Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 1101 Accesses

Abstract

Due to the continuous scaling during the last five decades the feature size of semiconductor devices has reached the deca-nanometer range [1], and scaling is expected to continue for some time [2]. For such scaled devices, transport can no longer be described accurately by momentum based models (drift-diffusion or hydrodynamic models) [3, 4], which fail even in the linear transport regime [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson, S., Alavi, M., Hussein, M., Jacob, P., Kenyon, C., Moon, P., Prince, M., Sivakumar, S., Tyagi, S., Bohr, M.: 130 nm logic technology featuring 60 nm transistors, low-k dielectrics and Cu interconnects. Intel Technol. J. 6(2), 5–13 (2002)

    Google Scholar 

  2. International Roadmap Committee: The international technology roadmap for semiconductors. public.itrs.net (2009)

    Google Scholar 

  3. Nekovee, M., Geurts, B.J., Boots, H.M.J., Schuurmans, M.F.H.: Failure of extended-moment-equation approaches to describe ballistic transport in submicrometer structures. Phys. Rev. B 45(12), 6643–6651 (1992)

    Article  Google Scholar 

  4. Fischetti, M.V., Laux, S.E., Crabbe, E.: Understanding hot-electron transport in silicon devices: Is there a shortcut? J. Appl. Phys. 78, 1058–1087 (1995)

    Article  Google Scholar 

  5. Shur, M.S.: Low ballistic mobility in submicron HEMTs. IEEE Electron Dev. Lett. 23(9), 511–513 (2002)

    Article  Google Scholar 

  6. Jungemann, C., Grasser, T., Neinhüs, B., Meinerzhagen, B.: Failure of moments-based transport models in nanoscale devices near equilibrium. IEEE Trans. Electron Dev. 52(11), 2404–2408 (2005)

    Article  Google Scholar 

  7. Madelung, O.: Introduction to Solid State Theory. Springer, Berlin (1978)

    Book  Google Scholar 

  8. Jacoboni, C., Lugli, P.: The Monte Carlo method for semiconductor device simulation. Springer, New York (1989)

    Book  Google Scholar 

  9. Price, P.J.: Monte Carlo calculation of electron transport in solids. Semiconduct. Semimet. 14, 249–309 (1979)

    Article  Google Scholar 

  10. van Kampen, N.G.: Stochastic Process in Physics and Chemistry. North-Holland, Amsterdam (1981)

    Google Scholar 

  11. Kurosawa, T.: Monte Carlo calculation of hot electron problems. J. Phys. Soc. Jpn. 21, 424–426 (1966)

    Google Scholar 

  12. Fawcett, W., Boardman, A.D., Swain, S.: Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids 31, 1963–1990 (1970)

    Article  Google Scholar 

  13. Reklaitis, A.: The calculation of electron transient response in semiconductors by the Monte Carlo technique. Phys. Lett. 13, 367–370 (1982)

    Google Scholar 

  14. Reggiani, L.: Hot-Electron Transport in Semiconductors. Springer, Berlin (1985)

    Book  Google Scholar 

  15. Nedjalkov, M., Vitanov, P.: Iteration approach for solving the Boltzmann equation with the Monte Carlo method. Solid State Electron. 32, 893–896 (1989)

    Article  Google Scholar 

  16. Moglestue, C.: Monte Carlo Simulation of Semiconductor Devices. Chapman & Hall, London (1993)

    Google Scholar 

  17. Hess, K. (ed.): Monte Carlo Device Simulation: Full Band and Beyond. Kluwer, Boston (1991)

    MATH  Google Scholar 

  18. Fischetti, M.V., Laux, S.E.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38, 9721–9745 (1988)

    Article  Google Scholar 

  19. Jungemann, C., Meinerzhagen, B.: Analysis of the stochastic error of stationary Monte Carlo device simulations. IEEE Trans. Electron Dev. 48(5), 985–992 (2001)

    Article  Google Scholar 

  20. Rambo, P.W., Denavit, J.: Time stability of Monte Carlo device simulations. IEEE Trans. Comp. Aided Des. 12, 1734–1741 (1993)

    Article  Google Scholar 

  21. Jungemann, C., Neinhüs, B., Decker, S., Meinerzhagen, B.: Hierarchical 2–D DD and HD noise simulations of Si and SiGe devices: Part II – Results. IEEE Trans. Electron Dev. 49(7), 1258–1264 (2002)

    Article  Google Scholar 

  22. Banoo, K., Lundstrom, M.S.: Electron transport in a model Si transistor. Solid State Electron. 44, 1689–1695 (2000)

    Article  Google Scholar 

  23. Banoo, K., Lundstrom, M.: Direct solution of the Boltzmann transport equation in nanoscale Si devices. In: Proceedings of SISPAD, pp. 50–53 (2000)

    Google Scholar 

  24. Ringhofer, C.: Space–time discretization of series expansion methods for the Boltzmann transport equation. SIAM J. Num. Anal. 38, 442–465 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ringhofer, C.: Numerical methods for the semiconductor Boltzmann equation based on spherical harmonics expansions and entropy discretizations. Transport. Theor. Stat. Phys. 31(4–6), 431–452 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ringhofer, C.: A mixed spectral-difference method for the steady state boltzmann-poisson system. SIAM J. Num. Anal. 41(1), 64–89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ringhofer, C., Schmeiser, C., Zwirchmayer, A.: Moment methods for the semiconductor Boltzmann equation in bounded position domains. SIAM J. Num. Anal. 39, 1078–1095 (2001)

    Article  MATH  Google Scholar 

  28. Baraff, G.A.: Maximum anisotropy approximation for calculating electron distributions; Application to high field transport in semiconductors. Phys. Rev. 133(1A), A26–A33 (1964)

    Google Scholar 

  29. Ventura, D., Gnudi, A., Baccarani, G., Odeh, F.: Multidimensional spherical harmonics expansion of Boltzmann equation for transport in semiconductors. Appl. Math. Lett. 5, 85 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vecchi, M.C., Rudan, M.: Modeling electron and hole transport with full-band structure effects by means of the spherical-harmonics expansion of the BTE. IEEE Trans. Electron Dev. 45(1), 230–238 (1998)

    Article  Google Scholar 

  31. Jungemann, C., Pham, A.-T., Meinerzhagen, B., Ringhofer, C., Bollhöfer, M.: Stable discretization of the Boltzmann equation based on spherical harmonics, box integration, and a maximum entropy dissipation principle. J. Appl. Phys. 100, 024502–1–13 (2006)

    Google Scholar 

  32. Smirnov, S., Jungemann, C.: A full band deterministic model for semiclassical carrier transport in semiconductors. J. Appl. Phys. 99, 063707–1–11 (2006)

    Google Scholar 

  33. Hong, S.-M., Jungemann, C.: Simulation of magnetotransport in nanoscale devices. In: International Conference on Solid State and Integrated Circuits Technology, pp. 377–380 (2008)

    Google Scholar 

  34. Liang, W., Goldsman, N., Mayergoyz, I., Oldiges, P.J.: 2- D MOSFET modeling including surface effects and impact ionization by self-consistent solution of the Boltzmann, Poisson, and hole-continuity equations. IEEE Trans. Electron Dev. 44(2), 257–267 (1997)

    Article  Google Scholar 

  35. Gnudi, A., Ventura, D., Baccarani, G., Odeh, F.: Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid State Electron. 36(4), 575–581 (1993)

    Article  Google Scholar 

  36. Hong, S.-M., Jungemann, C., Bollhöfer, M.: A deterministic Boltzmann equation solver for two-dimensional semiconductor devices. In: Proceedings of SISPAD, pp. 293–296 (2008)

    Google Scholar 

  37. Goldsman, N., Lin, C.K., Han, Z., Huang, C.K.: Advances in the spherical Harmonic-Boltzmann-Wigner approach to device simulation. Superlattice Microst. 27, 159–175 (2000)

    Article  Google Scholar 

  38. Hennacy, K.A., Goldsman, N.: A generalized legendre polynimial/sparse matrix approach for determining the distribution function in non-polar semiconductors. Solid State Electron. 36, 869–877 (1993)

    Article  Google Scholar 

  39. Hennacy, K.A., Wu, Y.-J., Goldsman, N., Mayergoyz, I.D.: Deterministic MOSFET simulation using a generalized spherical harmonic expansion of the Boltzmann equation. Solid State Electron. 38, 1485–1495 (1995)

    Article  Google Scholar 

  40. Rahmat, K., White, J., Antoniadis, D.A.: Simulation of semiconductor devices using a Galerkin/spherical harmonic expansion approach to solving the coulped Poisson-Boltzmann system. IEEE Trans. Comp. Aided Des. 15(10), 1181–1196 (1996)

    Article  Google Scholar 

  41. Lin, C.-K., Goldsman, N., Han, Z., Mayergoyz, I., Yu, S., Stettler, M., Singh, S.: Frequency domain analysis of the distribution function by small signal solution of the Boltzmann and Poisson equations. In: Proceedings of SISPAD, pp. 39–42 (1999)

    Google Scholar 

  42. Jungemann, C.: A deterministic approach to RF noise in silicon devices based on the Langevin Boltzmann equation. IEEE Trans. Electron Dev. 54(5), 1185–1192 (2007)

    Article  Google Scholar 

  43. Jungemann, C., Graf, P., Zylka, G., Thoma, R., Engl, W.L.: New highly efficient method for the analysis of correlation functions based on a spherical harmonics expansion of the BTE’s Green’s function. In: Proceedings of IWCE, Portland, Oregon, pp. 45–48, May 1994

    Google Scholar 

  44. Korman, C.E., Mayergoyz, I.D.: Semiconductor noise in the framework of semiclassical transport. Phys. Rev. B 54, 17620–17627 (1996)

    Article  Google Scholar 

  45. Jungemann, C., Meinerzhagen, B.: A legendre polynomial solver for the Langevin Boltzmann equation. J. Comput. Electron. 3, 157–160 (2004)

    Article  Google Scholar 

  46. Stern, F., Howard, W.E.: Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163, 816–835 (1967)

    Article  Google Scholar 

  47. Ando, T., Fowler, A.B., Sterns, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)

    Article  Google Scholar 

  48. Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band kp calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness. J. Appl. Phys. 94, 1079–1095 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Min Hong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hong, SM., Pham, AT., Jungemann, C. (2011). Introduction. In: Deterministic Solvers for the Boltzmann Transport Equation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0778-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0778-2_1

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0777-5

  • Online ISBN: 978-3-7091-0778-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics