Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 1073 Accesses

Abstract

For a Si hole inversion layer the parameters for phonon and surface roughness scattering, which are shown in Table  12.1, have been obtained by matching the simulation results to the long-channel low-field mobility measurements for bulk Si PMOSFETs from Takagi [5] at three lattice temperatures 223, 300, and 443 K shown in Fig. 12.1 (top). As in [3, 4], a phonon energy of ω = 61. 2 meV was used and kept fixed in this work. The other four scattering parameters were considered as adjustable parameters and their values were extracted by the fitting procedure. The Levenberg-Marquardt least square fitting algorithm [6, 7] was employed and the parameter set of Fischetti in [2] was chosen for initial values. The optimum scattering parameters after fitting are still in good agreement with the ones of Fischetti in [2]. After calibration, all scattering parameters are kept fixed for all simulations. Figure 12.1 (top) shows that the calculated channel mobility fits well the long channel low-field mobility measurements of Takagi [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results based on the classical DD model shown here are simulated with the GALENE device simulator [26] based on the self-consistent solutions of the constitutive equation for current density, the current continuity equation, and Poisson equation. Quantum corrections are excluded from these simulations. The gate work function difference is adjusted such that the threshold voltage is the same as the one in the multisubband device simulations. A constant mobility of 93 cm2/Vs, which is consistent with the homogenous channel low-field mobility for N inv = 1. 3 ×1013 cm − 2, is assumed. For the mobility reduction due to a limiting drift velocity, the saturated drift velocity of holes in bulk Si (v sat = 9. 5 ×106 cm s − 1) is assumed. The band gap narrowing due to the heavy doping is assumed to be negligible.

  2. 2.

    The average hole drift velocity is defined as: v x (x) = 1 ∕ N inv(x)1 ∕ (2π)2νv x ν(x, k)f ν(x, k)d2 k where v x ν is the subband group velocity in the channel direction x and f ν the subband distribution function.

References

  1. Wang, E.X., Matagne, P., Shifren, L., Obradovic, B., Kotlyar, R., Cea, S., Stettler, M., Giles, M.D.: Physics of hole transport in strained silicon MOSFET inversion layers. IEEE Trans. Electron Dev. 53(8), 1840–1851 (2006)

    Article  Google Scholar 

  2. Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band kp calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94, 1079–1095 (2003)

    Article  Google Scholar 

  3. Oberhuber, R., Zandler, G., Vogl, P.: Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFETs. Phys. Rev. B, 58, 9941–9948 (1998)

    Article  Google Scholar 

  4. Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge and SiGe alloys. J. Appl. Phys., 80, 2234–2252 (1996)

    Article  Google Scholar 

  5. Takagi, S., Toriumi, A., Iwase, M., Tango, H.: On the universality of inversion layer mobility in Si MOSFET’s: Part I–Effects of substrate impurity concentration. IEEE Trans. Electron Dev. 41, 2357–2362 (1994)

    Article  Google Scholar 

  6. Levenberg, K.: “A method for the solution of certain problems in least squares”. Quart. Appl. Math. 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  7. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tsutsui, G., Hiramoto, T.: Mobility and threshold-voltage comaprision between (110)- and (100)-oriented ultrathin-body Silicon MOSFETs. IEEE Trans. Electron Dev. 53(10),2582–2588 (2006)

    Article  Google Scholar 

  9. Chleirigh, C., Theodore, N., Fukuyama, H., Mure, S., Ehrke, H.-U., Domenicucci, A., Hoyt, J.L.: Thickness dependence of hole mobility in ultrathin SiGe-channel p-MOSFETs. IEEE Trans. Electron Dev. 55(10), 2687–2694 (2008)

    Article  Google Scholar 

  10. Uchida, K., Takagi, S.: Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 82(17), 2916–2918 (2003)

    Article  Google Scholar 

  11. Jin, S., Fischetti, M.V., Tang, T.: Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. IEEE Trans. Electron Dev. 54(9), 2191–2203 (2007)

    Google Scholar 

  12. Sakaki, H., Noda, T., Hirakawa, K., Tanaka, M., Matsusue, T.: Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51(23), 1934–1936 (1987)

    Article  Google Scholar 

  13. Irie, H., Kita, K., Kyuno, K., Toriumi, A.: In-plane mobility anisotropy and universality under uni-axial strains in n- and p-MOS inversion layers on (100), (110), and (111) Si. In: IEDM Tech. Dig. 225–228 (2004)

    Google Scholar 

  14. Saitoh, M., Kobayashi, S., Uchida, K.: Physical understanding of fundamental properties of Si (110) pMOSFETs inversion-layer capacitance, mobility universality, and uniaxial stress effects . In: IEDM Tech. Dig. 711–714 (2007)

    Google Scholar 

  15. Gusev, E.P., Shang, H., Copel, M., Gribelyuk, M., D’Emic, C., Kozlowski, P., Zabel, T.: Microstructure and thermal stability of HfO2 gate dielectric deposited on Ge(100). Appl. Phys. Lett. 85(12), 2334–2336 (2004)

    Article  Google Scholar 

  16. Chui, C.O., Ramanathan, S., Triplett, B..B, McIntyre, P.C., Saraswat, K.C.: Germanium MOS capacitors incorporating ultrathin high-κ gate dielectric. IEEE Electron Dev. Lett. 23(8),473–475 (2002)

    Google Scholar 

  17. Iwauchi, S., Tanaka, T.: Interface properties of Al2O3-Ge structure and characteristics of Al2O3-Ge MOS transistor. Jpn. J. Appl. Phys. 10, 260–265 (1971)

    Article  Google Scholar 

  18. Yu, D.S., Chiang, K.C., Cheng, C.F., Chin, A., Chunxiang, Z., Li, M.F., Kwong, D.-L.: Fully silicided NiSi:Hf-LaAlO3/SG-GOI n-MOSFETs with high electron mobility. IEEE Electron Dev. Lett. 25(8), 559–561 (2004)

    Article  Google Scholar 

  19. Shang, H., Okorn-Schimdt, H., Ott, J., Kozlowski, P., Steen, S., Jones, E.C., Wong, H.-S.P., Hanesch, W.: Electrical characterization of Germanium p-channel MOSFETs. IEEE Electron Dev. Lett. 24(4), 242–244 (2003)

    Article  Google Scholar 

  20. Kuzum, D., Pethe, A.J., Krishnamohan, T., Saraswat, K.C.: Ge (100) and (111) N- and P-FETs with high mobility and low-T mobility characterization. IEEE Trans. Electron Dev. 56(4),648–655 (2009)

    Article  Google Scholar 

  21. Xie, R., Phung, T.H., He, W., Sun, Z., Yu, M., Cheng, Z., Zhu, C.: High mobility high-κ/Ge pMOSFETs with 1 nm EOT – New concept on interface engineering and interface characterization. In: IEDM Tech. Dig. pp. 393–396 (2008)

    Google Scholar 

  22. Zhang, Y., Fischetti, M.V.: Calculation of hole mobility in Ge and III-V p-channels. In: Proceedings of IWCE, pp. 41–44 (2009)

    Google Scholar 

  23. Bufler, F.M.: Monte–carlo-simulation von verspannten Si/SiGe–strukturen. Vortrag bei Siemens, Bereich Halbleiter, München (1997)

    Google Scholar 

  24. Jungemann, C., Meinerzhagen, B.: Hierarchical Device Simulation: The Monte-Carlo Perspective. Computational Microelectronics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  25. Krishnamohan, T., Kim, D., Dinh, T.V., Pham, A.T., Meinerzhagen, B., Jungemann, C., Saraswat, K.: Comparison of (001), (110) and (111) Uniaxial- and Biaxial-Strained-Ge and Strained-Si PMOS DGFETs for all channel orientations: Mobility enhancement, drive current, delay and off-state leakage. In: IEDM Tech. Dig. pp. 899–902 (2008)

    Google Scholar 

  26. Engl, W.L., Dirks, H.K., Meinerzhagen, B.: Device modeling. In: Proceedings of IEEE, 71, 10–33 (1983)

    Article  Google Scholar 

  27. Pham, A.T., Jungemann, C., Nguyen, C.D., Meinerzhagen, B.: A semiempirical surface scattering model for quantum corrected monte-carlo simulation of unstrained Si and strained Si/SiGe PMOSFETs. Mater. Sci. Eng. B 135, 224–227 (2006)

    Article  Google Scholar 

  28. Jungemann, C., Grasser, T., Neinhüs, B., Meinerzhagen, B.: Failure of moments-based transport models in nanoscale devices near equilibrium. IEEE Trans. Electron Dev. 52(11), 2404–2408 (2005)

    Article  Google Scholar 

  29. Lundstrom, M., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Dev. 49(1), 133–141 (2002)

    Article  Google Scholar 

  30. Pham, A.T., Jungemann, C., Meinerzhagen, B.: Physics-based modeling of hole inversion layer mobility in strained SiGe on insulator. IEEE Trans. Electron Dev. 54(9), 2174–2182 (2007)

    Article  Google Scholar 

  31. Pham, A.T., Jungemann, C., Meinerzhagen, B.: Deterministic multisubband device simulations for strained double gate PMOSFETs including magnetotransport. In: IEDM Tech. Dig. 895–898 (2008)

    Google Scholar 

  32. Chaisantikulwat, W., Mouisa, M., Ghibaudoa, G., Gallonb, C., Fenouillet-Berangerc, C., Mauded, D.K., Skotnickib, T., Cristoloveanu, S.: Differential magnetoresistance technique for mobility extraction in ultra-short channel FDSOI transistors. Solid State Electron. 50(4),637–643 (2006)

    Article  Google Scholar 

  33. Meziani, Y.M., Lusakowski, J., Teppe, F., Dyakonova, N., Knap, W., Romanjek, K., Ferrier, M., Clerc, R., Ghibaudo, G., Boeuf, F., Skotnicki, T.: Magnetoresistance mobility measurements in sub 0.1μm Si MOSFETs. In: Proceedings of ESSDERC, pp. 157–160 (2004)

    Google Scholar 

  34. Landau, L.D., Lifschitz, E.M.: Quantum Mechanics (Non-Relativistic Theory), 3rd edn. Pergamon Press, Oxford (1977)

    Google Scholar 

  35. Pham, A.T., Jungemann, C., Meinerzhagen, B.: Simulation of Landau quantization effects due to strong magnetic fields in (110) Si hole inversion layers. In: Proceedings of IWCE, 335–338 (2010)

    Google Scholar 

  36. Latussek, V., Bangert, E., Landwehr, G.: Self-consistent calculations of landau levels for symmetric p-type inversion layers. Annalen der Physik 503(6), 394–414 (1991)

    Article  Google Scholar 

  37. Takahashi, T., Yamahata, G., Ogi, J., Kodera, T., Oda, S., Uchida, K.: Direct observation of subband structures in (110) pMOSFETs under high magnetic field: Impact of energy split between bands and effective masses on hole mobility. IEDM Tech. Dig. pp. 470–480 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Min Hong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hong, SM., Pham, AT., Jungemann, C. (2011). Results. In: Deterministic Solvers for the Boltzmann Transport Equation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0778-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0778-2_12

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0777-5

  • Online ISBN: 978-3-7091-0778-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics