Skip to main content

A Symbolic Approach to Generation and Analysis of Finite Difference Schemes of Partial Differential Equations

  • Chapter
  • First Online:
Book cover Numerical and Symbolic Scientific Computing

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

We discuss three symbolic approaches for the generation of a finite difference scheme of a general single partial differential equation (PDE). We concentrate on the case of a linear PDE with constant coefficients and prove, that these three approaches are equivalent. We systematically use another symbolic technique, namely the cylindrical algebraic decomposition, in order to derive conditions for the von Neumann stability of a given difference scheme. We demonstrate algorithmic symbolic approaches for the computation of both continuous resp. discrete dispersion relations of a linear PDE with constant coefficients resp. a finite difference scheme. We present an implementation of tools for the generation of schemes in the computer algebra system Singular. Numerous examples are computed with our implementation and presented in details. Some of the methods we propose can be generalized to nonlinear PDEs as well as to the case of variable coefficients and to the case of systems of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Used in the discretization of the advection equation

References

  1. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. 10. Springer (2003)

    Google Scholar 

  2. Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets using CADs. SIGSAM Bull. 37(4), 97–108 (2003). DOI 10.1145/968708.968710. http://www.usna.edu/Users/cs/qepcad/B/QEPCAD.html

  3. Chyzak, F., Quadrat, A., Robertz, D.: Linear control systems over Ore algebras. effective algorithms for the computation of parametrizations. Applicable Algebra in Engineering, Communication and Computing 16(5), 938–1279 (2005). http://www.springerlink.com/content/y61643p573387258

  4. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26(2), 187–227 (1998)

    Google Scholar 

  5. Cohn, R.M.: Difference algebra. R.E. Krieger (1979)

    Google Scholar 

  6. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular3-1-2 — A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2010). http://www.singular.uni-kl.de

  7. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997). http://redlog.dolzmann.de

  8. Fröhner, M.: Numerische Methoden in der Hydrodynamik. Wiss. Schriftenr. Tech. Hochsch. Karl-Marx-Stadt 12 (1984)

    Google Scholar 

  9. Ganzha, V., Vorozhtsov, E.: Computer-Aided Analysis of Difference Schemes for Partial Differential Equations. Wiley Interscience (1996)

    Google Scholar 

  10. Ganzha, V.G., Vorozhtsov, E.V.: Parallel implementation of stability analysis of difference schemes with Mathematica. J. Math. Sci. 108, 1070–1088 (2002). DOI 10.1023/A:1013500723898. http://dx.doi.org/10.1023/A:1013500723898

    Google Scholar 

  11. Gerdt, V.: Involutive algorithms for computing Groebner bases. In: Pfister, G., Cojocaru, S., Ufnarovski V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry. IOS Press (2005)

    Google Scholar 

  12. Gerdt, V., Blinkov, Y.: Involution and difference schemes for the Navier-Stokes equations. Proceedings CASC 2009, Kobe, Japan (2009)

    Google Scholar 

  13. Gerdt, V., Blinkov, Y., Mozzhilkin, V.: Gröbner bases and generation of difference schemes for partial differential equations. SIGMA 2, 051 (2006). http://arxiv.org/abs/math/0605334

  14. Gerdt, V., Robertz, D.: Consistency of finite difference approximations for linear PDE systems and its algorithmic verification. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’10). ACM Press (2010). DOI 10.1145/1837934.1837950

    Google Scholar 

  15. Greuel, G.M., Levandovskyy, V., Motsak, A., Schönemann, H.: Plural. A Singular3.1 Subsystem for Computations with Non-commutative Polynomial Algebras. Centre for Computer Algebra, TU Kaiserslautern (2010). http://www.singular.uni-kl.de

  16. Greuel, G.M., Pfister, G.: A SINGULAR Introduction to Commutative Algebra. Springer (2002)

    Google Scholar 

  17. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. J. Symbolic Comput. 24(2), 161–187 (1997). http://www.sciencedirect.com/science/journal/07477171

    Google Scholar 

  18. La Scala, R., Levandovskyy, V.: Letterplace ideals and non-commutative Gröbner bases. J. Symbolic Comput. 44(10), 1374–1393 (2009). DOI doi:10.1016/j.jsc.2009.03. 002

    Google Scholar 

  19. Levandovskyy, V.: Non-commutative computer algebra for polynomial algebras: Gröbner bases, applications and implementation. Ph.D. Thesis, Universität Kaiserslautern (2005). http://kluedo.ub.uni-kl.de/volltexte/2005/1883/

  20. Levin, A.: Difference algebra. Algebra and Applications. Springer, New York (2008)

    Google Scholar 

  21. Liska, R., Drska, L.: FIDE: a REDUCE package for automation of FInite difference method for solving pDE. In: Watanabe, S., Nagata M. (eds.) Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’90), pp. 169–176. ACM Press and Addison-Wesley (1990). http://www.acm.org:80/pubs/citations/proceedings/issac/96877/p169-liska/

  22. Pommaret, J.F.: Partial differential control theory. Vol. 1: Mathematical tools. Vol. 2: Control systems. Mathematics and its Applications (Dordrecht) 530. Dordrecht: Kluwer Academic Publishers (2001)

    Google Scholar 

  23. Ritt, J.F.: Differential algebra. American Mathematical Society (AMS) (1950)

    Google Scholar 

  24. Saito, S., Sturmfels, B., Takayama, N.: Gröbner Deformations of Hypergeometric Differential Equations. Springer (2000)

    Google Scholar 

  25. Seiler, W.M.: Involution. The formal theory of differential equations and its applications in computer algebra. Algorithms and Computation in Mathematics 24. Springer, Berlin (2010). DOI 10.1007/978-3-642-01287-7

  26. Thomas, J.: Numerical partial differential equations: Finite difference methods. Springer (1995)

    Google Scholar 

Download references

Acknowledgements

The authors express their deep gratitude to Vladimir P. Gerdt (JINR, Russia) for his interest, discussions and suggestions during the work on this paper. We would also like to thank M. Kauers (RISC, Linz, Austria), W. Zulehner (J. Kepler University of Linz, Austria), M. Fröhner (BTU Cottbus, Germany) and A. Klar (TU Kaiserslautern, Germany) for discussions on various topics around stability in this paper. We have learned many examples from the scripts and papers of colleagues, mentioned above. A special thanks goes to H. Engl (Vienna, Austria) for his constructive critics, which helped to improve the presentation of the results. At last, but not at least, we thank to anonymous referees for their remarks and questions.

The first author is grateful to the SFB F013 “Numerical and Symbolic Scientific Computing” of the Austrian FWF for partial financial support in 2005-2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Levandovskyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Levandovskyy, V., Martin, B. (2012). A Symbolic Approach to Generation and Analysis of Finite Difference Schemes of Partial Differential Equations. In: Langer, U., Paule, P. (eds) Numerical and Symbolic Scientific Computing. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0794-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0794-2_7

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0793-5

  • Online ISBN: 978-3-7091-0794-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics