain phenomena. Here the emphasis is on uncertain systems where the randomness is spatial. In contrast to traditional slow computational approaches like Monte Carlo simulation, the methods described here can be orders of magnitude more efficients. These more recent methods are based on some kind stochastic Galerkin approximations, approximating the unknown quantities as functions of independent random variables, hence the name “white noise analysis”. We outline the steps leading to the fully discrete equations, commenting on one possible numerical solution method. Key to many of the developments is tensor product structure of the solution, which must be exploited both theoretically and numerically. For two examples with polynomial nonlinearities the computations are shown to be quite explicit and can be performed largely analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharjee, S., Zabaras, N.: A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes. Comput. Struct. 85, 244–254 (2007)

    Article  Google Scholar 

  2. Adler, R.J.: The Geometry of Random Fields. Wiley, Chichester (1981)

    MATH  Google Scholar 

  3. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Babuška, I., Tempone, R., Zouraris, G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Num. Anal. 42, 800–825 (2004)

    Article  MATH  Google Scholar 

  5. Babuška, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comp. Meth. Appl. Mech. Engrg. 194, 1251–1294 (2005)

    Article  MATH  Google Scholar 

  6. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Num. Anal. 45, 1005–1034 (2007)

    Article  MATH  Google Scholar 

  7. Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 7, 1–49 (1998)

    Article  MathSciNet  Google Scholar 

  8. Cao, Y.: On the rate of convergence of Wiener-Ito expansion for generalized random variables. Stochastics 78, 179–187 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Christakos, G.: Random Field Models in Earth Sciences. Academic Press, San Diego, CA (1992)

    Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  11. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  12. Dennis J.E. Jr., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. Classics in applied mathematics. SIAM, Philadelphia, PA (1996)

    Book  MATH  Google Scholar 

  13. Frauenfelder, Ph., Schwab, Chr., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comp. Meth. Appl. Mech. Engrg. 194, 205–228, (2005)

    Google Scholar 

  14. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements – A Spectral Approach. Springer-Verlag, Berlin (1991)

    Book  MATH  Google Scholar 

  16. Ghanem, R.: Stochastic finite elements for heterogeneous media with multiple random non-Gaussian properties. ASCE J. Engrg. Mech. 125, 24–40 (1999)

    Google Scholar 

  17. Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White Noise – An Infinite Dimensional Calculus. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  18. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.-S.: Stochastic Partial Differential Equations. Birkhäuser Verlag, Basel (1996)

    Book  MATH  Google Scholar 

  19. Janson, S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  20. Jardak, M., Su, C.-H., Karniadakis, G.E.: Spectral polynomial chaos solutions of the stochastic advection equation. SIAM J. Sci. Comput. 17, 319–338 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeggle, H.: Nichtlineare Funktionalanalysis. Teubner, Stuttgart (1979)

    Book  MATH  Google Scholar 

  22. Kallianpur, G.: Stochastic Filtering Theory. Springer-Verlag, Berlin (1980)

    Book  MATH  Google Scholar 

  23. Karniadakis, G.E., Sue, C.-H., Xiu, D., Lucor, D., Schwab, C., Tudor, R.A.: Generalized polynomial chaos solution for differential equations with random input. Research Report 2005-1, SAM, ETH Zürich, Zürich (2005)

    Google Scholar 

  24. Keese, A.: A review of recent developments in the numerical solution of stochastic PDEs (stochastic finite elements). Informatikbericht 2003-6, Institute of Scientific Computing, Department of Mathematics and Computer Science, Technische Universitt Braunschweig, Brunswick (2003) http://opus.tu-bs.de/opus/volltexte/2003/504/

  25. Krée, P., Soize, C.: Mathematics of Random Phenomena. D. Reidel, Dordrecht (1986)

    Book  MATH  Google Scholar 

  26. Le Maître, O.P., Najm, H.N., Ghanem, R.G., Knio, O.M.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comp. Phys. 197, 502–531 (2004)

    Article  MATH  Google Scholar 

  27. Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris, Série I. 326, 1085–1092 (1998)

    Google Scholar 

  28. Malliavin, P.: Stochastic Analysis. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  29. Matthies, H., Strang, G.: The solution of nonlinear finite element equations. Int. J. Numer. Methods Engrg. 14, 1613–1626 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Matthies, H.G., Brenner, C.E., Bucher, C.G., Guedes Soares, C.: Uncertainties in probabilistic numerical analysis of structures and solids – stochastic finite elements. Struct. Safety 19, 283–336 (1997)

    Google Scholar 

  31. Matthies, H.G., Bucher, C.G.: Finite elements for stochastic media problems. Comp. Meth. Appl. Mech. Engrg. 168, 3–17 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comp. Meth. Appl. Mech. Engrg. 194, 1295–1331, (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Matthies, H.G.: Quantifying Uncertainty: Modern Computational Representation of Probability and Applications. In: A. Ibrahimbegović and I. Kožar (eds.), Extreme Man-Made and Natural Hazards in Dynamics of Structures. NATO-ARW series. Springer, Berlin (2007)

    Google Scholar 

  34. Matthies, H.G.: Stochastic Finite Elements: Computational Approaches to Stochastic Partial Differential equations. Z. Angew. Math. Mech. 88, 849–873 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Matthies, H.G., Zander, E.: Solving stochastic systems with low-rank tensor compression. Submitted to Linear Algebra and its Applications (2009)

    Google Scholar 

  36. Nobile, F., Tempone, R., Webster, C.G.: Sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Novak, E., Ritter, K.: The curse of dimension and a universal method for numerical integration. In: Nürnberger, G., Schmidt, J.W., Walz, G. (eds.) Multivariate Approximation and Splines, ISNM. pp. 177–188. Birkhäuser Verlag, Basel (1997)

    Chapter  Google Scholar 

  39. Oden, J.T.: Qualitative Methods in Nonlinear Mechanics. Prentice-Hall, Englewood Cliffs, NJ (1986)

    MATH  Google Scholar 

  40. Petras, K.: Fast calculation of coefficients in the Smolyak algorithm. Numer. Algorithms 26, 93–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Roman, L.J., Sarkis, M.: Stochastic Galerkin Method for Elliptic SPDEs: A White Noise Approach. Discrete and Continuous Dynamical Systems – Series B 6, 941–955 (2006)

    Google Scholar 

  42. Rozanov, Yu.: Random Fields and Stochastic Partial Differential Equations. Kluwer, Dordrecht (1996)

    Google Scholar 

  43. Schuëller, G.I.: A state-of-the-art report on computational stochastic mechanics. Prob. Engrg. Mech. 14, 197–321 (1997)

    Article  Google Scholar 

  44. Schuëller, G.I.: Recent developments in structural computational stochastic mechanics. In: Topping, B.H.V. (eds.) Computational Mechanics for the Twenty-First Century. pp. 281–310. Saxe-Coburg Publications, Edinburgh (2000)

    Chapter  Google Scholar 

  45. Schuëller, G.I., Spanos, P.D. (ed.): Monte Carlo Simulation. Balkema, Rotterdam (2001)

    Google Scholar 

  46. Segal, I.E., Kunze, R.A.: Integrals and Operators. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  47. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Wellesley-Cambridge Press, Wellesley, MA (1988)

    Google Scholar 

  48. Sudret, B., Der Kiureghian, A.: Stochastic finite element methods and reliability. A state-of-the-art report. Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley, CA (2000)

    Google Scholar 

  49. Ullmann, E.: A Kronecker product preconditioner for stochastic Galerkin finite element discretizations. SIAM J. Sci. Comput. 32, 923–946 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Vanmarcke, E.: Random Fields: Analysis and Synthesis. The MIT Press, Cambridge, MA (1988)

    Google Scholar 

  51. Wan, X., Karniadakis, G.E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comp. Phys. 209, 617–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comp. Meth. Appl. Mech. Engrg. 191, 4927–4948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Xu, X.F.: A multiscale stochastic finite element method on elliptic problems involving uncertainties. Comp. Meth. Appl. Mech. Engrg. 196, 2723–2736 (2007)

    Article  MATH  Google Scholar 

  54. Zander, E., Matthies, H.G.: Tensor product methods for stochastic problems. Proc. Appl. Math. Mech. 7, 2040067–2040068 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann G. Matthies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Matthies, H.G. (2012). White Noise Analysis for Stochastic Partial Differential Equations. In: Langer, U., Paule, P. (eds) Numerical and Symbolic Scientific Computing. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0794-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0794-2_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0793-5

  • Online ISBN: 978-3-7091-0794-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics