Skip to main content

Symbolic Analysis for Boundary Problems: From Rewriting to Parametrized Gröbner Bases

  • Chapter
  • First Online:
Numerical and Symbolic Scientific Computing

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

We review our algebraic framework for linear boundary problems (concentrating on ordinary differential equations). Its starting point is an appropriate algebraization of the domain of functions, which we have named integro-differential algebras. The algebraic treatment of boundary problems brings up two new algebraic structures whose symbolic representation and computational realization is based on canonical forms in certain commutative and noncommutative polynomial domains. The first of these, the ring of integro-differential operators, is used for both stating and solving linear boundary problems. The other structure, called integro-differential polynomials, is the key tool for describing extensions of integro-differential algebras. We use the canonical simplifier for integro-differential polynomials for generating an automated proof establishing a canonical simplifier for integro-differential operators. Our approach is fully implemented in the Theorema system; some code fragments and sample computations are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aichinger, E., Pilz, G.F.: A survey on polynomials and polynomial and compatible functions. In: Proceedings of the Third International Algebra Conference, pp. 1–16. Kluwer, Acad. Publ., Dordrecht (2003)

    Google Scholar 

  2. Albrecher, H., Constantinescu, C., Pirsic, G., Regensburger, G., Rosenkranz, M.: An algebraic operator approach to the analysis of Gerber-Shiu functions. Insurance Math. Econom. 46, 42–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aschenbrenner, M., Hillar, C.J.: An algorithm for finding symmetric Gröbner bases in infinite dimensional rings. In: D. Jeffrey (ed.) Proceedings of ISSAC ’08, pp. 117–123. ACM, New York NY, USA(2008)

    Google Scholar 

  4. Baader, F., Nipkow, T.: Term Rewriting and all that. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  5. Bavula, V.V.: The group of automorphisms of the algebra of polynomial integro-differential operators (2009). http://arxiv.org/abs/0912.2537

  6. Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra (2009). http://arxiv.org/abs/0912.0723

  7. Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10, 731–742 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Becker, T., Weispfenning, V.: Gröbner bases, Graduate Texts in Mathematics, vol. 141. Springer, New York (1993). A computational approach to commutative algebra, In cooperation with Heinz Kredel

    Google Scholar 

  9. Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29(2), 178–218 (1978)

    Article  MathSciNet  Google Scholar 

  10. Bilge, A.H.: A REDUCE program for the integration of differential polynomials. Comput. Phys. Comm. 71(3), 263–268 (1992)

    Article  Google Scholar 

  11. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: Proceedings of ISSAC ’95, pp. 158–166. ACM, New York (1995)

    Google Scholar 

  12. Boulier, F., Ollivier, F., Lazard, D., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Engrg. Comm. Comput. 20(1), 73–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bourbaki, N.: Algebra I. Chapters 1–3. Elements of Mathematics (Berlin). Springer-Verlag, Berlin (1998)

    Google Scholar 

  14. Brouwer, A.E., Draisma, J.: Equivariant Gröbner bases and the Gaussian two-factor model (2009). http://arxiv.org/abs/0908.1530

  15. Brown, R.C., Krall, A.M.: Ordinary differential operators under Stieltjes boundary conditions. Trans. Amer. Math. Soc. 198, 73–92 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brown, R.C., Krall, A.M.: n-th order ordinary differential systems under Stieltjes boundary conditions. Czechoslovak Math. J. 27(1), 119–131 (1977)

    MathSciNet  Google Scholar 

  17. Buchberger, B.: A Critical-Pair/Completion Algorithm for Finitely Generated Ideals in Rings. In: E. Boerger, G. Hasenjaeger, D. Roedding (eds.) Logic and Machines: Decision Problems and Complexity, LNCS, vol. 171, pp. 137–161 (1984)

    Google Scholar 

  18. Buchberger, B.: History and basic features of the critical-pair/completion procedure. J. Symbolic Comput. 3(1-2), 3–38 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. 4, 374–383 (1970). English translation: An algorithmical criterion for the solvability of a system of algebraic equations. In: B. Buchberger, F. Winkler (eds.) Gröbner bases and applications, Cambridge University Press (1998)

    Google Scholar 

  20. Buchberger, B.: Introduction to Gröbner bases. In: B. Buchberger, F. Winkler (eds.) Gröbner bases and applications. Cambridge University Press (1998)

    Google Scholar 

  21. Buchberger, B.: Groebner Rings. Contributed talk at International Conference on Computational Algebraic Geometry, University of Hyderabad, India (2001)

    Google Scholar 

  22. Buchberger, B.: Groebner rings and modules. In: S. Maruster, B. Buchberger, V. Negru, T. Jebelean (eds.) Proceedings of SYNASC 2001, pp. 22–25 (2001)

    Google Scholar 

  23. Buchberger, B.: Groebner Rings in Theorema: A Case Study in Functors and Categories. Tech. Rep. 2003-49, Johannes Kepler University Linz, Spezialforschungsbereich F013 (2003)

    Google Scholar 

  24. Buchberger, B.: An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German). Ph.D. thesis, Univ. of Innsbruck (1965). English translation published in J. Symbolic Comput. 41(3-4), 475–511 (2006)

    Google Scholar 

  25. Buchberger, B.: Groebner bases in Theorema using functors. In: J. Faugere, D. Wang (eds.) Proceedings of SCC ’08, pp. 1–15. LMIB Beihang University Press (2008)

    Google Scholar 

  26. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided mathematical theory exploration. J. Appl. Log. 4(4), 359–652 (2006)

    Article  MathSciNet  Google Scholar 

  27. Buchberger, B., Loos, R.: Algebraic simplification. In: Computer algebra, pp. 11–43. Springer, Vienna (1983)

    Google Scholar 

  28. Bueso, J., Gómez Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups. Springer (2003)

    Google Scholar 

  29. Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26(2), 187–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronoto-London (1955)

    MATH  Google Scholar 

  31. Cohn, P.M.: Introduction to Ring Theory. Springer, London (2000)

    Book  Google Scholar 

  32. Cohn, P.M.: Further Algebra and Applications. Springer-Verlag, London (2003)

    Book  MATH  Google Scholar 

  33. Cohn, P.M.: Basic Algebra: Groups, Rings and Fields. Springer, London (2003)

    Book  Google Scholar 

  34. Cucker, F., Shub, M. (eds.): Foundations of Computational Mathematics. Springer (1997). See http://www.focm.net/ for other FoCM based publications

  35. Gelfand, I.M., Dikiĭ, L.A.: Fractional powers of operators, and Hamiltonian systems. Funkcional. Anal. i Priložen. 10(4), 13–29 (1976). English translation: Functional Anal. Appl. 10 (1976), no. 4, 259–273 (1977)

    Google Scholar 

  36. Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer algebra handbook. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  37. Guo, L.: Baxter algebras and differential algebras. In: Differential algebra and related topics (Newark, NJ, 2000), pp. 281–305. World Sci. Publ., River Edge, NJ (2002)

    Google Scholar 

  38. Guo, L.: What isa Rota-Baxter algebra? Notices Amer. Math. Soc. 56(11), 1436–1437 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Guo, L., Keigher, W.: On differential Rota-Baxter algebras. J. Pure Appl. Algebra 212(3), 522–540 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Guo, L., Sit, W.Y.: Enumeration and generating functions of differential Rota-Baxter words. Math. Comput. Sci. (2011). http://dx.doi.org/10.1007/s11786-010-0062-1

  41. Guo, L., Sit, W.Y.: Enumeration and generating functions of Rota-Baxter words. Math. Comput. Sci. (2011). http://dx.doi.org/10.1007/s11786-010-0061-2

  42. Helton, J., Stankus, M.: NCGB 4.0: A noncommutative Gröbner basis package for mathematica (2010). http://www.math.ucsd.edu/~ncalg/

  43. Hillar, C.J., Sullivant, S.: Finite Gröbner bases in infinite dimensional polynomial rings and applications (2009). http://arxiv.org/abs/0908.1777

  44. Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms ii: Differential systems. In: U. Langer, F. Winkler (eds.) Symbolic and Numerical Scientific Computations, Lecture Notes in Computer Science, vol. 2630. Springer (2003)

    Google Scholar 

  45. Hule, H.: Polynome über universalen Algebren. Monatsh. Math. 73, 329–340 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  46. Keigher, W.F.: On the ring of Hurwitz series. Comm. Algebra 25(6), 1845–1859 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Keigher, W.F., Pritchard, F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebra 146(3), 291–304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kolchin, E.: Differential algebra and algebraic groups, Pure and Applied Mathematics, vol. 54. Academic Press, New York (1973)

    Google Scholar 

  49. Korporal, A., Regensburger, G., Rosenkranz, M.: A Maple package for integro-differential operators and boundary problems. ACM Commun. Comput. Algebra 44(3), 120–122 (2010). Also presented as a poster at ISSAC ’10

    Google Scholar 

  50. Köthe, G.: Topological Vector Spaces (Volume I). Springer, New York (1969)

    Book  Google Scholar 

  51. La Scala, R., Levandovskyy, V.: Letterplace ideals and non-commutative Gröbner bases. J. Symbolic Comput. 44(10), 1374–1393 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lang, S.: Real and Functional Analysis, Graduate Texts in Mathematics, vol. 142. Springer, New York (1993)

    Book  Google Scholar 

  53. Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)

    Google Scholar 

  54. Lausch, H., Nöbauer, W.: Algebra of Polynomials, North-Holland Mathematical Library, vol. 5. North-Holland Publishing Co., Amsterdam (1973)

    Book  Google Scholar 

  55. Levandovskyy, V.: PLURAL, a non-commutative extension of SINGULAR: past, present and future. In: Mathematical software—ICMS 2006, LNCS, vol. 4151, pp. 144–157. Springer, Berlin (2006)

    Google Scholar 

  56. Levandovskyy, V.: Gröbner basis implementations: Functionality check and comparison. Website (2008). http://www.ricam.oeaw.ac.at/Groebner-Bases-Implementations/

  57. Madlener, K., Reinert, B.: String rewriting and Gröbner bases—a general approach to monoid and group rings. In: Symbolic rewriting techniques, Progr. Comput. Sci. Appl. Logic, vol. 15, pp. 127–180. Birkhäuser, Basel (1998)

    Google Scholar 

  58. Madlener, K., Reinert, B.: Gröbner bases in non-commutative reduction rings. In: B. Buchberger, F. Winkler (eds.) Gröbner Bases and Applications, pp. 408–420. Cambridge University Press, Cambridge (1998)

    Chapter  Google Scholar 

  59. Madlener, K., Reinert, B.: Non-commutative reduction rings. Rev. Colombiana Mat. 33(1), 27–49 (1999)

    MathSciNet  MATH  Google Scholar 

  60. Mikusiński, J.: Operational Calculus. Pergamon Press, New York (1959)

    MATH  Google Scholar 

  61. Mora, F.: Groebner bases for non-commutative polynomial rings. In: AAECC-3: Proceedings of the 3rd International Conference on Algebraic Algorithms and Error-Correcting Codes, pp. 353–362. Springer, London, UK (1986)

    Google Scholar 

  62. Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput. Sci. 134(1), 131–173 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  63. Nashed, M.Z., Votruba, G.F.: A unified operator theory of generalized inverses. In: M.Z. Nashed (ed.) Generalized Inverses and Applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1973), pp. 1–109. Academic Press, New York (1976)

    Google Scholar 

  64. van der Put, M., Singer, M.F.: Galois Theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, vol. 328. Springer, Berlin (2003)

    Book  Google Scholar 

  65. Ree, R.: Lie elements and an algebra associated with shuffles. Ann. Math. (2) 68, 210–220 (1958)

    Google Scholar 

  66. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. (4) 188(1), 123–151 (2009)

    Google Scholar 

  67. Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to integro-differential operators. In: J.P. May (ed.) Proceedings of ISSAC ’09, pp. 287–294. ACM, New York, NY, USA (2009)

    Google Scholar 

  68. Reutenauer, C.: Free Lie Algebras, vol. 7. The Clarendon Press Oxford University Press, New York (1993)

    MATH  Google Scholar 

  69. Rosenkranz, M.: The Green’s algebra: A polynomial approach to boundary value problems. Phd thesis, Johannes Kepler University, Research Institute for Symbolic Computation (2003). Also available as RISC Technical Report 03-05, July 2003

    Google Scholar 

  70. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  71. Rosenkranz, M., Buchberger, B., Engl, H.W.: Solving linear boundary value problems via non-commutative Gröbner bases. Appl. Anal. 82, 655–675 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  72. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symbolic Comput. 43(8), 515–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: D. Jeffrey (ed.) Proceedings of ISSAC ’08, pp. 261–268. ACM, New York (2008)

    Chapter  Google Scholar 

  74. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: V.P. Gerdt, E.W. Mayr, E.H. Vorozhtsov (eds.) Computer Algebra in Scientific Computing. Proceedings of the 11th International Workshop (CASC 2009), LNCS, vol. 5743, pp. 269–283. Springer, Berlin (2009)

    Chapter  Google Scholar 

  75. Rota, G.C.: Baxter algebras and combinatorial identities (I, II). Bull. Amer. Math. Soc. 75, 325–334 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  76. Rota, G.C.: Ten mathematics problems I will never solve. Mitt. Dtsch. Math.-Ver. (2), 45–52 (1998)

    MathSciNet  Google Scholar 

  77. Salvy, B., Zimmerman, P.: Gfun: a maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Softw. 20(2), 163–177 (1994)

    Article  MATH  Google Scholar 

  78. Schwarz, F.: A factorization algorithm for linear ordinary differential equations. In: Proceedings of ISSAC ’89, pp. 17–25. ACM, New York (1989)

    Google Scholar 

  79. Seiler, W.: Computer algebra and differential equations: An overview. mathPAD 7, 34–49 (1997)

    Google Scholar 

  80. Stakgold, I.: Green’s Functions and Boundary Value Problems. John Wiley & Sons, New York (1979)

    MATH  Google Scholar 

  81. Stifter, S.: A generalization of reduction rings. J. Symbolic Comput. 4(3), 351–364 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  82. Stifter, S.: Gröbner bases of modules over reduction rings. J. Algebra 159(1), 54–63 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  83. Tec, L., Regensburger, G., Rosenkranz, M., Buchberger, B.: An automated confluence proof for an infinite rewrite system parametrized over an integro-differential algebra. In: K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (eds.) Mathematical Software - Proceedings of ICMS 2010., LNCS, vol. 6327, pp. 245–248. Springer (2010)

    Google Scholar 

  84. Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator. In: Proceedings of ISSAC ’96, pp. 226–231. ACM, New York (1996)

    Google Scholar 

  85. Ufnarovski, V.: Introduction to noncommutative Gröbner bases theory. In: B. Buchberger, F. Winkler (eds.) Gröbner bases and applications, pp. 259–280. Cambridge University Press (1998)

    Google Scholar 

  86. Ufnarovskij, V.A.: Combinatorial and asymptotic methods in algebra. In: Algebra, VI, Encyclopaedia Math. Sci., vol. 57, pp. 1–196. Springer, Berlin (1995)

    Google Scholar 

  87. Windsteiger, W.: Building up hierarchical mathematical domains using functors in Theorema. Electr. Notes Theor. Comput. Sci. 23(3), 401–419 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge gratefully the support received from the SFB F013 in Subproject F1322 (principal investigators Bruno Buchberger and Heinz W. Engl), in earlier stages also Subproject F1302 (Buchberger) and Subproject F1308 (Engl). This support from the Austrian Science Fund (FWF) was not only effective in its financial dimension (clearly a necessary but not a sufficient condition for success), but also in a “moral” dimension: The stimulating atmosphere created by the unique blend of symbolic and numerical communities in this SFB – in particular the Hilbert Seminar mentioned in Sect. 1 – has been a key factor in building up the raw material for our studies.

Over and above his general role in the genesis and evolution of the SFB F1322, we would like to thank Heinz W. Engl for encouragement, critical comments and helpful suggestions, not only but especially in the early stages of this project.

Loredana Tec is a recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Sciences at the Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz. Georg Regensburger was partially supported by the Austrian Science Fund (FWF): J 3030-N18.

We would also like to thank an anonymous referee for giving us plenty of helpful suggestions and references that certainly increased the value of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rosenkranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B. (2012). Symbolic Analysis for Boundary Problems: From Rewriting to Parametrized Gröbner Bases. In: Langer, U., Paule, P. (eds) Numerical and Symbolic Scientific Computing. Texts & Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0794-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0794-2_13

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0793-5

  • Online ISBN: 978-3-7091-0794-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics